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ABSTRACT

Service Oriented Systems (SOSs) based on the SOA paradigm are becoming popular thanks to a widely 
deployed internetworking infrastructure. They are composed by a possibly large number of heterogeneous 
third-party subsystems and usually operate in a highly varying execution environment, that makes it 
challenging to provide applications with Quality of Service (QoS) guarantees. A well-established ap-
proach to face the heterogeneous and varying operating environment is to design a SOS as a runtime 
self-adaptable software system, so that a prospective enterprise willing to realize a SOA application can 
dynamically choose the component services that best fit its requirements and the environment in which 
the application operates. In this chapter, the authors first review some representative frameworks that 
have been proposed for SOSs able to adaptively manage a SOA application with QoS requirements. These 
frameworks are commonly architected as self-adaptive systems following the MAPE-K (Monitor, Analyze, 
Plan, Execute, and Knowledge) reference model for autonomic computing. The chapter organizes the 
review using a specific taxonomy for each MAPE-K phase, with the aim to classify the different strate-
gies and mechanisms that can be applied. Even if a self-adaptive system requires every MAPE-K phase, 
the authors then focus on the Plan phase, which is the core of each adaptation framework, presenting 
both optimal and sub-optimal approaches that have been proposed to effectively face the adaptation 
task at runtime.
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INTRODUCTION

As a case study of SOS for the adaptive manage-
ment of service composition, we present the main 
features of a prototype that follows the MAPE-K 
reference model. We analyze through a set of 
experiments the different degrees of reliability 
achieved by a SOA application able or not to detect 
and adapt its behavior with respect to the churn of 
the services used to compose it. Our experimental 
results show that the SOA application managed by 
the SOS achieves a reliability improvement up to 
20% with respect to its unmanaged counterpart.

In computer science, Service-Oriented Archi-
tecture (SOA) is now a mature reference paradigm 
for developing network accessible, service-based 
applications. The main goal of designing applica-
tions following the SOA paradigm is to achieve 
a better degree of interoperability with respect to 
legacy distributed applications, which are tied up 
by constraints, such as programming languages 
and specific protocols and technologies. SOA 
applications are built up by composing black-box 
services that can be discovered and invoked us-
ing standard protocols, therefore hiding possibly 
different technologies. The service composition is 
usually described by a workflow representing the 
actual business logic of the application, defining 
both the execution and data flow.

SOA applications have the clear advantage over 
legacy applications to be easily reused because 
they can be published as services in a standard 
registry, where other applications can discover 
them for further invocation. As a consequence, the 
focus in developing a SOA application is shifted to 
activities concerning the identification, selection, 
and composition of services offered by third par-
ties rather than the classic in-house development.

Systems realized using the SOA paradigm take 
the name of Service Oriented Systems (SOSs). 
They benefit from the SOA flexibility as well as 
from the presence of a widely deployed internet-
working infrastructure. The diffusion of systems 
deployed using the SOA paradigm is leading to 

the proliferation of service marketplaces (such as 
SAP Service Marketplace and Windows Azure 
Marketplace), where an enterprise can find every 
component needed to build its SOA applications. 
With an ever increasing number of service pro-
viders on the global market scene, it is becoming 
easy to find multiple providers implementing the 
same functionality with different quality levels, 
e.g., different providers can exhibit different 
response times or costs for services that present 
the same logic. Therefore, depending on the needs 
of the SOA application, it is possible to dynami-
cally select the services that best fit its (possibly 
changing) requirements.

However, several problems arise when a SOA 
application, which is offered using third party 
services, needs to fulfill non-functional require-
ments, because existing services may disappear 
or their performance may quickly fluctuate over 
time, due to the highly varying execution environ-
ment. The SOA paradigm easily allows to replace 
services with equivalent ones, but this task could 
be very challenging for a human being, especially 
when several services must be replaced at the 
same time. Similarly, when the service composi-
tion logic needs to be partially or even entirely 
modified in order to account for changes in the 
functional requirements, it is hard to manually 
choose among several alternative workflows, 
considering also the non-functional requirements. 
In addition, the management complexity of SOSs 
rapidly grows as the number of services involved 
in the compositions increases. To tackle such 
complexity, to reduce management costs, and 
to provide better operativeness, a common and 
well-established approach is to design SOSs as 
runtime self-adaptable software systems (Salehie 
& Tahvildari, 2009), that is, software systems 
able to detect changes in the environment and to 
properly reconfigure themselves.

In the field of self-adaptable software systems, 
the main research branches that have been pursued 
regard the functional and non-functional require-
ments of SOA applications. In this chapter, we 
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focus on non-functional requirements, expressed 
as Quality of Service (QoS) attributes of SOSs.

The adaptation of non-functional require-
ments can follow either the best effort or QoS-
constrained strategy. The former aims to improve 
non-functional attributes (e.g., response time or 
reliability) of the overall SOA application without 
ensuring any kind of guarantee, while the latter 
aims to provide a SOA application with predictable 
QoS attributes. In the last years both approaches 
have been largely investigated, e.g., (Ezenwoye 
& Sadjadi, 2007; Michlmayr, Rosenberg, Leitner 
& Dustdar, 2010) for the best effort strategy and 
(Ardagna, & Pernici, 2007; Cardellini, Casalic-
chio, Grassi, Iannucci, Lo Presti & Mirandola, in 
press; Menascè, Casalicchio & Dubey, 2010) for 
the QoS-constrained strategy. Each solution has 
its own characteristics and peculiarities in the way 
it faces the self-adaptation. In particular, since 
in the context of SOA applications, the manage-
ment, the control, and performance prediction 
of the QoS characteristics of the offered service 
have been identified as the most critical tasks 
as they ultimately determine how the system 
guarantees QoS levels, most of the above efforts 
have focused and mostly differ for the different 
strategies adopted for the aforementioned tasks. 
Nevertheless, despite their differences, all these 
approaches follow a more general framework, 
called MAPE-K.

MAPE-K (Kephart & Chess, 2003) is a con-
ceptual guideline for realizing self-adaptable 
systems (Salehie et al., 2009) and is composed 
of four essential phases: Monitor, Analyze, Plan, 
and Execute. There is also a Knowledge layer 
that support all the phases. The model is based on 
a feedback-control loop, that detects changes in 
the execution environment, analyzes them, plans 
the necessary actions to maximize some utility 
function, and executes these actions. In literature, 
the same approach is also referred to as CADA 
(Dobson et al., 2006), which stands for Collect, 
Analyze, Design, and Act.

In this chapter we first present and classify the 
different frameworks for adaptive management 
of service composition. Since they can all be 
regarded as instances of the MAPE-K framework 
we present each phase of the MAPE-K loop and 
discuss how the self-adaptation frameworks for 
SOA applications, so far proposed, implement it.

We then concentrate on the adaptation strate-
gies themselves. In particular, since we focus on 
fulfilling the non-functional requirements of the 
SOA application, we analyze the approaches for 
service selection. Given a service composition, 
the service selection’s aim is to identify those 
component services that provide the best imple-
mentation of the needed functionalities in order 
to satisfy the QoS requirements of the SOA appli-
cation. Although service selection is not the only 
adaptation mechanism, our presentation focuses 
on it because it is leveraged by most of the self-
adaptation frameworks we consider in our review.

As case study of SOS for the adaptive man-
agement of service composition, we then present 
MOSES (Cardellini et al., in press). MOSES is 
a methodology and a software tool implement-
ing it to support the QoS-driven adaptation of a 
service-oriented system and represents a working 
example of framework organized according to the 
MAPE-K loop.

We validate on a motivating scenario charac-
terized by a varying operating environment the 
runtime adaptation features provided by MOSES. 
Specifically, we analyze through a set of experi-
ments conducted using the MOSES prototype the 
different degrees of reliability achieved by a SOA 
application able or not to detect changes and 
adapt its behavior with respect to the component 
services churn, i.e., to the change in the set of 
component services due to joins, graceful leaves, 
and failures. Our experimental results show that 
the runtime adaptation carried out by MOSES is 
able to improve the SOA application reliability 
even in a highly varying operating environment.

The rest of the chapter is organized as follows. 
The section below introduces some basic terminol-
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ogy used throughout the chapter. In the section 
after that we review the distinguishing features of 
the MAPE-K cycle and present our taxonomy for 
each specific MAPE-K phase. In the following 
two sections, we focus on the service selection 
approaches used in the Plan phase of MAPE-K, 
analyzing some representative formulations of 
optimization problems and heuristics. In the sixth 
section, we present our case study of adaptive 
SOS and analyze the experimental results. Finally, 
we present possible avenues for future work and 
conclude the chapter with some remarks.

SOA REFERENCE MODEL

Prior to analyze how to realize self-adaptable SOA 
applications, it is useful to introduce the SOA ref-
erence model, so to clarify the basic terminology 
used throughout the chapter.

The SOA reference model defines the interact-
ing actors and their interaction modes. Looking 
over the SOA domain, the main actors are: the 
service provider, that offers a service, and the 
service requestor, that requests the service (in this 
chapter we will use service requestor and client 
interchangeably). To issue a service invocation, 
the service requestor has to know a service pro-
vider offering the needed functionality. To this 
end, the service registry holds information about 
existing services, which are published by service 

providers themselves. Figure 1a illustrates the 
SOA reference model.

The above reference model is usually ex-
tended to include an intermediary entity. When 
the offered service is actually a service composi-
tion which adopts some adaptation mechanism, 
we refer to its provider as service broker. As shown 
in Figure 1b, the service broker is as an interme-
diary actor lying between the service requestors 
and the service providers, willing to offer to the 
requestors an added-value SOA application ob-
tained by composing the services exposed by 
those providers.

As we will see in this chapter, the notion of 
service broker is crucial for a self-adaptive SOS: 
although the service requestor can be enhanced 
with some adaptation logic, a more consolidated 
approach is to place this logic at the service 
broker level.

A common implementation of the SOA refer-
ence model is realized by Web services. In this 
chapter we will therefore use service and Web 
service interchangeably.

MAPE-K: A CONTROL LOOP FOR 
SELF-ADAPTIVE FRAMEWORKS

MAPE-K is a reference model for realizing self-
adaptable applications: the MAPE-K control loop 
uses an intelligent agent to perceive the surround-

Figure 1. a) SOA reference model; b) SOA reference model with broker



165

Service-Oriented Systems for Adaptive Management of Service Composition

ing environment through sensors and uses the 
collected information to determine the actions that 
have to be performed on the environment itself.

In the context of SOA applications, the man-
aged environment is constituted by (i) the work-
flow of activities concerning the invocation of 
external services and their orchestration, (ii) the 
external services, and (iii) the network intercon-
necting these activities with the service requestors 
and the service providers. The autonomic manager 
is constituted by software components for the 
different MAPE-K phases.

Figure 2 illustrates the MAPE-K control loop: 
the four steps of the autonomic manager, the 
managed element, the sensors, and the actuators. 
In the SOA context, the managed element is the 
SOA application, while the autonomic manager 
is a (possibly complex) software layer overlying 
the actual SOA application. While the applica-
tion runs, the manager goes through the different 
MAPE-K steps:

1.  Monitor: The application execution is 
monitored through sensors. In the SOA 
context, the sensors are implemented by 
means of probes over external services, with 

the objective of detecting the actual values 
of the quality attributes such as response 
time, reliability, and availability.

2.  Analyze: The Monitor phase output is taken 
as input by the Analyze phase, which usually 
performs statistical computation on the raw 
data collected by the preceding phase. The 
data analysis aims at determining whether 
some quality attribute has violated (or is go-
ing to violate) a previously specified internal 
policy, usually stored in the Knowledge layer. 
In the SOA domain, an internal policy can 
be the violation of a certain threshold for a 
quality attribute, e.g., for a given service the 
average response time measured over some 
interval exceeds the threshold established in 
the internal policy.

3.  Plan: After the Analyze phase has detected 
some kind of violation of the internal policy, 
the Plan phase computes a new adaptation 
plan, possibly using the data elaborated by 
the Analyze phase with the support of the 
Knowledge layer. In the SOA context, the 
elaboration of a new adaptation plan can be 
the selection of different service providers 
implementing the needed functionalities. 
Alternatively, it can be an internal workflow 
re-arrangement so that the internal policy 
specifying the application requirements can 
be satisfied.

4.  Execute: The new computed plan has to be 
executed by the SOA application controlled 
by the MAPE-K control loop. Such correc-
tive actions are applied by means of actua-
tors on the underlying SOA application. In 
the SOA domain, the corrective actions can 
be a different binding of functionalities to 
service providers, as well as an application 
re-deployment.

In the remainder of this chapter we will first 
describe the different phases of the MAPE-K loop 
intended for SOA applications; then, we will focus 
on the planning phase. For each MAPE phase we 

Figure 2. MAPE-K control loop: adapted from 
(Kephart & Chess, 2003)
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arranged a taxonomy to classify the different SOA 
frameworks that adopt the autonomic control loop 
to adaptively manage the service composition.

The questions driving the various taxonomies 
are based on the five Ws and one H concept (Hart, 
2011).

• What: It identifies the relevant elements 
for each MAPE-K phase.

• Where: It characterizes where a certain 
phase can happen either at a logical or 
physical level.

• When: It classifies the temporal aspects 
that characterize each MAPE-K phase.

• Who: It identifies the entities involved in 
the execution of each MAPE-K phase.

• How: It describes how each MAPE-K 
phase can be implemented.

With respect to the five Ws and one H concept, 
we do not explicitly consider the Why question, 
because we assume that adaptation is the motiva-
tion that drives all the choices.

Monitor Taxonomy

Figure 3 illustrates the taxonomy of the Monitor 
phase.

• What: Monitoring usually targets the QoS 
parameters, i.e., the set of attributes that 
describe the performance of the SOA ap-
plication, or the hardware/software re-
sources that support its execution. For ex-
ample, the attributes concerning the 
hardware resources can regard the CPU 
utilization or the amount of available 
memory, while those regarding the soft-
ware resources can be the length of the 
backlog queues or the number of threads 
used by the application server. We can 
identify two different types of QoS param-
eters: (i) client-side parameters, like re-
sponse time, availability, reliability, repu-

tation, and cost, which capture how the 
clients perceive the application QoS; (ii) 
system-side parameters, like throughput 
and cost, which are relevant to the system 
managers. Reputation, which provides a 
measure of the service trustworthiness, can 
be defined as the ratio between the number 
of service invocations that comply the ne-
gotiated QoS over the total number of ser-
vice invocations (Ardagna & Pernici, 
2007) and can be obtained through a col-
laborative mechanism among the applica-
tion clients (Zheng, Ma, Lyu & King, 
2011). Given the large set of QoS parame-
ters, the monitoring typically focuses only 
on those that are involved in the adaptation 
loop. For example, in frameworks that dy-
namically adapt the amount of hardware 
resources used by the SOA application 
(Mirandola & Potena, 2011; Calinescu, 
Grunske, Kwiatkowska, Mirandola & 
Tamburrelli, 2011), the monitoring focuses 
on the hardware resources utilization in or-
der to decide whether and when resize the 
CPU, memory, or disk. In other frame-
works, that do not consider the hardware 
resource adaptation, other attributes are 
monitored, such as response time and reli-
ability (Rouvoy et al., 2009; Menascé, 
Gomaa, Malek & Sousa, 2011; Bellucci, 
Cardellini, Di Valerio & Iannucci, 2010; 
Agarwal & Jalote, 2010; Ardagna, Baresi, 
Comai, Comuzzi & Pernici, 2011). 
Furthermore, the workload submitted to 
the SOA application can also be monitored, 
for example to derive some useful metric, 
like response time, from the gathered in-
formation. Examples of frameworks that 
monitor the workload include (Calinescu 
et al., 2011; Bellucci et al., 2010; Ardagna 
& Mirandola, 2010).

• Where: The monitored data can be collect-
ed at various different locations. A first ap-
proach is to collect the data at the client side 
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of the SOA application, like in (Rouvoy 
et al., 2009), where the client is respon-
sible for detecting possible Service Level 
Agreements (SLA) violations. Another ap-
proach is to collect the data at the provider 
side, like the Amazon CloudWatch service: 
the service provider collects data for itself 
and makes them available to its clients. 
However, the most common solution ad-
opted in the SOA context is to collect data 
on the service broker that manages the ad-

aptation of the SOA application, as done 
in (Mirandola et al., 2011; Calinescu et al., 
2011; Menascé et al., 2011; Bellucci et al., 
2010; Ardagna et al., 2011).

• When: The monitoring activity can be 
accomplished either continuously or on-
demand. Although the latter seems to be a 
reasonable solution, for example the plan-
ning phase might choose to start a moni-
toring activity on a different perspective 
of the system, in all the frameworks we 

Figure 3. Monitor taxonomy
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consider the monitoring is performed on 
a time-continuous base. The frequency at 
which data are collected often depends on 
the required effort.

• Who: Various actors can be interested in 
the monitoring activity: the client might 
want to detect SLA violations, the broker 
to identify changes in the operational en-
vironment, and the provider to control the 
resource utilization. Furthermore, a third-
party entity not directly involved in the 
SOA application might collect data in or-
der to offer them as a service.

• How: The monitoring activities differ in the 
methodology used to collect the monitored 
data and in the architecture of the monitor-
ing infrastructure. The methodology can 
be either active, if the data are collected 
sending proper inputs to the monitored en-
tities, or passive, if the data are collected 
without injecting additional load but rather 
observing the system behavior. The latter 
solution is usually preferred, especially in 
the context of the SOA applications, where 
each service invocation has a cost. For ex-
ample, (Calinescu et al., 2011; Ardagna et 
al., 2011; Rouvoy et al., 2009; Mirandola 
et al., 2011) use the passive approach. The 
active monitoring can be used to proactive-
ly determine the service availability. For 
example in (Bellucci et al., 2010), besides 
using a passive approach, the framework 
periodically checks if the used services are 
available, in order to reduce the occurrence 
of a service failure during the invocation 
issued by a client.

• Finally, the monitoring activities can be 
performed by a single central entity or by a 
distributed sensors network.

Analyze Taxonomy

Figure 4 depicts the taxonomy for the Analyze 
phase of the MAPE-K loop.

• What: The Analyze phase receives as in-
put the data from the Monitor phase and so 
it deals with the monitored data. The pro-
cessed data can be either raw or previously 
aggregated.

• Where: The data analysis can be carried 
out at different locations: at the client, the 
broker, and a third-party entity. Client-side 
analysis is typically carried out in SOA 
architectures that do not include an inter-
mediary broker; in this case, the analysis 
of the monitored data is demanded either 
to a monitoring service under the client 
control, e.g., (Rosario, Benveniste, Haar & 
Jard, 2008), or to a third-party collabora-
tive monitoring service as in (Zheng et al., 
2011).
The broker-side analysis is usually per-
formed by those frameworks that involve 
the broker with the support of either self-
collected data or a third-party monitoring 
system. The latter can be of collaborative 
type and therefore offers data analysis as 
a counterpart for receiving monitored data 
from SOA executors, as in (Zheng et al., 
2011).

• When: The frequency at which data analy-
sis is performed is often determined as a 
trade-off between the need to quickly react 
to significant events and the costs of data 
processing. The simplest approach is to 
periodically analyze the data at fixed inter-
vals (Bellucci et al., 2010). In the more so-
phisticated event-driven analysis, which is 
usually based on the concept of Continuous 
Query Processing (CQP), each monitored 
data is not only stored but might activate 
a trigger usually based on simple policies, 
like threshold violations (Calinescu et al., 
2011). Event-driven analysis can also oc-
cur either after the execution of a specific 
service, a set of services, or even the whole 
workflow (Ardagna et al., 2011). The peri-
odic and event-driven analysis approaches 
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can be combined to obtain a periodic anal-
ysis coupled with an event-driven analysis 
for critical events detection (Calinescu et 
al., 2011). Finally, on-demand analysis can 
also be directly requested by a client, de-
pending on its own analysis policies.

• Who: The actors interested in the Analyze 
phase coincide with those that will plan 
the adaptation actions, that is, the clients 
and the broker. A client may be interested 
in data analysis when it does not rely on 

an external service broker, while a service 
broker is always interested in analyzing the 
monitored data.

• How: We distinguish between method-
ological and architectural issues regarding 
how the analysis can be accomplished.

• The Analyze policies can be roughly di-
vided in two macro-categories: online and 
offline analysis. Since the SOS operations 
require the adaptation loop to quickly react 
to a changing environment, a fast analysis 

Figure 4. Analyze taxonomy
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is often needed to allow for an early de-
tection and reaction to significant events. 
As a consequence, we might need to resort 
to heuristics whenever exact algorithms 
are too computationally intensive (see 
(Rosario et al., 2008)), hence not suited 
to online operations. Offline analysis still 
plays a significant role as the collected data 
can be used to identify suitable models of 
the complex SOA environment.

• Online solutions can be further divided 
into reactive and proactive analysis. In 
reactive approaches, the system evalu-
ates the collected data and reacts to event 
as they are detected, e.g., (Calinescu et 
al., 2011). This implies that the system 
can only react to events after they occur. 
Proactive approaches take advantages of 
predictive models to actually anticipate the 
occurrence of events, thus possibly invok-
ing the adaptation planner before the viola-
tion could actually happen, e.g., (Ardagna 
et al., 2011).

• From an architectural point of view, we 
distinguish between centralized and decen-
tralized approaches. The former have the 
well-known quality of being easily man-
ageable, while the latter are more scalable 
and fault tolerant.

• The possible data analysis techniques in-
clude checking the violation of a thresh-
old, for example by applying the Student 
t-test statistical significance to determine 
the probability of a QoS attribute to be vio-
lated (Mosincat, Binder, & Jazayeri, 2010), 
or creating an empirical distribution func-
tion that fits the actual QoS parameters dis-
tribution as in (Rosario et al., 2008).

Plan Taxonomy

The taxonomy of the Plan phase is shown in 
Figure 5.

• What: The Plan phase is the pivotal phase 
around which the entire autonomic cycle 
revolves. The Plan role is to determine and 
identify the plans and its constituent adap-
tation actions to be set forth for the system 
to attain its goals and/or maintain its objec-
tives in face of a changing internal and/or 
external environments.
Different planning methodologies can be 
applied depending on whether the adapta-
tion cycle considers the functional or the 
non-functional requirements of the SOA 
application. When the adaptation concerns 
the functional behavior, planning the adap-
tation of the functional behavior means to 
alter the workflow that defines the business 
logic of the SOA application. For example, 
in (Mirandola et al., 2011) the interactions 
among component services already involved 
in the workflow can be removed or new ones 
can be added; furthermore, it is possible to 
introduce new services with subsequent 
interactions. Actually, the changes to the 
workflow are not planned automatically, but 
the client submits a set of possible solutions 
to the new functional requirements and the 
SOS evaluates the QoS of each solution 
and then chooses the most suitable one with 
respect to a given utility function.
The adaptation to satisfy the non-functional 
requirements has been widely investigated 
in the last years. In most frameworks, the 
adaptive management is typically achieved 
by selecting at runtime the implementation 
corresponding to each functionality of the 
abstract composition from a set of candidates 
and leaving unchanged the composition 
logic. The overall methodology entails the 
discovery, identification, and selection of 
the actual services implementing the SOA 
application as to satisfy some non-functional 
requirements while optimizing a suitable 
utility function.
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The service selection can be performed at 
two different granularity levels. With the 
per-request grain, the adaptation concerns 
a single request addressed to a composite 
service, and aims at making the system 
able to fulfill the QoS requirements of that 
specific request (e.g., minimize the cost of 
the SOA application), independently of the 

concurrent requests that may be addressed 
to the system. With the per-flow grain, 
the adaptation concerns an overall flow of 
requests, and aims at fulfilling the QoS re-
quirements concerning the global properties 
of that flow, e.g., to minimize its average 
response time. Some proposals in the per-
request case include (Ardagna et al., 2007; 

Figure 5. Plan taxonomy
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Ardagna et al., 2011; Canfora, Di Penta, 
Esposito, Villani, 2008), while (Cardellini, 
Casalicchio, Grassi & Lo Presti, 2007; Klein, 
Ishikawa & Honiden, 2010; Ardagna et al., 
2010) adopt the per-flow approach. Some 
frameworks (Bellucci et al., 2010; Menascé 
et al., 2011) also consider the coordination 
pattern service selection. For each func-
tionality in the SOA application workflow, 
these frameworks select a subset of actual 
services implementing it and a coordination 
pattern according to which those services 
are invoked, for example to improve the 
reliability of the SOA application. Examples 
of coordination patterns include the parallel 
invocation of multiple services in order to 
improve the reliability or their sequential 
invocation to obtain the same goal but at a 
lower cost and worse response time.
The Plan activity can also entail the selec-
tion of the service providers with which 
bargaining a SLA. The provider selection 
can be done, for example, to define the set 
of semantically equivalent services that will 
serve as candidates for the service selection. 
Other approaches plan the provisioning of 
the manageable resources, e.g., (Calinescu 
et al., 2011; Mirandola et al., 2011) to adjust 
the system resources allocated to individual 
services, for example with the aim to sustain 
the submitted workload. This approach is 
feasible only for those resources that are 
internally managed by the provider of the 
SOA application, but not for those services 
offered by external providers.

• Where: The Plan phase is usually execut-
ed on the broker, and this is the solution 
adopted in almost all of the frameworks 
we consider. However, it is also possible to 
execute the planning on the client, like in 
(Rouvoy et al., 2009), in case of a broker-
less architecture.

• When: Similarly to the Analyze phase, the 
Plan execution is determined by the trade-

off between the need to react to significant 
events, as the arrival or departure of clients 
or the SLA violations by a service, and the 
execution time of the adaptation strategy. 
Planning can be either carried out at fixed 
time intervals or executed whenever the 
changes in the environment as detected by 
the Analyze phase might cause the current 
plan to be no longer adequate to guarantee 
the system requirements. As noted before, 
we can combine the two approaches, i.e., a 
periodic planning coupled with an event-
driven planning activated by the Analysis 
step. Finally, we can have on-demand 
planning, which is directly requested by 
a client depending on its own policies and 
current perception of the quality attributes 
of the SOA application.

• Who: The entities interested in the Plan 
phase are the same that perform the 
Analyze step, that is, the clients and the 
broker. A client can plan the adaptations 
actions when it does not rely on an external 
service broker, while a service broker per-
forms the Plan phase to keep the adaptation 
decisions under its control.

• How: The Plan execution can be accom-
plished using two different methodologies 
aimed at computing an optimal or a sub-
optimal/heuristic policy. The former type 
of methodologies determines an optimal 
solution given a utility function and some 
constraints. The optimization problem can 
be formulated using Linear Programming 
(LP) as in (Cardellini et al., 2007; Klein 
et al., 2010), Integer Programming (IP) as 
in (Alrifai & Risse, 2009), or even Mixed 
Integer Linear Programming (MILP) as 
in (Ardagna et al., 2007). To overcome 
the computational complexity of optimal 
strategies, especially of integer formula-
tions, the latter type of methodologies rely 
on heuristics that lead to suboptimal solu-
tions but are faster to solve (Menascé et al., 
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2011). As regards the planner architecture, 
it is centralized in most of the frameworks, 
although some decentralized approach ex-
ists, as in (Alrifai et al., 2009), where part 
of the computation is distributed across the 
network.

Execute Taxonomy

Figure 6 shows the taxonomy of the Execute phase 
of the MAPE-K loop.

• What. In this case, the question assumes a 
trivial meaning: what we are going to exe-
cute coincides with what we have planned 
in the previous step.

• Where. The adaptation plan can be ex-
ecuted at different layers, ranging from 
the highest business process layer to the 
lowest infrastructure layer. Starting from 
the latter, the adaptation actions can be 
run either on the internal infrastructure 
(Mirandola et al., 2011; Calinescu et al., 
2011) or on an external infrastructure. By 
internal infrastructure we mean all those 
physical and virtual resources that are di-
rectly manageable by the SOA application 
provider, while with external infrastructure 
we intend every external physical or vir-
tual resource used to improve or to replace 
any internal infrastructure. The actions 
available at the infrastructure layer include 
adding or removing physical or virtual ma-
chines, improving the network connections 
or the storage system.
Going up through the abstraction layers, we 
find that adaptation can take place at the 
platform layer. The latter identifies every 
software needed to run the service we intend 
to adapt, thus ranging from the operating 
system to any application server (Calinescu 
et al., 2011). Changes on this layer involve 
everything that goes from kernel reconfigu-
ration to application server tuning, but it does 

not involve any modification on services that 
take part in the business process. Such modi-
fications belong to the service layer, where 
we can operate both service re-configuration 
and service tuning. Finally, at the business 
process layer, the adaptation actions involve 
the high-level logic of the business process 
(Bellucci et al., 2010; Menascè et al., 2011; 
Calinescu et al., 2011).

• When. Most of times the adaptation ac-
tions have to be carried out introducing 
the lowest possible delay into the business 
process execution. Depending on the adap-
tation actions, the adaptation may happen 
either at runtime or at deployment-time. 
Although it is possible to execute adapta-
tion actions also at development-time or 
design-time, we do not consider them be-
cause we only focus on those solutions that 
do not require human intervention, being 
the latter a requirement for a truly auto-
nomic system. We include in the deploy-
ment-time phase all those approaches that 
require a (even small) service interruption 
in order to apply the adaptation plan. All 
other approaches can be classified in the 
runtime case.

• Who. The entities involved in the actua-
tion of the adaptation plan are the client, 
the broker, and the service provider.
A client managing the entire service orches-
tration can apply by its own the adaptation 
actions previously computed in the plan-
ning phase. A broker can either apply its 
own computed adaptation plan or rely on 
some adaptation plan directly provided by 
the client, as in (Mirandola et al., 2011). 
Finally, the service provider can modify its 
behavior according to directives provided 
by the client or the broker. For example, it 
can receive an adaptation request issued by 
a broker that has detected a slowdown in the 
provider performance.
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• How. The adaptation actions that can be 
taken are all part of a meta-branch called 
re-configuration. In particular, we have 
identified three possible mechanisms to ex-
ecute the adaptation plan: runtime binding, 
Aspect Oriented Programming (AOP), and 
parameters modification.
The runtime binding is the most leveraged 
approach, as it provides the SOA applica-
tion with the ability to bind at runtime the 
invocation with the actual service according 
to the Plan decision. It is the most suited 
mechanism to implement service selection, 

coordination pattern selection or even a 
simple load balancing policy among func-
tionally equivalent services.
AOP can be used to inject code fragments 
(also known as sub-processes) into the SOA 
application itself, in order to have process 
segments changing at runtime (Leitner et al., 
2010) or at deployment-time. This method-
ology is suited for both non-functional and 
functional adaptation as it can modify the 
functional as well as non-functional ap-
plication behavior. The AOP methodology 
is based on the concepts of aspect (cross-

Figure 6. Execute taxonomy
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cutting concerns, which are turned off and 
on at design or runtime), advises (the actual 
implementation in terms of business logic of 
the aspects), joinpoints (points on the busi-
ness process where advices can potentially 
be inserted), and weaving (the process of 
dynamically inserting advises in joinpoints).

• Finally, the parameters modification en-
compasses all those mechanisms that can 
be used to change some operative feature 
of the SOS.

Self-Adaptive Frameworks

As described in the previous subsections, each 
phase in the MAPE-K loop can be realized in 
several different ways. However, to design a 
consistent MAPE-K loop only a subset of the 
possible combinations is reasonable. For example, 
if the monitored data are analyzed on an event-
driven basis, it is not appropriate to periodically 
execute the Plan phase. If a service broker moni-
tors its hardware and software resources, it is not 
possible to plan a service selection for a service 
composition, unless the used Web services are all 
in-house, but it is an unreasonable scenario for a 
SOA application.

When we described the taxonomies of the 
MAPE loop phases, we referred to some existing 
frameworks for the self-adaptation of a SOA appli-
cation. In this section, we analyze the overall map-
ping of these frameworks on those taxonomies. 
Specifically, we consider (Calinescu et al., 2011; 
Ardagna et al., 2011) among the cited frameworks, 
because they are the most documented; later in 
the chapter, we will analyze as a case study the 
MOSES framework (Cardellini et al., in press). In 
the remainder of this subsection we do not men-
tion the who branch of the taxonomies, because 
it coincides with the service broker for both the 
frameworks.

Let us start with the Monitor phase. QoSMOS, 
which stands for QoS Management and Optimiza-

tion of Service-based systems (Calinescu et al., 
2011), focuses on monitoring (what) the QoS at-
tributes at the client side, the workload submitted 
to each service in the service composition, and the 
resources allocated to the in-house services. The 
monitoring is executed (where) at the broker side, 
(when) on a continuous basis, and (how) using a 
passive methodology.

Discorso, which stands for Distributed Infor-
mation Systems for Coordinated Service-Oriented 
Interoperability (Ardagna et al., 2011), differs 
from QoSMOS only for the what branch of the 
monitor taxonomy, since it only monitors the QoS 
attributes at the client side. As discussed below, 
this slight difference in the Monitor phase affects 
the design of both the Plan and Execution phases 
of the MAPE-K loop for the two frameworks.

As regards the Analyze phase, both the frame-
works perform (what) the analysis of the moni-
tored data (where) at the broker side, (how) using 
an online methodology. The difference is in the 
timeliness: QoSMOS realize a reactive analysis, 
while Discorso a proactive one. However, this 
difference does not affect the design of the Plan 
and Execution phases, but only how the adaptation 
need is detected. Furthermore, the analysis is per-
formed (when) both periodically and event-based 
for QoSMOS, and only event-based for Discorso.

The design of the Plan phase is affected by the 
differences in the monitoring. Although both the 
frameworks perform a non-functional adaptation, 
Discorso only plans (what) the service selection at 
the per-request granularity, while QoSMOS also 
the resource provisioning both at infrastructure 
and platform layers (this difference reflects the 
different kind of attributes that are monitored). 
The methodology used by the planning (how) is 
based on optimization models for both the frame-
works and the computation is performed using a 
centralized architecture. In particular, Discorso 
uses an optimization problem formulated as MILP 
while QoSMOS an exhaustive research based 
on a Markovian model of the SOA application. 
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Eventually, the planning is executed (where) at the 
broker side and (when) with the same timeliness 
of the Analyze phase. Furthermore, QoSMOS 
performs an iteration of the MAPE-K loop also 
if a time interval has expired, even if no change is 
detected in the execution environment. Therefore, 
the planning phase is executed both periodically 
and event-based for QoSMOS, and only event-
based for Discorso.

The design of the Execute phase is also af-
fected by the design choices made in the previous 
MAPE-K steps. Indeed, the adaptation actions are 
executed (where) only on the business process 
layer for the Discorso framework, and also on the 
infrastructure and platform layers for QoSMOS. 
These actions are executed (when) at runtime, 
(how) using the runtime binding in both frame-
works and the parameters modification only in 
QoSMOS.

SERVICE SELECTION

As previously observed, the Plan phase is the core 
of the autonomic control loop as it defines the 
self-adaptation logic. It is no surprise then that 
many research efforts on adaptive management of 
SOSs have focused on studying and developing 
planning strategies.

In the context of SOA applications, the most 
critical tasks of the planning phase have been 
identified with the ability to manage, control, 
and predict the QoS characteristics of the offered 
SOA applications (Papazoglou, Traverso, Dustdar 
& Leymann, 2007). Hence, most planning poli-
cies have addressed the issue of fulfilling non-
functional requirements. Since SOA applications 
are built by composing loosely coupled services, 
which are easily replaceable at runtime with dy-
namic binding, most of the research efforts have 
focused on devising proper service selection and 
coordination pattern selection strategies.

In this section we review service selection 
strategies for SOA applications. In this respect, 

we can clearly distinguish two broad classes of 
approaches, depending on whether we deal with 
the per-request or the per-flow granularity. In-
deed, despite addressing similar issues, the two 
approaches significantly differ in the formulation 
of the optimization problem. In the first case, 
we have to deal with 0-1 problems, which are 
computationally complex, while in the second 
case we deal with probabilities, which lead to 
cheaper computations. We will focus on two 
representative solutions: (Ardagna et al., 2007) 
for the per-request approach and (Cardellini et 
al., 2007) for the per-flow approach. Since the 
optimal strategies for the per-request granularity 
are computationally expensive, many research 
efforts have focused on heuristics, which, albeit 
suboptimal, are computationally efficient; there-
fore, we will also review some representative 
examples in the next section.

In the following, we consider a broker that 
offers a SOA application P. We assume that the 
broker has negotiated SLAs with its clients and 
has the main task to fulfill these SLAs, while 
optimizing a suitable utility function and being 
constrained by the SLAs it has stipulated as a client 
with the providers of the services involved in the 
service composition. Depending on the utilization 
scenario, the utility function can optimize specific 
QoS attributes for different clients/service classes, 
e.g., minimizing the average response time, and/or 
the broker own utility, e.g., minimizing the overall 
cost paid by the broker to offer the SOA applica-
tion. These different, and possibly conflicting, 
optimization goals can lead to a multi-objective 
optimization problem. This is usually tackled, e.g., 
(Ardagna et al., 2007; Cardellini et al., 2007), by 
considering a single objective function obtained 
by applying the Simple Additive Weighting (SAW) 
technique (Hwang & Yoon, 1981), which is the 
most widely used scalarization method. Following 
the SAW technique, the utility function can be 
defined as the weighted sum of the (normalized) 
QoS attributes.
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We denote by S the set of abstract tasks be-
longing to the service composition P, where Si ∈ 
S, i = 1, . . ., m, represents a single task, being 
m the number of tasks composing P. A task is a 
functionality required by the SOA application 
and implemented by a set of services available 
in the marketplace. For each task Si, we assume 
that the broker has identified a pool Ii = {csij} of 
concrete services implementing it. Figure 7a shows 
an example of workflow for a SOA application.

Per-Request Granularity

We first consider the per-request approach in 
(Ardagna et al., 2007). Let us focus, without loss 
of generality, on SLAs containing QoS constraints 
that refer to the following three attributes: (i) re-
sponse time, defined as the interval of time elapsed 
from the service invocation to its completion; (ii) 
reliability, that is, the probability that the service 
completes its task when invoked; (iii) cost, which 
is the price charged for the service invocation. 
Furthermore, let us assume that this QoS model 
holds for SLAs stipulated by the broker with 
both its clients and service providers. In the per-

request approach, the broker tries to meet the QoS 
constraints specified in the SLA for each request, 
irrespective of whether it belongs to some flow 
generated by one or more clients.

The optimal service selection problem is then 
formulated as MILP problem. We denote with the 
vector x = [x1, . . ., xm] the optimal policy for a 
request to the SOA application, where each entry 
xi = [xij ], xij ∈ {0, 1}, i ∈ S, j ∈ Ii, denotes the 
adaptation policy for task Si and the constraint ∑j∈Ii 
xij = 1 holds. That is, xij is the decision variable, 
which is equal to 1 if task Si is implemented by 
service csij, 0 otherwise. As an example, suppose 
that for the task Si the broker has individuated 4 
concrete services implementing it, namely cs1, cs2, 
cs3 and cs4. Assume that the per-request policy x 
determines that for a given request xi = [0, 0, 1, 
0]. It means that, according to this policy, for Si 
the broker binds the request to csi3.

The fulfillment of the QoS constraints on a 
per-request basis means that the broker needs to 
take into account all the possible scenarios that 
might occur during the execution of the SOA ap-
plication. To this end, the optimal strategy needs to 
consider all the possible execution paths that might 

Figure 7. a) An example of workflow; b) Two different execution paths
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arise from the workflow of the SOA application 
(Ardagna et al., 2007). An execution path epn is 
a multiset of tasks epn = {S1, S2, . . ., SI} ⊆ S, such 
that S1 and SI are respectively the initial and final 
tasks of the path and no pair Si, Sj ∈ epn belongs 
to alternative branches. An execution path does 
not contain any loop, because the loops are peeled, 
but it may contain parallel sequences. Loop peel-
ing involves rewriting the loop as a sequence of 
branch conditions (the branch conditions that arise 
from loop peeling produce other execution paths, 
see the example in Figure 7b). In other words, 
the set of all the execution paths represents all 
the possible execution scenarios of a workflow.

Figure 8 shows a simplified version of the 
problem formulation for the per-request optimiza-
tion, where x denotes the optimal service selection 
policy and U(x) the broker utility function. We 
indicate with Tmax, Rmin and Cmax, respectively the 
maximum response time, the minimum reliability, 
and the maximum cost that are allowed, i.e., the 
QoS constraints specified in the SLAs. On the other 
hand, Tn(x), Rn(x), and Cn(x) denote the response 
time, reliability, and cost of the execution path 
epn under the selection policy x.

Per-Flow Granularity

In the per-flow approach, the client requests are 
considered at the flow granularity level. In this 
setting, the SLAs and the service selection con-

cern the QoS and the behavior of the aggregated 
flow of requests generated by the clients. As a 
consequence, the constraints stated in the SLA do 
not make any provision on the QoS of each single 
request, but rather the SLA is concerned with the 
average value of the QoS attributes computed over 
the flow of requests generated by a given client.

To account for the existence of multiple con-
current requests made by the different clients, 
the per-flow approach in (Cardellini et al., 2007) 
requires to negotiate in the SLA the additional 
parameter L, which represents a bound on the 
amount of requests per unit of time a client can 
generate.

It is also assumed that there is a set K of service 
classes, with k ∈ K, for each service composition. 
Therefore, a client bargains its SLA with the 
broker referring to one of these service classes. 
Although this could seem a limitation, it actually 
is not, because the granularity level of the service 
classes may be arbitrarily fine and, at the finest 
level, each client could have its own service class.

The optimal service selection problem is then 
formulated as a LP problem, that is computation-
ally lighter to solve than the MILP formulation 
of the per-request approach. For each class k, we 
denote with the vector xk = [xk

1, . . ., x
k
m] the optimal 

policy, where each entry xk
i= [xk

ij ], 0 ≤ xij ≤ 1, i ∈ 
S, j ∈ Ii, denotes the adaptation policy for task Si 
and the constraint ∑j∈Ii x

k
ij = 1 holds. That is, the 

policy defines a probabilistic binding between Si 

Figure 8. Per-request optimization problem
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and its implementation in Ii, whereby each entry 
xk

ij of xk
i denotes the probability that the class-k 

request will be bound to concrete service csij. As 
an example, let us suppose that, as in the per-
request case, the broker has individuated for the 
task Si the same 4 concrete services implementing 
it, namely cs1, cs2, cs3 and cs4. Now assume that 
the per-flow service selection, for a given class k, 
determines xk = [0, 0.2, 0.5, 0.3]. It means that, 
for a class-k request for Si, the broker will bind 
cs2 with probability 0.2, cs3 with probability 0.5 
and cs4 with probability 0.3.

Figure 9 shows a simplified version of the op-
timization problem formulation. We indicate with 
Tk

max, R
k
min and Ck

max, respectively the maximum 
average response time, the minimum average 
reliability, and the maximum average cost, that 
correspond to the QoS constraints specified in the 
class-k SLA. Tk(L, x), Rk(L, x), and Ck(L, x) are 
respectively the class-k response time, reliability, 
and cost, respectively, under the adaptation policy 
x = [xk] k ∈ K. Their expressions require the 
knowledge of Vk

i for each task Si, that is the average 
number of times Si is invoked by a class-k request. 
In particular, the second-last equation, where Lk 
= ∑u L

k
u, is the aggregated service request rate of 

class-k clients (being u a client), ensures that the 
concrete services used in the SOA application will 

not be overloaded by the client requests, that is, 
the client requests will not exceed the volume of 
invocations lij agreed with each service provider.

A Brief Comparison between Per-
Request and Per-Flow Granularity

The difference between the per-flow and the per-
request approaches lies in the service selection 
policy: in the latter each task is bound to one and 
only one concrete service, while in the former each 
task is bound to a set of concrete services and at 
runtime one of them is probabilistically chosen. 
As a result, different concrete services can be 
used for implementing the same task in different 
executions of the service composition while the 
same adaptation plan holds. On the other hand, 
in the per-request approach the same concrete 
service is used for all similar requests until the 
same adaptation decision holds.

The study in (Cardellini, Di Valerio, Grassi, 
Iannucci & Lo Presti, 2011a) presents an experi-
mental comparison between the two approaches, 
focusing on their impact on the SOS performance 
in term of service composition’s response time. 
The results show that under a light request load 
the two approaches perform almost the same, but 
under a high request load the per-request approach 

Figure 9. Per-flow optimization problem
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exhibits scalability problems, while the per-flow 
approach performs much better. The motivation 
is as follows: in the per-request approach, all re-
quests to a given task are resolved using the same 
concrete service until the same service selection 
solution holds. This works under light loads, but 
at higher loads the service capacity is eventually 
saturated and performance degrades. On the other 
hand, in the per-flow approach, the load is shared 
among multiple concrete services thanks to the 
probabilistic service selection without saturating 
any service thanks to the load constraints which 
prevent the services’ overloading.

However, the main disadvantage of the per-
flow approach is that the QoS levels are guaran-
teed on average for the overall flow; therefore, 
the performance of a single request is actually 
unpredictable. In (Cardellini, Di Valerio, Grassi, 
Iannucci & Lo Presti, 2011b) the interested reader 
can find a new service selection policy that com-
bines the benefits of both approaches, i.e., the per-
request guarantees and the per-flow probabilistic 
service selection, thus ensuring load balancing 
and overcoming the per-request scalability issues.

HEURISTICS

The high computational complexity of the optimal 
per-request service selection policies may limit 
their use for an online implementation. Various 
factors affect the time complexity of the service 
selection policies, among which the most impor-
tant are the number of abstract tasks, the number 
of concrete services implementing each abstract 
task, and the number of QoS constraints that 
have to be considered. The service selection can 
be modeled as a Multi-choice Multidimensional 
Knapsack problem (MMKP), which is known to 
be NP-hard and therefore the time complexity 
in finding an exact solution is expected to be 
exponential (Martello & Toth, 1987). However, 
in a real-world scenario, the Plan component of 
the SOS must be able to determine in near real-

time the optimal service selection under possibly 
heavy load. To address this issue, many research 
efforts have proposed computationally efficient, 
albeit suboptimal, solutions to the service selec-
tion problem.

Since a MMKP problem can be formally 
expressed with an IP formulation, a common ap-
proach (Berbner et al., 2006; Klein, Ishikawa, & 
Honiden, 2010) is to relax the integer restriction 
on the variables of the IP problem, thus obtaining a 
LP problem that can be efficiently solved in poly-
nomial time. The caveat is however that a solution 
to the relaxed problem does not necessarily solve 
the original problem. Therefore, solutions based 
on a LP formulation are more suited to address 
the selection problem at per-flow granularity 
level, where the QoS constraints are evaluated in 
the long-term and for a flow of requests, rather 
than the per-request granularity, where individual 
executions could violate the constraints.

The work in (Berbner et al., 2006) proposes 
an algorithm for finding a sub-optimal solution 
to the original IP problem by enumerating the 
solutions of the LP problem in a clever way, until 
the IP problem constraints are not violated. The 
authors show that the proposed heuristic is able 
to compute close to optimal solutions in a fraction 
of the time with respect to the exact MIP formula-
tion, e.g., in case of a SOA application composed 
by 21 tasks, the heuristic reaches 98.83% of the 
objective function value of the optimal solution, 
but only needs 0.19% of the computation time 
to compute it.

On the other hand, the proposal in (Klein et al, 
2010) does not try to fit the original IP problem, 
but rather to refine the LP solution so that it can be 
used to guarantee some QoS constraints for every 
execution of the SOA application, or at least for a 
large percentage (e.g., 99.9%) of the executions. 
The authors show that the proposed heuristic is 
able to provide less than 3% of deviation from 
the original IP solution.

Another approach to face the complexity of the 
IP formulation is to reduce the number of decision 
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variables of the problem itself, as in (Alrifai et al., 
2009). The authors first decompose each global 
QoS constraint into a set of m local constraints, 
so that each local constraint serves as a conser-
vative upper bound such that the satisfaction of 
every local constraint guarantees the satisfaction 
of global constraints.

Then, they divide the quality range of each QoS 
attribute into a set of discrete quality levels and 
map each known concrete service to the appro-
priate quality level. This approach has two major 
benefits: first, it allows to distribute the computa-
tional effort among different nodes, because only 
independent local optimization problems have to 
be solved; secondly, since concrete services are 
replaced by quality levels, the size of the problem 
space is reduced. The authors show that their 
heuristic can achieve above 96% of optimality 
when compared to the results obtained by the 
global optimization approach. However, since QoS 
levels are discretized without considering potential 
correlations among different quality attributes, in 
scenarios with relatively strict constraints it is pos-
sible to incur in very restrictive decompositions of 
the global constraints, which therefore could not 
be satisfied by any concrete service even though 
a solution to the problem exists. A solution to the 
latter problem is presented in (Alrifai, Skoutas, & 
Risse, 2010), where the authors propose a differ-
ent method for QoS level discretization: for each 
abstract task, skyline (dominant) concrete services 
are first determined. Subsequently, skyline con-
crete services are clustered using the k-means 
algorithm and, for each cluster, a virtual concrete 
service is created whose quality level is given by 
the worst quality attributes of the concrete services 
belonging to that cluster. Those virtual concrete 
services are then used to discretize QoS levels in 
a multidimensional fashion.

A completely different approach is proposed 
by (Canfora, Di Penta, Esposito, Villani, 2008), 
where a Genetic Algorithm (GA) is used to real-
ize an enumeration of the optimization problem 
solutions. The search for the optimal solution starts 

with an initial population of individuals that are 
going to evolve over time: at each algorithm step 
individuals are evaluated using a fitness function 
and then selected through a selection operator. The 
higher is the fitness value of an individual, the more 
is likely that such an individual will be chosen 
for reproduction. The reproduction is obtained by 
applying crossover and mutation operators. The 
former produces an offspring recombining par-
ent’s genes, while the latter modifies one or more 
genes. The application of a GA in service selection 
maps a solution of the optimization problem to 
an individual, where each individual is composed 
by m genes and every gene represents a particular 
instance of concrete services. A different objective 
is pursued by (Wada et al., in press), which uses 
a GA for the service provisioning problem: in 
their work the individual is composed by several 
genes which do not represent a particular instance 
of concrete service, but the number of concrete 
services needed by a given abstract task to fulfill 
certain QoS constraints.

Finally, in (Yu, Zhang & Lin, 2007) the authors 
compare the MMKP problem solved through the 
branch-and-bound technique with several heuris-
tics, based on either a combinatorial or a graph 
model. The proposed heuristics differ in the type 
of considered workflow structure, which can be 
either only sequential or more general (a sequential 
workflow contains neither conditional branches 
nor forks). Combinatorial heuristics for both se-
quential and general workflows are realized as a 
walk in the solution space: first, a concrete service 
is selected for each abstract task such that a quality 
attribute (possibly different for each abstract task) 
is locally maximized. If the obtained solution is 
feasible, then the second step tries to improve 
such a solution by both feasible and unfeasible 
upgrades, so that both local and global optima can 
be reached. The authors claim that in most cases 
(more than 98%), the heuristic finds a feasible 
solution at the first try, while the time complex-
ity is a polynomial function. As regards general 
workflows, an additional heuristic is proposed, 
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which tries to optimize only the execution route 
with the highest probability, while finding only 
feasible solutions for other routes.

Graph-based heuristics are based on the algo-
rithm of single-source shortest paths in Directed 
Acyclic Graphs (DAG) (Cormen, Leiserson, 
Rivest, & Stein, 2001): a DAG is built up from the 
workflow by replacing every node representing a 
single abstract task with a set of nodes represent-
ing the concrete services implementing it and by 
adding edges between two concrete services if 
the abstract tasks they implement are connected. 
Loops, if any, are unfolded. The proposed heuristic 
limits the information held by each node: instead 
of maintaining the complete list of paths that meet 
the QoS constraints from the source to the node 
itself, only K paths are kept. The authors show 
that limiting the information to the K best paths 
leads to an optimality approximation greater than 
90% even for small values of K, with a gain in 
terms of time and memory consumption of ap-
proximately 500%.

CASE STUDY: MOSES

As a representative case study of SOS that adap-
tively manages a SOA application adopting the 
MAPE-K model, we focus on MOSES (MOdel-
based SElf-adaptation of SOA systems), which is 
a framework for the QoS-driven adaptation of a 
service-oriented system. Although MOSES is a 
particular instance of SOS, it is a fully functional 
prototype with a highly modular architecture that 
allows you to easily realize other solutions pro-
posed in literature by replacing and/or adding a 
given component with another possible implemen-
tation realizing a different approach. For instance, 
the Plan phase in the original MOSES follows the 
per-flow approach, but we also implemented the 
per-request approach in (Ardagna et al., 2007) by 
replacing some MOSES components in order to 
perform the comparison presented in (Cardellini et 
al., 2011a). We will use the MOSES prototype to 

validate the benefits of a SOS with self-adaptive 
features under a motivating scenario character-
ized by a varying operating environment, where 
component services appear and disappear.

For a comprehensive description of the meth-
odology underpinning MOSES and the software 
tool that implements it, we refer the reader to 
(Cardellini et al., in press) and (Bellucci et al., 
2010), respectively.

MOSES Architecture

The MOSES architecture represents an instantia-
tion for the SOA environment of a self-adaptive 
software system, organized according to the 
MAPE-K loop and focused on the fulfillment of 
QoS requirements.

Figure 10 shows how the MOSES components 
are organized according to the MAPE-K control 
loop.

Monitor–Analyze Phases

The Monitor-Analyze subsystem comprises all 
those components that capture changes in the 
MOSES environment and, if they are relevant, 
modify at runtime the behavioral model and trig-
ger a new adaptation plan. Specifically, the QoS 
Monitor is in charge of measuring and analyzing 
the QoS attributes of the concrete services used by 
MOSES to provide the SOA application. The WS 
Monitor periodically checks the availability of the 
concrete services. The Execution Path Analyzer 
is in charge of monitoring the variations of the 
usage profile. In case of the service selection at 
the per-flow granularity, it computes and updates 
for each abstract task Si the expected number of 
times Vk

i that Si is invoked by service class k. 
With respect to the Monitor taxonomy in Figure 
3, these MOSES components monitor: (what) 
client-side, QoS attributes of services; (where) 
broker side; (when) on a continuous time basis; 
(how) using both active and passive methodologies 
in a centralized architecture. In particular, the QoS 
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Monitor and the Execution Path Analyzer use a 
passive monitoring methodology by collecting the 
service invocation results, while the WS Monitor 
actively checks the services availability.

The Monitor-Analyze subsystem also includes 
the Service Manager and the SLA Manager, which 
are involved in the SLA negotiation processes 
where the broker acts as an intermediary. Indeed, 
the Service Manager is in charge of negotiating 
SLAs with the service providers and discovering 
candidate services offering the functionalities in 
the service composition, while the SLA Manager 
is responsible for the SLAs with the MOSES 
clients. In addition, the latter manages the client 
profiles, adding and removing them. We included 
these components in the Monitor-Analyze phases 
because they can invoke the Plan phase if new 
SLAs with clients or service providers are either 
stipulated or removed. Specifically, for each new 
SLA request, the SLA Manager performs an admis-

sion control to evaluate whether there are enough 
available resources to accept the incoming client, 
given the associated SLA and without violating 
already existing SLAs with other clients.

In MOSES the Analyze phase can be classified 
as follows on the basis of the taxonomy in Figure 
4: (where) at the broker-side; (when) MOSES 
adopt all the approaches in Figure 4: the QoS 
Monitor analyzes periodically the QoS attributes 
of the concrete services, checking whether their 
measured values correspond to the stipulated 
one; the SLA Manager performs an on-demand 
analysis for client arrivals and departures, while 
the Service Manager and the WS Monitor adopt an 
event-driven analysis for discovering services and 
checking their availability, respectively; (how) the 
analysis is performed online with either proactive 
or reactive policies using a centralized architec-
ture. In particular, the analysis is reactive for all 

Figure 10. MOSES architecture



184

Service-Oriented Systems for Adaptive Management of Service Composition

the components except the QoS Monitor that can 
also use a proactive methodology.

Planning Phase

The planning phase is fully executed by the Opti-
mization Engine, whose task is to solve the service 
selection optimization problem. The latter is built 
from a model of the SOA application workflow, 
instantiated by the Composition Manager and 
whose parameters are initialized with the values 
in the SLAs contracted with the clients and the 
service providers. This model is kept up-to-date 
at runtime by the monitoring components. For 
example, the values of the QoS attributes of each 
concrete service used in the problem can be up-
dated at runtime with the actual measured values 
and the same holds for the average number of 
invocations to each task. With respect to the Plan 
taxonomy, MOSES can be classified as follows: 
(what) non-functional requirements, in particular 
the service selection and the coordination pattern 
selection. For sake of simplicity, we previously 
presented only the service selection problem; to 
account for the coordination pattern selection, 
the problem formulation is slightly more compli-
cated as described in (Cardellini et al., in press). 
Eventually, (where) the Plan phase is executed 
at the broker on an event-driven basis, i.e., when 
the components in the Monitor–Analyze phases 
detect a relevant event to be addressed, and (how) 
the methodology adopted to plan the adaptation 
actions determines the service selection and pattern 
coordination relying on a centralized architecture.

Execution Phase

The execution phase is carried out by the Com-
position Manager, the BPEL Engine, and the 
Adaptation Manager. The Composition Manager, 
given a new service composition to be deployed 
as a BPEL process (OASIS, 2007), builds the 
workflow model that the Optimization Engine will 
use in the Plan phase. Furthermore, it modifies 

the workflow in such a way that all the service 
invocations are translated into invocations of the 
Adaptation Manager. The latter acts as a proxy 
that, given the name of an abstract task, invokes 
the service(s) implementing that task according to 
the service selection (and the coordination pattern 
selection) policy computed by the Optimization 
Engine. In turn, the BPEL Engine executes the 
workflow logic and is the front-end component to 
the client requests. The BPEL Engine and Adapta-
tion Manager represent the core of the MOSES 
execution and runtime adaptation of the SOA 
application. Following the Execute taxonomy, 
MOSES: (when) executes the planned actions at 
runtime, (where) acting at the workflow level, 
and (how) using the dynamic binding mechanism.

MOSES Design

The MOSES architecture has been designed on 
the basis of the Java Business Integration (JBI) 
specification. JBI is a messaging-based pluggable 
architecture, whose components describe their 
capabilities through WSDL. Its major goal is to 
provide an architecture and an enabling frame-
work that facilitates the dynamic composition 
and deployment of loosely coupled participating 
applications and service-oriented integration 
components. The key components of the JBI en-
vironment are: (i) the Service Engines (SEs) that 
enable pluggable business logic; (ii) the Binding 
Components (BCs) that enable pluggable external 
connectivity; (iii) the Normalized Message Router 
(NMR), which directs normalized messages from 
source to destination components according to 
specified policies.

As a JBI implementation, MOSES has been 
implemented within the open-source project 
OpenESB (ESB stands for Enterprise Service Bus), 
because it is an implementation and extension of 
the JBI standard. It implements JBI because it 
provides binding components, service engines, 
and the NMR; it extends JBI because it enables 
a set of distributed JBI instances to communicate 
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as a single logical entity that can be managed 
through a centralized administrative interface. 
The GlassFish application server is the default 
runtime environment, although OpenESB can 
be integrated in several JEE application servers.

Figure 11 shows how the MOSES components 
are placed with respect to the JBI architecture: 
most of the components are executed by the JEE 
Service Engine, while the business process is 
executed by the BPEL Engine. The NMR works 
as a glue between the Service Engines and the 
Binding Components, having the ability to route 
messages between these sets of components.

The MOSES architecture is enriched by 
MDAL, which stands for MOSES Data Access 
Library. This library allows us to simplify the 
usage of the underlying Database layer by abstract-
ing low-level queries with high-level methods.

Figure 12 shows the typical scenario in which a 
client issues a SOA request to MOSES. In the first 
step, the SOAP request is directed to the HTTP 
binding component. The received request is then 
forwarded to the NMR, which in turn routes it to 
the proper Service Engine, i.e., the BPEL Service 

Engine. The latter is in charge of executing the 
required business process, after having performed 
some client authentication tasks, with the help of 
the Adaptation Manager when external invoca-
tions are needed.

The Adaptation Manager, differently from the 
other MOSES components, is not implemented 
as a JBI Service Unit. It is rather implemented as 
a standard Java class belonging to the application 
server classpath, and thus it is accessible by any 
application served by the application server itself. 
In particular, each invoke activity in the BPEL 
process, which should be executed by the BPEL 
Engine, is replaced by a call to the Adaptation 
Manager’s entry method, whose tasks are: to read 
the most up-to-date service selection plan from 
the Database using the MDAL library, to invoke 
the concrete Web service(s), and finally to forward 
the Web service response to the BPEL Engine.

Once the business process ends its execution, 
the client response is put on the NMR, which 
in turn routes it to the HTTP BC, which finally 
delivers the message to the client.

Figure 11. MOSES architecture and the JBI environment
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Experimental Results

In this section we illustrate the effectiveness of the 
adaptive management of service composition by 
analyzing a set of experimental results obtained 
with the MOSES prototype in controlled experi-
ments. Specifically, we will study how MOSES 
is able to adapt its behavior with respect to the 
churn of the services it can use to offer the SOA 
application. In all the sets of experiments, the util-
ity function of the service broker is to maximize 
the reliability of the SOA application according 
to the per-flow optimization problem sketched 
in Figure 9.

The first set of experiments simulates an ideal 
scenario, where the concrete services behave ex-
actly as declared into their SLAs with the service 
broker. Therefore, it provides a baseline perfor-
mance result against which we compare the results 
obtained in the two other sets of experiments. In 
this first set, only the components of the Execute 
subsystem are involved, because there is no actual 
need to monitor and/or analyze the environment. 
Therefore, the same service selection policy holds 
unchanged for the whole experiment.

In the second set of experiments we introduce 
some churn with respect to the baseline experi-

ment, by letting concrete services gracefully fail 
and recover over time. The failure/recovery 
model follows a two-state discrete Markov chain, 
with stationary probability distribution {prunning, 
pfailed}={0.95, 0.05}, in which state changes can 
occur on average every 60 seconds. The graceful-
ness is given by the fact that the concrete services 
notify their state to MOSES, therefore allowing 
it to compute a new service selection policy in-
cluding (excluding) the restored (failed) concrete 
services. This second set of experiments employs 
the components of the Plan and Execute phases 
of the MAPE-K loop. In particular, whenever a 
concrete service fails or recovers, the Optimiza-
tion Engine solves a new instance of the service 
selection optimization problem.

In the third set of experiments we assume a 
real world scenario, where concrete services do 
not notify their clients (i.e., MOSES) of a failure, 
but we disable the Monitor phase of the control 
loop. From the MAPE-K point of view, we can 
consider that the components in the Plan and 
Execute are enabled, although the Plan phase is 
never executed because it is not triggered by the 
Analyze step. In other words, as in the first set 
of experiments, the same service selection policy 
holds for the whole experiment.

Figure 12. MOSES request-response cycle
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Finally, in the fourth set of experiments, we 
prove the effectiveness of the MAPE-K loop by 
activating the monitoring of the candidate concrete 
services performed by the WS Monitor component. 
The latter is configured to probe all the known 
concrete services every 5 seconds to find out what 
services are currently available. Whenever the WS 
Monitor finds that some service changed its state 
(going from running to failed or vice-versa), it 
sends a trigger to the Optimization Engine, which 
in turn computes the new service selection policy 
that will be applied by the Execute subsystem.

In each set, every experiment lasted 30 minutes 
and has been repeated twice, using a client request 
rate equal to 5 and 10 requests/seconds (in the fol-
lowing, referred to as low and high request rates) 
to show the behavioral differences that arise when 
MOSES is subject to different loads.

Experimental Setup

For all the sets of experiments, the testing environ-
ment consists of 3 Intel Xeon quadcore servers (2 
Ghz/core) with 8 GB RAM each (nodes 1, 2, and 
3), and 1 KVM virtual machine with 1 CPU and 
1 GB RAM (node 4); a Gb Ethernet connects all 
the machines. The MOSES prototype is deployed 
as follows: node 1 hosts all the components of 
the Execute subsystem, node 2 the storage layer 
together with the candidate concrete services, and 
node 3 the components in the Monitor+Analyze 
and Plan subsystems. Finally, node 4 hosts the 
workload generator.

We consider the SOA application defined by 
the workflow in Figure 13, composed of 6 state-
less tasks, and assume that 10 concrete services 
(with their respective SLAs) have been identified 
for abstract tasks S1 and S3, while 8 concrete 
services have been identified for any other task. 
Their respective SLA parameters, shown in Table 

Figure 13. Workflow of the SOA application used in the experiments
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1, differ in terms of cost cij, reliability rij, and 
response time tij (in sec).

We also suppose that MOSES offers to its 
clients the SLA {Tmax, Rmin, Cmax}={7 sec, 0.95, 
15}. For simplicity, we consider only a single 
service class. The usage profile of this service 
classes is given by the following values for the 
expected number of service invocations: V1 = V2 
= V3 = 1.5, V4 = 1, V5 = V6 = 0.5.

The Adaptation Manager introduces an over-
head due to the runtime binding of the task end-
points to their concrete implementations that may 
affect the response time of the SOA application. 
In a preliminary test we measured this overhead 
under the low and high request rates. We found 
it to be 13.3 ms when MOSES is subject to a 
low request rate and 20.3 ms for a high request 
rate. Given the values of the expected number of 
service invocations above reported, the average 
number of invoke activities is equal to 6.5. There-

fore, the Adaptation Manager introduces a mean 
per-invocation overhead equal to 2.05 ms when 
the system is subject to a low request rate and 
3.12 ms for the high request rate. A more detailed 
analysis of the MOSES overhead can be found 
in (Cardellini et al., in press), where the response 
time constraint in the optimization problem also 
accounts for the overhead introduced by MOSES 
itself in adaptively managing the SOA application.

Experimental Results

We first present the results of the baseline scenario. 
The Baseline curves in Figures 14a and 14b show 
how the reliability of the SOA application varies 
over time, when the QoS attribute is measured at 
the client-side by aggregating the values every 
20 seconds.

The horizontal lines represent the SLA stipu-
lated with the clients and the average reliability 

Table 1. SLA parameters for concrete services 
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perceived by the clients over all the experiment 
duration. We can observe that the reliability fluc-
tuates over time; most of the time it stays well 
above the SLA value, but occasionally it attains 
lower values. Nevertheless, as also shown in 
Table 2, where we report the average reliability 
of the baseline experiment along with the 95% 
confidence interval, MOSES is able to fulfill the 
reliability level agreed in the SLA.

In the second set of experiments we let the 
service providers gracefully fail, thus simulating, 
for instance, service programmed downtimes. The 
results in Figures 15a and 15b show how the reli-
ability of the SOA application fluctuates over 
time; however, the average reliability is well above 
the agreed SLA.

The experimental values in Table 3 show that 
the average reliability, as well as the 95% confi-
dence interval under the second scenario are 
perfectly comparable to those of the baseline 
experiment. Therefore, we can conclude that 
graceful leaves and joins do not affect the reli-
ability performance since MOSES is able to adapt 
to the changed environment by re-computing the 
service selection policy.

Figures 16a and 16b show how the reliability 
of the SOA application varies over time when the 
concrete service providers exhibit the same churn 
rate of the second experiment, but without signal-
ing their state to MOSES. The reliability levels 
fall down and the SLA stipulated by MOSES with 
its clients is no longer fulfilled. This experiment 

Figure 14. a) Baseline reliability over time under low request rate; b) Baseline reliability over time 
under high request rate 

Table 2. Average reliability and 95% confidence 
interval for the baseline experiment 

SLA
Average 

reliability
95% confidence 

interval

Low request 
rate

0.95 0.9664 0.0074

High request 
rate

0.95 0.9646 0.0054

Table 3. Average reliability and 95% confidence 
interval for the experiment with graceful failures 

SLA
Average 

reliability
95% confidence 

interval

Low request 
rate

0.95 0.9692 0.0071

High request 
rate

0.95 0.9659 0.0053
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demonstrates that, if there are changes in the 
execution environment and no adaptation actions 
are taken to address these changes, the system is 
not able to satisfy the required QoS. It also points 
out that reliability levels are higher when the 
request rate is higher. The motivation is due to 

the fact that the service selection policy binds 
each abstract task to a small subset of concrete 
services when the incoming request rate is low. 
On the other hand, with a higher request rate, the 
request load on any abstract task is balanced over 
a larger set of concrete services, depending on 

Figure 15. a) Reliability over time when services are subject to graceful failures under low request rate; 
b) Reliability over time when services are subject to graceful failures under high request rate 

Figure 16. a) Reliability over time when services are subject to failures, without WS Monitor under low 
request rate; b) Reliability over time when services are subject to failures, without WS Monitor under 
high request rate 
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their capacity. Since we set the capacity of every 
concrete service to 10 req/sec, it is likely to have 
a single concrete service selected for any abstract 
task when the incoming request rate is equal to 5 
req/sec, while it is likely to have two or more 
concrete services selected for any abstract task 
when the incoming request rate is 10 req/sec.

The objective of the last set of experiments is 
to show the improvement achieved thanks to the 
WS Monitor component.

Figures 17a and 17b show how the reliability 
of the SOA application varies over time when 
the service providers exhibit the same churn rate 
of the third experiment without signaling their 

state to MOSES, but now with the WS Monitor 
enabled on MOSES.

As shown in Table 4, MOSES does not succeed 
in fulfilling the SLA stipulated with its clients, 
but the provided reliability has a significant im-
provement with respect to the results shown in 
Figures 16a and 16b, when the WS Monitor was 
disabled.

FUTURE RESEARCH DIRECTIONS

In this section, we briefly discuss some open 
challenges regarding the design of SOSs for the 
adaptive management of service composition that 

Table 4. Comparison of the average reliability and 95% confidence interval for the experiments with 
and without the WS monitor 

SLA Average reliability 95% confidence interval

Low request rate without WS Monitor 0.95 0.7151 0.0187

Low request rate with WS Monitor 0.95 0.9101 0.0118

High request rate without WS Monitor 0.95 0.7798 0.0122

High request rate with WS Monitor 0.95 0.8974 0.0089

Figure 17. a) Reliability over time when services are subject to failures, with WS Monitor under low 
request rate; b) Reliability over time when services are subject to failures, with WS Monitor under high 
request rate 
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can be explored in future research. Some of these 
challenges directly stem from our own experience 
in designing and using the MOSES framework.

Using MOSES for our experimental evalu-
ations, we found that a non–trivial issue is to 
adequately tune a quite large number of system 
parameters in the various software tools that 
we used to implement the MOSES prototype. 
Designing a self-tunable platform can greatly 
help the administrator of the service broker. For 
example, a self-adaptive tuning of the application 
server parameters according to the actual load 
of the SOA application can help to improve the 
resources utilization in the infrastructure layer, 
therefore allowing to reduce the number of re-
quired resources. More generally, future work 
can address the provisioning and management 
of the platform and infrastructure layers used by 
the SOS, also considering cross-cutting issues, 
for example regarding the SLAs.

Another challenging research issue is the 
development of decentralized approaches for the 
Plan phase. The optimization problems that are 
often used to define the adaptation plan can be 
computationally intensive applications that need 
to provide a solution in the shortest time possible, 
otherwise the service broker can incur in penalties 
due to the lack of SLA compliance. The centralized 
approaches that have been so far proposed may 
suffer from scalability and fault-tolerance issues 
caused by high volumes of requests.

The design of decentralized solutions can 
entail not only the Plan phase but also the whole 
MAPE-K loop. For example, in case of a single 
organization offering QoS-aware SOA applica-
tions, the self-adaptive SOS can be designed 
as a decentralized system consisting of a set of 
federated SOSs that can coordinate themselves 
according to a master-slave scheme. In case of 
multiple organizations, more complex solutions 
need to be devised: under the hypothesis of fed-
erated cooperating SOSs, distributing the whole 
MAPE-K loop among multiple SOSs requires to 
devise a distributed solution of the overall optimi-

zation problem. Analyzing the current literature, 
we noted that the case of several self-adaptive 
service-oriented systems under cooperating or 
non-cooperating scenarios is not yet satisfactorily 
covered and we believe that investigating how to 
cope with these issues is a timely and promising 
research indication.

CONCLUSION

The development of distributed applications has 
recently shifted from the classic in-house develop-
ment to activities concerning the identification, 
selection, and composition of services offered by 
third party providers through a service market-
place and this shift is rapidly accelerating with 
the advent of Cloud computing. This new model, 
which is the basis of the SOA paradigm, increases 
the interoperability level of the applications, by 
forcing them to only use standard protocols for 
any activity. However, when QoS matters, SOA 
applications might suffer from their distributed 
nature because the QoS levels offered by service 
providers may quickly fluctuate over time, due 
to the highly varying execution environment. On 
the other hand, the dynamic composition of SOA 
applications can provide a solution to govern pro-
viders’ QoS fluctuations by choosing at runtime 
which providers to use under certain conditions. 
Such a control process is often implemented by 
an external application governing the SOA appli-
cation itself. There exist various approaches for 
realizing the control process, but their common 
reference model is the MAPE-K control loop.

In this chapter we analyzed how the MAPE-
K reference model has been applied to design 
self-adaptive SOS; for every MAPE-K phase we 
presented a taxonomy organized according to the 
five Ws and one H concept that clarifies the many 
dimensions and options which are available when 
designing a self-adaptive SOS. Although every 
phase is required in the realization of a control 
process, we focused on the Plan phase because it 
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is the core of the adaptation process; specifically, 
we analyzed how the SOS can self-adapt in order 
to satisfy some non-functional requirements. 
Most approaches in this research line address the 
adaptation by selecting the appropriate services 
that can be exploited during the SOA application 
execution or by properly managing the resource 
provisioning in such a way to meet the target 
QoS levels.

As a case study, we presented the MOSES 
framework, a fully functional prototype that real-
izes every phase of the MAPE-K model relying 
on a modular system architecture. We demon-
strated how it is possible to improve the QoS 
of a SOA application that operates in a highly 
varying execution environment, where component 
services continuously appear and disappear. The 
experimental results showed that the execution of 
a SOA application managed by MOSES allows 
us to achieve a reliability improvement of 20% 
with respect to a service broker that does not fully 
exploit the MAPE-K architecture.
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KEY TERMS AND DEFINITIONS

MAPE-K: A reference model for architecting 
self-adaptive systems.

Quality of Service (QoS): The property of a 
service to provide predictable performance despite 
the availability of a limited set of resources.

Self-Adaptive: The capability of a system to 
autonomously change its behavior with respect 
to changes in itself and/or its surrounding envi-
ronment.

Service Broker: An intermediate entity be-
tween users of SOA applications and candidate 
service providers. It offers a value-added service, 
possibly satisfying some QoS constraints.

Service Oriented Architecture (SOA): An ar-
chitectural paradigm for building loosely-coupled 
network applications based on black-box software 
components named services. Such services can be 
easily composed to support dynamic and flexible 
applications.

Service Selection: Given a workflow, the abil-
ity to choose for each task in the workflow one or 
more specific service among a set of functionally 
equivalent implementations offered by service 
providers. The selection goal is to optimize some 
objective function (e.g., global utility) possibly 
subject to some constraints.

Workflow: A sequence of connected tasks 
and the related data flows representing the ap-
plication logic.


