
Guadalupe Ortiz
University of Cádiz, Spain

Javier Cubo
University of Málaga, Spain

Adaptive Web Services
for Modular and Reusable
Software Development:
Tactics and Solutions

Adaptive web services for modular and reusable software development: tactics and solutions / Guadalupe Ortiz and Javier
Cubo, editors.
 p. cm.
 Includes bibliographical references and index.
 Summary: “The book comprises chapters that present tactics and solutions for modular and reusable software development
in the field of adaptive Web services”--Provided by publisher.
 ISBN 978-1-4666-2089-6 (hardcover) -- ISBN 978-1-4666-2090-2 (ebook) -- ISBN 978-1-4666-2091-9 (print & perpetual
access)
1. Web services. 2. Computer software--Reusability. 3. Component software 4. Computer software--Development. I.
Ortiz, Guadalupe, 1977- II. Cubo, Javier, 1978-
 TK5105.88813.A365 2012
 006.7’8--dc23
 2012013952

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

Managing Director: Lindsay Johnston
Senior Editorial Director: Heather A. Probst
Book Production Manager: Jennifer Romanchak
Publishing Systems Analyst: Adrienne Freeland
Managing Editor: Joel Gamon
Development Editor: Hannah Abelbeck
Assistant Acquisitions Editor: Kayla Wolfe
Typesetter: Travis Gundrum
Cover Design: Nick Newcomer

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2013 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

161

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6

DOI: 10.4018/978-1-4666-2089-6.ch006

Valeria Cardellini
University of Roma “Tor Vergata,” Italy

Valerio Di Valerio
University of Roma “Tor Vergata,” Italy

Stefano Iannucci
University of Roma “Tor Vergata,” Italy

Francesco Lo Presti
University of Roma “Tor Vergata,” Italy

Service-Oriented Systems
for Adaptive Management

of Service Composition

ABSTRACT

Service Oriented Systems (SOSs) based on the SOA paradigm are becoming popular thanks to a widely
deployed internetworking infrastructure. They are composed by a possibly large number of heterogeneous
third-party subsystems and usually operate in a highly varying execution environment, that makes it
challenging to provide applications with Quality of Service (QoS) guarantees. A well-established ap-
proach to face the heterogeneous and varying operating environment is to design a SOS as a runtime
self-adaptable software system, so that a prospective enterprise willing to realize a SOA application can
dynamically choose the component services that best fit its requirements and the environment in which
the application operates. In this chapter, the authors first review some representative frameworks that
have been proposed for SOSs able to adaptively manage a SOA application with QoS requirements. These
frameworks are commonly architected as self-adaptive systems following the MAPE-K (Monitor, Analyze,
Plan, Execute, and Knowledge) reference model for autonomic computing. The chapter organizes the
review using a specific taxonomy for each MAPE-K phase, with the aim to classify the different strate-
gies and mechanisms that can be applied. Even if a self-adaptive system requires every MAPE-K phase,
the authors then focus on the Plan phase, which is the core of each adaptation framework, presenting
both optimal and sub-optimal approaches that have been proposed to effectively face the adaptation
task at runtime.

162

Service-Oriented Systems for Adaptive Management of Service Composition

INTRODUCTION

As a case study of SOS for the adaptive manage-
ment of service composition, we present the main
features of a prototype that follows the MAPE-K
reference model. We analyze through a set of
experiments the different degrees of reliability
achieved by a SOA application able or not to detect
and adapt its behavior with respect to the churn of
the services used to compose it. Our experimental
results show that the SOA application managed by
the SOS achieves a reliability improvement up to
20% with respect to its unmanaged counterpart.

In computer science, Service-Oriented Archi-
tecture (SOA) is now a mature reference paradigm
for developing network accessible, service-based
applications. The main goal of designing applica-
tions following the SOA paradigm is to achieve
a better degree of interoperability with respect to
legacy distributed applications, which are tied up
by constraints, such as programming languages
and specific protocols and technologies. SOA
applications are built up by composing black-box
services that can be discovered and invoked us-
ing standard protocols, therefore hiding possibly
different technologies. The service composition is
usually described by a workflow representing the
actual business logic of the application, defining
both the execution and data flow.

SOA applications have the clear advantage over
legacy applications to be easily reused because
they can be published as services in a standard
registry, where other applications can discover
them for further invocation. As a consequence, the
focus in developing a SOA application is shifted to
activities concerning the identification, selection,
and composition of services offered by third par-
ties rather than the classic in-house development.

Systems realized using the SOA paradigm take
the name of Service Oriented Systems (SOSs).
They benefit from the SOA flexibility as well as
from the presence of a widely deployed internet-
working infrastructure. The diffusion of systems
deployed using the SOA paradigm is leading to

the proliferation of service marketplaces (such as
SAP Service Marketplace and Windows Azure
Marketplace), where an enterprise can find every
component needed to build its SOA applications.
With an ever increasing number of service pro-
viders on the global market scene, it is becoming
easy to find multiple providers implementing the
same functionality with different quality levels,
e.g., different providers can exhibit different
response times or costs for services that present
the same logic. Therefore, depending on the needs
of the SOA application, it is possible to dynami-
cally select the services that best fit its (possibly
changing) requirements.

However, several problems arise when a SOA
application, which is offered using third party
services, needs to fulfill non-functional require-
ments, because existing services may disappear
or their performance may quickly fluctuate over
time, due to the highly varying execution environ-
ment. The SOA paradigm easily allows to replace
services with equivalent ones, but this task could
be very challenging for a human being, especially
when several services must be replaced at the
same time. Similarly, when the service composi-
tion logic needs to be partially or even entirely
modified in order to account for changes in the
functional requirements, it is hard to manually
choose among several alternative workflows,
considering also the non-functional requirements.
In addition, the management complexity of SOSs
rapidly grows as the number of services involved
in the compositions increases. To tackle such
complexity, to reduce management costs, and
to provide better operativeness, a common and
well-established approach is to design SOSs as
runtime self-adaptable software systems (Salehie
& Tahvildari, 2009), that is, software systems
able to detect changes in the environment and to
properly reconfigure themselves.

In the field of self-adaptable software systems,
the main research branches that have been pursued
regard the functional and non-functional require-
ments of SOA applications. In this chapter, we

163

Service-Oriented Systems for Adaptive Management of Service Composition

focus on non-functional requirements, expressed
as Quality of Service (QoS) attributes of SOSs.

The adaptation of non-functional require-
ments can follow either the best effort or QoS-
constrained strategy. The former aims to improve
non-functional attributes (e.g., response time or
reliability) of the overall SOA application without
ensuring any kind of guarantee, while the latter
aims to provide a SOA application with predictable
QoS attributes. In the last years both approaches
have been largely investigated, e.g., (Ezenwoye
& Sadjadi, 2007; Michlmayr, Rosenberg, Leitner
& Dustdar, 2010) for the best effort strategy and
(Ardagna, & Pernici, 2007; Cardellini, Casalic-
chio, Grassi, Iannucci, Lo Presti & Mirandola, in
press; Menascè, Casalicchio & Dubey, 2010) for
the QoS-constrained strategy. Each solution has
its own characteristics and peculiarities in the way
it faces the self-adaptation. In particular, since
in the context of SOA applications, the manage-
ment, the control, and performance prediction
of the QoS characteristics of the offered service
have been identified as the most critical tasks
as they ultimately determine how the system
guarantees QoS levels, most of the above efforts
have focused and mostly differ for the different
strategies adopted for the aforementioned tasks.
Nevertheless, despite their differences, all these
approaches follow a more general framework,
called MAPE-K.

MAPE-K (Kephart & Chess, 2003) is a con-
ceptual guideline for realizing self-adaptable
systems (Salehie et al., 2009) and is composed
of four essential phases: Monitor, Analyze, Plan,
and Execute. There is also a Knowledge layer
that support all the phases. The model is based on
a feedback-control loop, that detects changes in
the execution environment, analyzes them, plans
the necessary actions to maximize some utility
function, and executes these actions. In literature,
the same approach is also referred to as CADA
(Dobson et al., 2006), which stands for Collect,
Analyze, Design, and Act.

In this chapter we first present and classify the
different frameworks for adaptive management
of service composition. Since they can all be
regarded as instances of the MAPE-K framework
we present each phase of the MAPE-K loop and
discuss how the self-adaptation frameworks for
SOA applications, so far proposed, implement it.

We then concentrate on the adaptation strate-
gies themselves. In particular, since we focus on
fulfilling the non-functional requirements of the
SOA application, we analyze the approaches for
service selection. Given a service composition,
the service selection’s aim is to identify those
component services that provide the best imple-
mentation of the needed functionalities in order
to satisfy the QoS requirements of the SOA appli-
cation. Although service selection is not the only
adaptation mechanism, our presentation focuses
on it because it is leveraged by most of the self-
adaptation frameworks we consider in our review.

As case study of SOS for the adaptive man-
agement of service composition, we then present
MOSES (Cardellini et al., in press). MOSES is
a methodology and a software tool implement-
ing it to support the QoS-driven adaptation of a
service-oriented system and represents a working
example of framework organized according to the
MAPE-K loop.

We validate on a motivating scenario charac-
terized by a varying operating environment the
runtime adaptation features provided by MOSES.
Specifically, we analyze through a set of experi-
ments conducted using the MOSES prototype the
different degrees of reliability achieved by a SOA
application able or not to detect changes and
adapt its behavior with respect to the component
services churn, i.e., to the change in the set of
component services due to joins, graceful leaves,
and failures. Our experimental results show that
the runtime adaptation carried out by MOSES is
able to improve the SOA application reliability
even in a highly varying operating environment.

The rest of the chapter is organized as follows.
The section below introduces some basic terminol-

164

Service-Oriented Systems for Adaptive Management of Service Composition

ogy used throughout the chapter. In the section
after that we review the distinguishing features of
the MAPE-K cycle and present our taxonomy for
each specific MAPE-K phase. In the following
two sections, we focus on the service selection
approaches used in the Plan phase of MAPE-K,
analyzing some representative formulations of
optimization problems and heuristics. In the sixth
section, we present our case study of adaptive
SOS and analyze the experimental results. Finally,
we present possible avenues for future work and
conclude the chapter with some remarks.

SOA REFERENCE MODEL

Prior to analyze how to realize self-adaptable SOA
applications, it is useful to introduce the SOA ref-
erence model, so to clarify the basic terminology
used throughout the chapter.

The SOA reference model defines the interact-
ing actors and their interaction modes. Looking
over the SOA domain, the main actors are: the
service provider, that offers a service, and the
service requestor, that requests the service (in this
chapter we will use service requestor and client
interchangeably). To issue a service invocation,
the service requestor has to know a service pro-
vider offering the needed functionality. To this
end, the service registry holds information about
existing services, which are published by service

providers themselves. Figure 1a illustrates the
SOA reference model.

The above reference model is usually ex-
tended to include an intermediary entity. When
the offered service is actually a service composi-
tion which adopts some adaptation mechanism,
we refer to its provider as service broker. As shown
in Figure 1b, the service broker is as an interme-
diary actor lying between the service requestors
and the service providers, willing to offer to the
requestors an added-value SOA application ob-
tained by composing the services exposed by
those providers.

As we will see in this chapter, the notion of
service broker is crucial for a self-adaptive SOS:
although the service requestor can be enhanced
with some adaptation logic, a more consolidated
approach is to place this logic at the service
broker level.

A common implementation of the SOA refer-
ence model is realized by Web services. In this
chapter we will therefore use service and Web
service interchangeably.

MAPE-K: A CONTROL LOOP FOR
SELF-ADAPTIVE FRAMEWORKS

MAPE-K is a reference model for realizing self-
adaptable applications: the MAPE-K control loop
uses an intelligent agent to perceive the surround-

Figure 1. a) SOA reference model; b) SOA reference model with broker

165

Service-Oriented Systems for Adaptive Management of Service Composition

ing environment through sensors and uses the
collected information to determine the actions that
have to be performed on the environment itself.

In the context of SOA applications, the man-
aged environment is constituted by (i) the work-
flow of activities concerning the invocation of
external services and their orchestration, (ii) the
external services, and (iii) the network intercon-
necting these activities with the service requestors
and the service providers. The autonomic manager
is constituted by software components for the
different MAPE-K phases.

Figure 2 illustrates the MAPE-K control loop:
the four steps of the autonomic manager, the
managed element, the sensors, and the actuators.
In the SOA context, the managed element is the
SOA application, while the autonomic manager
is a (possibly complex) software layer overlying
the actual SOA application. While the applica-
tion runs, the manager goes through the different
MAPE-K steps:

1. Monitor: The application execution is
monitored through sensors. In the SOA
context, the sensors are implemented by
means of probes over external services, with

the objective of detecting the actual values
of the quality attributes such as response
time, reliability, and availability.

2. Analyze: The Monitor phase output is taken
as input by the Analyze phase, which usually
performs statistical computation on the raw
data collected by the preceding phase. The
data analysis aims at determining whether
some quality attribute has violated (or is go-
ing to violate) a previously specified internal
policy, usually stored in the Knowledge layer.
In the SOA domain, an internal policy can
be the violation of a certain threshold for a
quality attribute, e.g., for a given service the
average response time measured over some
interval exceeds the threshold established in
the internal policy.

3. Plan: After the Analyze phase has detected
some kind of violation of the internal policy,
the Plan phase computes a new adaptation
plan, possibly using the data elaborated by
the Analyze phase with the support of the
Knowledge layer. In the SOA context, the
elaboration of a new adaptation plan can be
the selection of different service providers
implementing the needed functionalities.
Alternatively, it can be an internal workflow
re-arrangement so that the internal policy
specifying the application requirements can
be satisfied.

4. Execute: The new computed plan has to be
executed by the SOA application controlled
by the MAPE-K control loop. Such correc-
tive actions are applied by means of actua-
tors on the underlying SOA application. In
the SOA domain, the corrective actions can
be a different binding of functionalities to
service providers, as well as an application
re-deployment.

In the remainder of this chapter we will first
describe the different phases of the MAPE-K loop
intended for SOA applications; then, we will focus
on the planning phase. For each MAPE phase we

Figure 2. MAPE-K control loop: adapted from
(Kephart & Chess, 2003)

166

Service-Oriented Systems for Adaptive Management of Service Composition

arranged a taxonomy to classify the different SOA
frameworks that adopt the autonomic control loop
to adaptively manage the service composition.

The questions driving the various taxonomies
are based on the five Ws and one H concept (Hart,
2011).

• What: It identifies the relevant elements
for each MAPE-K phase.

• Where: It characterizes where a certain
phase can happen either at a logical or
physical level.

• When: It classifies the temporal aspects
that characterize each MAPE-K phase.

• Who: It identifies the entities involved in
the execution of each MAPE-K phase.

• How: It describes how each MAPE-K
phase can be implemented.

With respect to the five Ws and one H concept,
we do not explicitly consider the Why question,
because we assume that adaptation is the motiva-
tion that drives all the choices.

Monitor Taxonomy

Figure 3 illustrates the taxonomy of the Monitor
phase.

• What: Monitoring usually targets the QoS
parameters, i.e., the set of attributes that
describe the performance of the SOA ap-
plication, or the hardware/software re-
sources that support its execution. For ex-
ample, the attributes concerning the
hardware resources can regard the CPU
utilization or the amount of available
memory, while those regarding the soft-
ware resources can be the length of the
backlog queues or the number of threads
used by the application server. We can
identify two different types of QoS param-
eters: (i) client-side parameters, like re-
sponse time, availability, reliability, repu-

tation, and cost, which capture how the
clients perceive the application QoS; (ii)
system-side parameters, like throughput
and cost, which are relevant to the system
managers. Reputation, which provides a
measure of the service trustworthiness, can
be defined as the ratio between the number
of service invocations that comply the ne-
gotiated QoS over the total number of ser-
vice invocations (Ardagna & Pernici,
2007) and can be obtained through a col-
laborative mechanism among the applica-
tion clients (Zheng, Ma, Lyu & King,
2011). Given the large set of QoS parame-
ters, the monitoring typically focuses only
on those that are involved in the adaptation
loop. For example, in frameworks that dy-
namically adapt the amount of hardware
resources used by the SOA application
(Mirandola & Potena, 2011; Calinescu,
Grunske, Kwiatkowska, Mirandola &
Tamburrelli, 2011), the monitoring focuses
on the hardware resources utilization in or-
der to decide whether and when resize the
CPU, memory, or disk. In other frame-
works, that do not consider the hardware
resource adaptation, other attributes are
monitored, such as response time and reli-
ability (Rouvoy et al., 2009; Menascé,
Gomaa, Malek & Sousa, 2011; Bellucci,
Cardellini, Di Valerio & Iannucci, 2010;
Agarwal & Jalote, 2010; Ardagna, Baresi,
Comai, Comuzzi & Pernici, 2011).
Furthermore, the workload submitted to
the SOA application can also be monitored,
for example to derive some useful metric,
like response time, from the gathered in-
formation. Examples of frameworks that
monitor the workload include (Calinescu
et al., 2011; Bellucci et al., 2010; Ardagna
& Mirandola, 2010).

• Where: The monitored data can be collect-
ed at various different locations. A first ap-
proach is to collect the data at the client side

167

Service-Oriented Systems for Adaptive Management of Service Composition

of the SOA application, like in (Rouvoy
et al., 2009), where the client is respon-
sible for detecting possible Service Level
Agreements (SLA) violations. Another ap-
proach is to collect the data at the provider
side, like the Amazon CloudWatch service:
the service provider collects data for itself
and makes them available to its clients.
However, the most common solution ad-
opted in the SOA context is to collect data
on the service broker that manages the ad-

aptation of the SOA application, as done
in (Mirandola et al., 2011; Calinescu et al.,
2011; Menascé et al., 2011; Bellucci et al.,
2010; Ardagna et al., 2011).

• When: The monitoring activity can be
accomplished either continuously or on-
demand. Although the latter seems to be a
reasonable solution, for example the plan-
ning phase might choose to start a moni-
toring activity on a different perspective
of the system, in all the frameworks we

Figure 3. Monitor taxonomy

168

Service-Oriented Systems for Adaptive Management of Service Composition

consider the monitoring is performed on
a time-continuous base. The frequency at
which data are collected often depends on
the required effort.

• Who: Various actors can be interested in
the monitoring activity: the client might
want to detect SLA violations, the broker
to identify changes in the operational en-
vironment, and the provider to control the
resource utilization. Furthermore, a third-
party entity not directly involved in the
SOA application might collect data in or-
der to offer them as a service.

• How: The monitoring activities differ in the
methodology used to collect the monitored
data and in the architecture of the monitor-
ing infrastructure. The methodology can
be either active, if the data are collected
sending proper inputs to the monitored en-
tities, or passive, if the data are collected
without injecting additional load but rather
observing the system behavior. The latter
solution is usually preferred, especially in
the context of the SOA applications, where
each service invocation has a cost. For ex-
ample, (Calinescu et al., 2011; Ardagna et
al., 2011; Rouvoy et al., 2009; Mirandola
et al., 2011) use the passive approach. The
active monitoring can be used to proactive-
ly determine the service availability. For
example in (Bellucci et al., 2010), besides
using a passive approach, the framework
periodically checks if the used services are
available, in order to reduce the occurrence
of a service failure during the invocation
issued by a client.

• Finally, the monitoring activities can be
performed by a single central entity or by a
distributed sensors network.

Analyze Taxonomy

Figure 4 depicts the taxonomy for the Analyze
phase of the MAPE-K loop.

• What: The Analyze phase receives as in-
put the data from the Monitor phase and so
it deals with the monitored data. The pro-
cessed data can be either raw or previously
aggregated.

• Where: The data analysis can be carried
out at different locations: at the client, the
broker, and a third-party entity. Client-side
analysis is typically carried out in SOA
architectures that do not include an inter-
mediary broker; in this case, the analysis
of the monitored data is demanded either
to a monitoring service under the client
control, e.g., (Rosario, Benveniste, Haar &
Jard, 2008), or to a third-party collabora-
tive monitoring service as in (Zheng et al.,
2011).
The broker-side analysis is usually per-
formed by those frameworks that involve
the broker with the support of either self-
collected data or a third-party monitoring
system. The latter can be of collaborative
type and therefore offers data analysis as
a counterpart for receiving monitored data
from SOA executors, as in (Zheng et al.,
2011).

• When: The frequency at which data analy-
sis is performed is often determined as a
trade-off between the need to quickly react
to significant events and the costs of data
processing. The simplest approach is to
periodically analyze the data at fixed inter-
vals (Bellucci et al., 2010). In the more so-
phisticated event-driven analysis, which is
usually based on the concept of Continuous
Query Processing (CQP), each monitored
data is not only stored but might activate
a trigger usually based on simple policies,
like threshold violations (Calinescu et al.,
2011). Event-driven analysis can also oc-
cur either after the execution of a specific
service, a set of services, or even the whole
workflow (Ardagna et al., 2011). The peri-
odic and event-driven analysis approaches

169

Service-Oriented Systems for Adaptive Management of Service Composition

can be combined to obtain a periodic anal-
ysis coupled with an event-driven analysis
for critical events detection (Calinescu et
al., 2011). Finally, on-demand analysis can
also be directly requested by a client, de-
pending on its own analysis policies.

• Who: The actors interested in the Analyze
phase coincide with those that will plan
the adaptation actions, that is, the clients
and the broker. A client may be interested
in data analysis when it does not rely on

an external service broker, while a service
broker is always interested in analyzing the
monitored data.

• How: We distinguish between method-
ological and architectural issues regarding
how the analysis can be accomplished.

• The Analyze policies can be roughly di-
vided in two macro-categories: online and
offline analysis. Since the SOS operations
require the adaptation loop to quickly react
to a changing environment, a fast analysis

Figure 4. Analyze taxonomy

170

Service-Oriented Systems for Adaptive Management of Service Composition

is often needed to allow for an early de-
tection and reaction to significant events.
As a consequence, we might need to resort
to heuristics whenever exact algorithms
are too computationally intensive (see
(Rosario et al., 2008)), hence not suited
to online operations. Offline analysis still
plays a significant role as the collected data
can be used to identify suitable models of
the complex SOA environment.

• Online solutions can be further divided
into reactive and proactive analysis. In
reactive approaches, the system evalu-
ates the collected data and reacts to event
as they are detected, e.g., (Calinescu et
al., 2011). This implies that the system
can only react to events after they occur.
Proactive approaches take advantages of
predictive models to actually anticipate the
occurrence of events, thus possibly invok-
ing the adaptation planner before the viola-
tion could actually happen, e.g., (Ardagna
et al., 2011).

• From an architectural point of view, we
distinguish between centralized and decen-
tralized approaches. The former have the
well-known quality of being easily man-
ageable, while the latter are more scalable
and fault tolerant.

• The possible data analysis techniques in-
clude checking the violation of a thresh-
old, for example by applying the Student
t-test statistical significance to determine
the probability of a QoS attribute to be vio-
lated (Mosincat, Binder, & Jazayeri, 2010),
or creating an empirical distribution func-
tion that fits the actual QoS parameters dis-
tribution as in (Rosario et al., 2008).

Plan Taxonomy

The taxonomy of the Plan phase is shown in
Figure 5.

• What: The Plan phase is the pivotal phase
around which the entire autonomic cycle
revolves. The Plan role is to determine and
identify the plans and its constituent adap-
tation actions to be set forth for the system
to attain its goals and/or maintain its objec-
tives in face of a changing internal and/or
external environments.
Different planning methodologies can be
applied depending on whether the adapta-
tion cycle considers the functional or the
non-functional requirements of the SOA
application. When the adaptation concerns
the functional behavior, planning the adap-
tation of the functional behavior means to
alter the workflow that defines the business
logic of the SOA application. For example,
in (Mirandola et al., 2011) the interactions
among component services already involved
in the workflow can be removed or new ones
can be added; furthermore, it is possible to
introduce new services with subsequent
interactions. Actually, the changes to the
workflow are not planned automatically, but
the client submits a set of possible solutions
to the new functional requirements and the
SOS evaluates the QoS of each solution
and then chooses the most suitable one with
respect to a given utility function.
The adaptation to satisfy the non-functional
requirements has been widely investigated
in the last years. In most frameworks, the
adaptive management is typically achieved
by selecting at runtime the implementation
corresponding to each functionality of the
abstract composition from a set of candidates
and leaving unchanged the composition
logic. The overall methodology entails the
discovery, identification, and selection of
the actual services implementing the SOA
application as to satisfy some non-functional
requirements while optimizing a suitable
utility function.

171

Service-Oriented Systems for Adaptive Management of Service Composition

The service selection can be performed at
two different granularity levels. With the
per-request grain, the adaptation concerns
a single request addressed to a composite
service, and aims at making the system
able to fulfill the QoS requirements of that
specific request (e.g., minimize the cost of
the SOA application), independently of the

concurrent requests that may be addressed
to the system. With the per-flow grain,
the adaptation concerns an overall flow of
requests, and aims at fulfilling the QoS re-
quirements concerning the global properties
of that flow, e.g., to minimize its average
response time. Some proposals in the per-
request case include (Ardagna et al., 2007;

Figure 5. Plan taxonomy

172

Service-Oriented Systems for Adaptive Management of Service Composition

Ardagna et al., 2011; Canfora, Di Penta,
Esposito, Villani, 2008), while (Cardellini,
Casalicchio, Grassi & Lo Presti, 2007; Klein,
Ishikawa & Honiden, 2010; Ardagna et al.,
2010) adopt the per-flow approach. Some
frameworks (Bellucci et al., 2010; Menascé
et al., 2011) also consider the coordination
pattern service selection. For each func-
tionality in the SOA application workflow,
these frameworks select a subset of actual
services implementing it and a coordination
pattern according to which those services
are invoked, for example to improve the
reliability of the SOA application. Examples
of coordination patterns include the parallel
invocation of multiple services in order to
improve the reliability or their sequential
invocation to obtain the same goal but at a
lower cost and worse response time.
The Plan activity can also entail the selec-
tion of the service providers with which
bargaining a SLA. The provider selection
can be done, for example, to define the set
of semantically equivalent services that will
serve as candidates for the service selection.
Other approaches plan the provisioning of
the manageable resources, e.g., (Calinescu
et al., 2011; Mirandola et al., 2011) to adjust
the system resources allocated to individual
services, for example with the aim to sustain
the submitted workload. This approach is
feasible only for those resources that are
internally managed by the provider of the
SOA application, but not for those services
offered by external providers.

• Where: The Plan phase is usually execut-
ed on the broker, and this is the solution
adopted in almost all of the frameworks
we consider. However, it is also possible to
execute the planning on the client, like in
(Rouvoy et al., 2009), in case of a broker-
less architecture.

• When: Similarly to the Analyze phase, the
Plan execution is determined by the trade-

off between the need to react to significant
events, as the arrival or departure of clients
or the SLA violations by a service, and the
execution time of the adaptation strategy.
Planning can be either carried out at fixed
time intervals or executed whenever the
changes in the environment as detected by
the Analyze phase might cause the current
plan to be no longer adequate to guarantee
the system requirements. As noted before,
we can combine the two approaches, i.e., a
periodic planning coupled with an event-
driven planning activated by the Analysis
step. Finally, we can have on-demand
planning, which is directly requested by
a client depending on its own policies and
current perception of the quality attributes
of the SOA application.

• Who: The entities interested in the Plan
phase are the same that perform the
Analyze step, that is, the clients and the
broker. A client can plan the adaptations
actions when it does not rely on an external
service broker, while a service broker per-
forms the Plan phase to keep the adaptation
decisions under its control.

• How: The Plan execution can be accom-
plished using two different methodologies
aimed at computing an optimal or a sub-
optimal/heuristic policy. The former type
of methodologies determines an optimal
solution given a utility function and some
constraints. The optimization problem can
be formulated using Linear Programming
(LP) as in (Cardellini et al., 2007; Klein
et al., 2010), Integer Programming (IP) as
in (Alrifai & Risse, 2009), or even Mixed
Integer Linear Programming (MILP) as
in (Ardagna et al., 2007). To overcome
the computational complexity of optimal
strategies, especially of integer formula-
tions, the latter type of methodologies rely
on heuristics that lead to suboptimal solu-
tions but are faster to solve (Menascé et al.,

173

Service-Oriented Systems for Adaptive Management of Service Composition

2011). As regards the planner architecture,
it is centralized in most of the frameworks,
although some decentralized approach ex-
ists, as in (Alrifai et al., 2009), where part
of the computation is distributed across the
network.

Execute Taxonomy

Figure 6 shows the taxonomy of the Execute phase
of the MAPE-K loop.

• What. In this case, the question assumes a
trivial meaning: what we are going to exe-
cute coincides with what we have planned
in the previous step.

• Where. The adaptation plan can be ex-
ecuted at different layers, ranging from
the highest business process layer to the
lowest infrastructure layer. Starting from
the latter, the adaptation actions can be
run either on the internal infrastructure
(Mirandola et al., 2011; Calinescu et al.,
2011) or on an external infrastructure. By
internal infrastructure we mean all those
physical and virtual resources that are di-
rectly manageable by the SOA application
provider, while with external infrastructure
we intend every external physical or vir-
tual resource used to improve or to replace
any internal infrastructure. The actions
available at the infrastructure layer include
adding or removing physical or virtual ma-
chines, improving the network connections
or the storage system.
Going up through the abstraction layers, we
find that adaptation can take place at the
platform layer. The latter identifies every
software needed to run the service we intend
to adapt, thus ranging from the operating
system to any application server (Calinescu
et al., 2011). Changes on this layer involve
everything that goes from kernel reconfigu-
ration to application server tuning, but it does

not involve any modification on services that
take part in the business process. Such modi-
fications belong to the service layer, where
we can operate both service re-configuration
and service tuning. Finally, at the business
process layer, the adaptation actions involve
the high-level logic of the business process
(Bellucci et al., 2010; Menascè et al., 2011;
Calinescu et al., 2011).

• When. Most of times the adaptation ac-
tions have to be carried out introducing
the lowest possible delay into the business
process execution. Depending on the adap-
tation actions, the adaptation may happen
either at runtime or at deployment-time.
Although it is possible to execute adapta-
tion actions also at development-time or
design-time, we do not consider them be-
cause we only focus on those solutions that
do not require human intervention, being
the latter a requirement for a truly auto-
nomic system. We include in the deploy-
ment-time phase all those approaches that
require a (even small) service interruption
in order to apply the adaptation plan. All
other approaches can be classified in the
runtime case.

• Who. The entities involved in the actua-
tion of the adaptation plan are the client,
the broker, and the service provider.
A client managing the entire service orches-
tration can apply by its own the adaptation
actions previously computed in the plan-
ning phase. A broker can either apply its
own computed adaptation plan or rely on
some adaptation plan directly provided by
the client, as in (Mirandola et al., 2011).
Finally, the service provider can modify its
behavior according to directives provided
by the client or the broker. For example, it
can receive an adaptation request issued by
a broker that has detected a slowdown in the
provider performance.

174

Service-Oriented Systems for Adaptive Management of Service Composition

• How. The adaptation actions that can be
taken are all part of a meta-branch called
re-configuration. In particular, we have
identified three possible mechanisms to ex-
ecute the adaptation plan: runtime binding,
Aspect Oriented Programming (AOP), and
parameters modification.
The runtime binding is the most leveraged
approach, as it provides the SOA applica-
tion with the ability to bind at runtime the
invocation with the actual service according
to the Plan decision. It is the most suited
mechanism to implement service selection,

coordination pattern selection or even a
simple load balancing policy among func-
tionally equivalent services.
AOP can be used to inject code fragments
(also known as sub-processes) into the SOA
application itself, in order to have process
segments changing at runtime (Leitner et al.,
2010) or at deployment-time. This method-
ology is suited for both non-functional and
functional adaptation as it can modify the
functional as well as non-functional ap-
plication behavior. The AOP methodology
is based on the concepts of aspect (cross-

Figure 6. Execute taxonomy

175

Service-Oriented Systems for Adaptive Management of Service Composition

cutting concerns, which are turned off and
on at design or runtime), advises (the actual
implementation in terms of business logic of
the aspects), joinpoints (points on the busi-
ness process where advices can potentially
be inserted), and weaving (the process of
dynamically inserting advises in joinpoints).

• Finally, the parameters modification en-
compasses all those mechanisms that can
be used to change some operative feature
of the SOS.

Self-Adaptive Frameworks

As described in the previous subsections, each
phase in the MAPE-K loop can be realized in
several different ways. However, to design a
consistent MAPE-K loop only a subset of the
possible combinations is reasonable. For example,
if the monitored data are analyzed on an event-
driven basis, it is not appropriate to periodically
execute the Plan phase. If a service broker moni-
tors its hardware and software resources, it is not
possible to plan a service selection for a service
composition, unless the used Web services are all
in-house, but it is an unreasonable scenario for a
SOA application.

When we described the taxonomies of the
MAPE loop phases, we referred to some existing
frameworks for the self-adaptation of a SOA appli-
cation. In this section, we analyze the overall map-
ping of these frameworks on those taxonomies.
Specifically, we consider (Calinescu et al., 2011;
Ardagna et al., 2011) among the cited frameworks,
because they are the most documented; later in
the chapter, we will analyze as a case study the
MOSES framework (Cardellini et al., in press). In
the remainder of this subsection we do not men-
tion the who branch of the taxonomies, because
it coincides with the service broker for both the
frameworks.

Let us start with the Monitor phase. QoSMOS,
which stands for QoS Management and Optimiza-

tion of Service-based systems (Calinescu et al.,
2011), focuses on monitoring (what) the QoS at-
tributes at the client side, the workload submitted
to each service in the service composition, and the
resources allocated to the in-house services. The
monitoring is executed (where) at the broker side,
(when) on a continuous basis, and (how) using a
passive methodology.

Discorso, which stands for Distributed Infor-
mation Systems for Coordinated Service-Oriented
Interoperability (Ardagna et al., 2011), differs
from QoSMOS only for the what branch of the
monitor taxonomy, since it only monitors the QoS
attributes at the client side. As discussed below,
this slight difference in the Monitor phase affects
the design of both the Plan and Execution phases
of the MAPE-K loop for the two frameworks.

As regards the Analyze phase, both the frame-
works perform (what) the analysis of the moni-
tored data (where) at the broker side, (how) using
an online methodology. The difference is in the
timeliness: QoSMOS realize a reactive analysis,
while Discorso a proactive one. However, this
difference does not affect the design of the Plan
and Execution phases, but only how the adaptation
need is detected. Furthermore, the analysis is per-
formed (when) both periodically and event-based
for QoSMOS, and only event-based for Discorso.

The design of the Plan phase is affected by the
differences in the monitoring. Although both the
frameworks perform a non-functional adaptation,
Discorso only plans (what) the service selection at
the per-request granularity, while QoSMOS also
the resource provisioning both at infrastructure
and platform layers (this difference reflects the
different kind of attributes that are monitored).
The methodology used by the planning (how) is
based on optimization models for both the frame-
works and the computation is performed using a
centralized architecture. In particular, Discorso
uses an optimization problem formulated as MILP
while QoSMOS an exhaustive research based
on a Markovian model of the SOA application.

176

Service-Oriented Systems for Adaptive Management of Service Composition

Eventually, the planning is executed (where) at the
broker side and (when) with the same timeliness
of the Analyze phase. Furthermore, QoSMOS
performs an iteration of the MAPE-K loop also
if a time interval has expired, even if no change is
detected in the execution environment. Therefore,
the planning phase is executed both periodically
and event-based for QoSMOS, and only event-
based for Discorso.

The design of the Execute phase is also af-
fected by the design choices made in the previous
MAPE-K steps. Indeed, the adaptation actions are
executed (where) only on the business process
layer for the Discorso framework, and also on the
infrastructure and platform layers for QoSMOS.
These actions are executed (when) at runtime,
(how) using the runtime binding in both frame-
works and the parameters modification only in
QoSMOS.

SERVICE SELECTION

As previously observed, the Plan phase is the core
of the autonomic control loop as it defines the
self-adaptation logic. It is no surprise then that
many research efforts on adaptive management of
SOSs have focused on studying and developing
planning strategies.

In the context of SOA applications, the most
critical tasks of the planning phase have been
identified with the ability to manage, control,
and predict the QoS characteristics of the offered
SOA applications (Papazoglou, Traverso, Dustdar
& Leymann, 2007). Hence, most planning poli-
cies have addressed the issue of fulfilling non-
functional requirements. Since SOA applications
are built by composing loosely coupled services,
which are easily replaceable at runtime with dy-
namic binding, most of the research efforts have
focused on devising proper service selection and
coordination pattern selection strategies.

In this section we review service selection
strategies for SOA applications. In this respect,

we can clearly distinguish two broad classes of
approaches, depending on whether we deal with
the per-request or the per-flow granularity. In-
deed, despite addressing similar issues, the two
approaches significantly differ in the formulation
of the optimization problem. In the first case,
we have to deal with 0-1 problems, which are
computationally complex, while in the second
case we deal with probabilities, which lead to
cheaper computations. We will focus on two
representative solutions: (Ardagna et al., 2007)
for the per-request approach and (Cardellini et
al., 2007) for the per-flow approach. Since the
optimal strategies for the per-request granularity
are computationally expensive, many research
efforts have focused on heuristics, which, albeit
suboptimal, are computationally efficient; there-
fore, we will also review some representative
examples in the next section.

In the following, we consider a broker that
offers a SOA application P. We assume that the
broker has negotiated SLAs with its clients and
has the main task to fulfill these SLAs, while
optimizing a suitable utility function and being
constrained by the SLAs it has stipulated as a client
with the providers of the services involved in the
service composition. Depending on the utilization
scenario, the utility function can optimize specific
QoS attributes for different clients/service classes,
e.g., minimizing the average response time, and/or
the broker own utility, e.g., minimizing the overall
cost paid by the broker to offer the SOA applica-
tion. These different, and possibly conflicting,
optimization goals can lead to a multi-objective
optimization problem. This is usually tackled, e.g.,
(Ardagna et al., 2007; Cardellini et al., 2007), by
considering a single objective function obtained
by applying the Simple Additive Weighting (SAW)
technique (Hwang & Yoon, 1981), which is the
most widely used scalarization method. Following
the SAW technique, the utility function can be
defined as the weighted sum of the (normalized)
QoS attributes.

177

Service-Oriented Systems for Adaptive Management of Service Composition

We denote by S the set of abstract tasks be-
longing to the service composition P, where Si ∈
S, i = 1, . . ., m, represents a single task, being
m the number of tasks composing P. A task is a
functionality required by the SOA application
and implemented by a set of services available
in the marketplace. For each task Si, we assume
that the broker has identified a pool Ii = {csij} of
concrete services implementing it. Figure 7a shows
an example of workflow for a SOA application.

Per-Request Granularity

We first consider the per-request approach in
(Ardagna et al., 2007). Let us focus, without loss
of generality, on SLAs containing QoS constraints
that refer to the following three attributes: (i) re-
sponse time, defined as the interval of time elapsed
from the service invocation to its completion; (ii)
reliability, that is, the probability that the service
completes its task when invoked; (iii) cost, which
is the price charged for the service invocation.
Furthermore, let us assume that this QoS model
holds for SLAs stipulated by the broker with
both its clients and service providers. In the per-

request approach, the broker tries to meet the QoS
constraints specified in the SLA for each request,
irrespective of whether it belongs to some flow
generated by one or more clients.

The optimal service selection problem is then
formulated as MILP problem. We denote with the
vector x = [x1, . . ., xm] the optimal policy for a
request to the SOA application, where each entry
xi = [xij], xij ∈ {0, 1}, i ∈ S, j ∈ Ii, denotes the
adaptation policy for task Si and the constraint ∑j∈Ii
xij = 1 holds. That is, xij is the decision variable,
which is equal to 1 if task Si is implemented by
service csij, 0 otherwise. As an example, suppose
that for the task Si the broker has individuated 4
concrete services implementing it, namely cs1, cs2,
cs3 and cs4. Assume that the per-request policy x
determines that for a given request xi = [0, 0, 1,
0]. It means that, according to this policy, for Si
the broker binds the request to csi3.

The fulfillment of the QoS constraints on a
per-request basis means that the broker needs to
take into account all the possible scenarios that
might occur during the execution of the SOA ap-
plication. To this end, the optimal strategy needs to
consider all the possible execution paths that might

Figure 7. a) An example of workflow; b) Two different execution paths

178

Service-Oriented Systems for Adaptive Management of Service Composition

arise from the workflow of the SOA application
(Ardagna et al., 2007). An execution path epn is
a multiset of tasks epn = {S1, S2, . . ., SI} ⊆ S, such
that S1 and SI are respectively the initial and final
tasks of the path and no pair Si, Sj ∈ epn belongs
to alternative branches. An execution path does
not contain any loop, because the loops are peeled,
but it may contain parallel sequences. Loop peel-
ing involves rewriting the loop as a sequence of
branch conditions (the branch conditions that arise
from loop peeling produce other execution paths,
see the example in Figure 7b). In other words,
the set of all the execution paths represents all
the possible execution scenarios of a workflow.

Figure 8 shows a simplified version of the
problem formulation for the per-request optimiza-
tion, where x denotes the optimal service selection
policy and U(x) the broker utility function. We
indicate with Tmax, Rmin and Cmax, respectively the
maximum response time, the minimum reliability,
and the maximum cost that are allowed, i.e., the
QoS constraints specified in the SLAs. On the other
hand, Tn(x), Rn(x), and Cn(x) denote the response
time, reliability, and cost of the execution path
epn under the selection policy x.

Per-Flow Granularity

In the per-flow approach, the client requests are
considered at the flow granularity level. In this
setting, the SLAs and the service selection con-

cern the QoS and the behavior of the aggregated
flow of requests generated by the clients. As a
consequence, the constraints stated in the SLA do
not make any provision on the QoS of each single
request, but rather the SLA is concerned with the
average value of the QoS attributes computed over
the flow of requests generated by a given client.

To account for the existence of multiple con-
current requests made by the different clients,
the per-flow approach in (Cardellini et al., 2007)
requires to negotiate in the SLA the additional
parameter L, which represents a bound on the
amount of requests per unit of time a client can
generate.

It is also assumed that there is a set K of service
classes, with k ∈ K, for each service composition.
Therefore, a client bargains its SLA with the
broker referring to one of these service classes.
Although this could seem a limitation, it actually
is not, because the granularity level of the service
classes may be arbitrarily fine and, at the finest
level, each client could have its own service class.

The optimal service selection problem is then
formulated as a LP problem, that is computation-
ally lighter to solve than the MILP formulation
of the per-request approach. For each class k, we
denote with the vector xk = [xk

1, . . ., x
k
m] the optimal

policy, where each entry xk
i= [xk

ij], 0 ≤ xij ≤ 1, i ∈
S, j ∈ Ii, denotes the adaptation policy for task Si
and the constraint ∑j∈Ii x

k
ij = 1 holds. That is, the

policy defines a probabilistic binding between Si

Figure 8. Per-request optimization problem

179

Service-Oriented Systems for Adaptive Management of Service Composition

and its implementation in Ii, whereby each entry
xk

ij of xk
i denotes the probability that the class-k

request will be bound to concrete service csij. As
an example, let us suppose that, as in the per-
request case, the broker has individuated for the
task Si the same 4 concrete services implementing
it, namely cs1, cs2, cs3 and cs4. Now assume that
the per-flow service selection, for a given class k,
determines xk = [0, 0.2, 0.5, 0.3]. It means that,
for a class-k request for Si, the broker will bind
cs2 with probability 0.2, cs3 with probability 0.5
and cs4 with probability 0.3.

Figure 9 shows a simplified version of the op-
timization problem formulation. We indicate with
Tk

max, R
k
min and Ck

max, respectively the maximum
average response time, the minimum average
reliability, and the maximum average cost, that
correspond to the QoS constraints specified in the
class-k SLA. Tk(L, x), Rk(L, x), and Ck(L, x) are
respectively the class-k response time, reliability,
and cost, respectively, under the adaptation policy
x = [xk] k ∈ K. Their expressions require the
knowledge of Vk

i for each task Si, that is the average
number of times Si is invoked by a class-k request.
In particular, the second-last equation, where Lk
= ∑u L

k
u, is the aggregated service request rate of

class-k clients (being u a client), ensures that the
concrete services used in the SOA application will

not be overloaded by the client requests, that is,
the client requests will not exceed the volume of
invocations lij agreed with each service provider.

A Brief Comparison between Per-
Request and Per-Flow Granularity

The difference between the per-flow and the per-
request approaches lies in the service selection
policy: in the latter each task is bound to one and
only one concrete service, while in the former each
task is bound to a set of concrete services and at
runtime one of them is probabilistically chosen.
As a result, different concrete services can be
used for implementing the same task in different
executions of the service composition while the
same adaptation plan holds. On the other hand,
in the per-request approach the same concrete
service is used for all similar requests until the
same adaptation decision holds.

The study in (Cardellini, Di Valerio, Grassi,
Iannucci & Lo Presti, 2011a) presents an experi-
mental comparison between the two approaches,
focusing on their impact on the SOS performance
in term of service composition’s response time.
The results show that under a light request load
the two approaches perform almost the same, but
under a high request load the per-request approach

Figure 9. Per-flow optimization problem

180

Service-Oriented Systems for Adaptive Management of Service Composition

exhibits scalability problems, while the per-flow
approach performs much better. The motivation
is as follows: in the per-request approach, all re-
quests to a given task are resolved using the same
concrete service until the same service selection
solution holds. This works under light loads, but
at higher loads the service capacity is eventually
saturated and performance degrades. On the other
hand, in the per-flow approach, the load is shared
among multiple concrete services thanks to the
probabilistic service selection without saturating
any service thanks to the load constraints which
prevent the services’ overloading.

However, the main disadvantage of the per-
flow approach is that the QoS levels are guaran-
teed on average for the overall flow; therefore,
the performance of a single request is actually
unpredictable. In (Cardellini, Di Valerio, Grassi,
Iannucci & Lo Presti, 2011b) the interested reader
can find a new service selection policy that com-
bines the benefits of both approaches, i.e., the per-
request guarantees and the per-flow probabilistic
service selection, thus ensuring load balancing
and overcoming the per-request scalability issues.

HEURISTICS

The high computational complexity of the optimal
per-request service selection policies may limit
their use for an online implementation. Various
factors affect the time complexity of the service
selection policies, among which the most impor-
tant are the number of abstract tasks, the number
of concrete services implementing each abstract
task, and the number of QoS constraints that
have to be considered. The service selection can
be modeled as a Multi-choice Multidimensional
Knapsack problem (MMKP), which is known to
be NP-hard and therefore the time complexity
in finding an exact solution is expected to be
exponential (Martello & Toth, 1987). However,
in a real-world scenario, the Plan component of
the SOS must be able to determine in near real-

time the optimal service selection under possibly
heavy load. To address this issue, many research
efforts have proposed computationally efficient,
albeit suboptimal, solutions to the service selec-
tion problem.

Since a MMKP problem can be formally
expressed with an IP formulation, a common ap-
proach (Berbner et al., 2006; Klein, Ishikawa, &
Honiden, 2010) is to relax the integer restriction
on the variables of the IP problem, thus obtaining a
LP problem that can be efficiently solved in poly-
nomial time. The caveat is however that a solution
to the relaxed problem does not necessarily solve
the original problem. Therefore, solutions based
on a LP formulation are more suited to address
the selection problem at per-flow granularity
level, where the QoS constraints are evaluated in
the long-term and for a flow of requests, rather
than the per-request granularity, where individual
executions could violate the constraints.

The work in (Berbner et al., 2006) proposes
an algorithm for finding a sub-optimal solution
to the original IP problem by enumerating the
solutions of the LP problem in a clever way, until
the IP problem constraints are not violated. The
authors show that the proposed heuristic is able
to compute close to optimal solutions in a fraction
of the time with respect to the exact MIP formula-
tion, e.g., in case of a SOA application composed
by 21 tasks, the heuristic reaches 98.83% of the
objective function value of the optimal solution,
but only needs 0.19% of the computation time
to compute it.

On the other hand, the proposal in (Klein et al,
2010) does not try to fit the original IP problem,
but rather to refine the LP solution so that it can be
used to guarantee some QoS constraints for every
execution of the SOA application, or at least for a
large percentage (e.g., 99.9%) of the executions.
The authors show that the proposed heuristic is
able to provide less than 3% of deviation from
the original IP solution.

Another approach to face the complexity of the
IP formulation is to reduce the number of decision

181

Service-Oriented Systems for Adaptive Management of Service Composition

variables of the problem itself, as in (Alrifai et al.,
2009). The authors first decompose each global
QoS constraint into a set of m local constraints,
so that each local constraint serves as a conser-
vative upper bound such that the satisfaction of
every local constraint guarantees the satisfaction
of global constraints.

Then, they divide the quality range of each QoS
attribute into a set of discrete quality levels and
map each known concrete service to the appro-
priate quality level. This approach has two major
benefits: first, it allows to distribute the computa-
tional effort among different nodes, because only
independent local optimization problems have to
be solved; secondly, since concrete services are
replaced by quality levels, the size of the problem
space is reduced. The authors show that their
heuristic can achieve above 96% of optimality
when compared to the results obtained by the
global optimization approach. However, since QoS
levels are discretized without considering potential
correlations among different quality attributes, in
scenarios with relatively strict constraints it is pos-
sible to incur in very restrictive decompositions of
the global constraints, which therefore could not
be satisfied by any concrete service even though
a solution to the problem exists. A solution to the
latter problem is presented in (Alrifai, Skoutas, &
Risse, 2010), where the authors propose a differ-
ent method for QoS level discretization: for each
abstract task, skyline (dominant) concrete services
are first determined. Subsequently, skyline con-
crete services are clustered using the k-means
algorithm and, for each cluster, a virtual concrete
service is created whose quality level is given by
the worst quality attributes of the concrete services
belonging to that cluster. Those virtual concrete
services are then used to discretize QoS levels in
a multidimensional fashion.

A completely different approach is proposed
by (Canfora, Di Penta, Esposito, Villani, 2008),
where a Genetic Algorithm (GA) is used to real-
ize an enumeration of the optimization problem
solutions. The search for the optimal solution starts

with an initial population of individuals that are
going to evolve over time: at each algorithm step
individuals are evaluated using a fitness function
and then selected through a selection operator. The
higher is the fitness value of an individual, the more
is likely that such an individual will be chosen
for reproduction. The reproduction is obtained by
applying crossover and mutation operators. The
former produces an offspring recombining par-
ent’s genes, while the latter modifies one or more
genes. The application of a GA in service selection
maps a solution of the optimization problem to
an individual, where each individual is composed
by m genes and every gene represents a particular
instance of concrete services. A different objective
is pursued by (Wada et al., in press), which uses
a GA for the service provisioning problem: in
their work the individual is composed by several
genes which do not represent a particular instance
of concrete service, but the number of concrete
services needed by a given abstract task to fulfill
certain QoS constraints.

Finally, in (Yu, Zhang & Lin, 2007) the authors
compare the MMKP problem solved through the
branch-and-bound technique with several heuris-
tics, based on either a combinatorial or a graph
model. The proposed heuristics differ in the type
of considered workflow structure, which can be
either only sequential or more general (a sequential
workflow contains neither conditional branches
nor forks). Combinatorial heuristics for both se-
quential and general workflows are realized as a
walk in the solution space: first, a concrete service
is selected for each abstract task such that a quality
attribute (possibly different for each abstract task)
is locally maximized. If the obtained solution is
feasible, then the second step tries to improve
such a solution by both feasible and unfeasible
upgrades, so that both local and global optima can
be reached. The authors claim that in most cases
(more than 98%), the heuristic finds a feasible
solution at the first try, while the time complex-
ity is a polynomial function. As regards general
workflows, an additional heuristic is proposed,

182

Service-Oriented Systems for Adaptive Management of Service Composition

which tries to optimize only the execution route
with the highest probability, while finding only
feasible solutions for other routes.

Graph-based heuristics are based on the algo-
rithm of single-source shortest paths in Directed
Acyclic Graphs (DAG) (Cormen, Leiserson,
Rivest, & Stein, 2001): a DAG is built up from the
workflow by replacing every node representing a
single abstract task with a set of nodes represent-
ing the concrete services implementing it and by
adding edges between two concrete services if
the abstract tasks they implement are connected.
Loops, if any, are unfolded. The proposed heuristic
limits the information held by each node: instead
of maintaining the complete list of paths that meet
the QoS constraints from the source to the node
itself, only K paths are kept. The authors show
that limiting the information to the K best paths
leads to an optimality approximation greater than
90% even for small values of K, with a gain in
terms of time and memory consumption of ap-
proximately 500%.

CASE STUDY: MOSES

As a representative case study of SOS that adap-
tively manages a SOA application adopting the
MAPE-K model, we focus on MOSES (MOdel-
based SElf-adaptation of SOA systems), which is
a framework for the QoS-driven adaptation of a
service-oriented system. Although MOSES is a
particular instance of SOS, it is a fully functional
prototype with a highly modular architecture that
allows you to easily realize other solutions pro-
posed in literature by replacing and/or adding a
given component with another possible implemen-
tation realizing a different approach. For instance,
the Plan phase in the original MOSES follows the
per-flow approach, but we also implemented the
per-request approach in (Ardagna et al., 2007) by
replacing some MOSES components in order to
perform the comparison presented in (Cardellini et
al., 2011a). We will use the MOSES prototype to

validate the benefits of a SOS with self-adaptive
features under a motivating scenario character-
ized by a varying operating environment, where
component services appear and disappear.

For a comprehensive description of the meth-
odology underpinning MOSES and the software
tool that implements it, we refer the reader to
(Cardellini et al., in press) and (Bellucci et al.,
2010), respectively.

MOSES Architecture

The MOSES architecture represents an instantia-
tion for the SOA environment of a self-adaptive
software system, organized according to the
MAPE-K loop and focused on the fulfillment of
QoS requirements.

Figure 10 shows how the MOSES components
are organized according to the MAPE-K control
loop.

Monitor–Analyze Phases

The Monitor-Analyze subsystem comprises all
those components that capture changes in the
MOSES environment and, if they are relevant,
modify at runtime the behavioral model and trig-
ger a new adaptation plan. Specifically, the QoS
Monitor is in charge of measuring and analyzing
the QoS attributes of the concrete services used by
MOSES to provide the SOA application. The WS
Monitor periodically checks the availability of the
concrete services. The Execution Path Analyzer
is in charge of monitoring the variations of the
usage profile. In case of the service selection at
the per-flow granularity, it computes and updates
for each abstract task Si the expected number of
times Vk

i that Si is invoked by service class k.
With respect to the Monitor taxonomy in Figure
3, these MOSES components monitor: (what)
client-side, QoS attributes of services; (where)
broker side; (when) on a continuous time basis;
(how) using both active and passive methodologies
in a centralized architecture. In particular, the QoS

183

Service-Oriented Systems for Adaptive Management of Service Composition

Monitor and the Execution Path Analyzer use a
passive monitoring methodology by collecting the
service invocation results, while the WS Monitor
actively checks the services availability.

The Monitor-Analyze subsystem also includes
the Service Manager and the SLA Manager, which
are involved in the SLA negotiation processes
where the broker acts as an intermediary. Indeed,
the Service Manager is in charge of negotiating
SLAs with the service providers and discovering
candidate services offering the functionalities in
the service composition, while the SLA Manager
is responsible for the SLAs with the MOSES
clients. In addition, the latter manages the client
profiles, adding and removing them. We included
these components in the Monitor-Analyze phases
because they can invoke the Plan phase if new
SLAs with clients or service providers are either
stipulated or removed. Specifically, for each new
SLA request, the SLA Manager performs an admis-

sion control to evaluate whether there are enough
available resources to accept the incoming client,
given the associated SLA and without violating
already existing SLAs with other clients.

In MOSES the Analyze phase can be classified
as follows on the basis of the taxonomy in Figure
4: (where) at the broker-side; (when) MOSES
adopt all the approaches in Figure 4: the QoS
Monitor analyzes periodically the QoS attributes
of the concrete services, checking whether their
measured values correspond to the stipulated
one; the SLA Manager performs an on-demand
analysis for client arrivals and departures, while
the Service Manager and the WS Monitor adopt an
event-driven analysis for discovering services and
checking their availability, respectively; (how) the
analysis is performed online with either proactive
or reactive policies using a centralized architec-
ture. In particular, the analysis is reactive for all

Figure 10. MOSES architecture

184

Service-Oriented Systems for Adaptive Management of Service Composition

the components except the QoS Monitor that can
also use a proactive methodology.

Planning Phase

The planning phase is fully executed by the Opti-
mization Engine, whose task is to solve the service
selection optimization problem. The latter is built
from a model of the SOA application workflow,
instantiated by the Composition Manager and
whose parameters are initialized with the values
in the SLAs contracted with the clients and the
service providers. This model is kept up-to-date
at runtime by the monitoring components. For
example, the values of the QoS attributes of each
concrete service used in the problem can be up-
dated at runtime with the actual measured values
and the same holds for the average number of
invocations to each task. With respect to the Plan
taxonomy, MOSES can be classified as follows:
(what) non-functional requirements, in particular
the service selection and the coordination pattern
selection. For sake of simplicity, we previously
presented only the service selection problem; to
account for the coordination pattern selection,
the problem formulation is slightly more compli-
cated as described in (Cardellini et al., in press).
Eventually, (where) the Plan phase is executed
at the broker on an event-driven basis, i.e., when
the components in the Monitor–Analyze phases
detect a relevant event to be addressed, and (how)
the methodology adopted to plan the adaptation
actions determines the service selection and pattern
coordination relying on a centralized architecture.

Execution Phase

The execution phase is carried out by the Com-
position Manager, the BPEL Engine, and the
Adaptation Manager. The Composition Manager,
given a new service composition to be deployed
as a BPEL process (OASIS, 2007), builds the
workflow model that the Optimization Engine will
use in the Plan phase. Furthermore, it modifies

the workflow in such a way that all the service
invocations are translated into invocations of the
Adaptation Manager. The latter acts as a proxy
that, given the name of an abstract task, invokes
the service(s) implementing that task according to
the service selection (and the coordination pattern
selection) policy computed by the Optimization
Engine. In turn, the BPEL Engine executes the
workflow logic and is the front-end component to
the client requests. The BPEL Engine and Adapta-
tion Manager represent the core of the MOSES
execution and runtime adaptation of the SOA
application. Following the Execute taxonomy,
MOSES: (when) executes the planned actions at
runtime, (where) acting at the workflow level,
and (how) using the dynamic binding mechanism.

MOSES Design

The MOSES architecture has been designed on
the basis of the Java Business Integration (JBI)
specification. JBI is a messaging-based pluggable
architecture, whose components describe their
capabilities through WSDL. Its major goal is to
provide an architecture and an enabling frame-
work that facilitates the dynamic composition
and deployment of loosely coupled participating
applications and service-oriented integration
components. The key components of the JBI en-
vironment are: (i) the Service Engines (SEs) that
enable pluggable business logic; (ii) the Binding
Components (BCs) that enable pluggable external
connectivity; (iii) the Normalized Message Router
(NMR), which directs normalized messages from
source to destination components according to
specified policies.

As a JBI implementation, MOSES has been
implemented within the open-source project
OpenESB (ESB stands for Enterprise Service Bus),
because it is an implementation and extension of
the JBI standard. It implements JBI because it
provides binding components, service engines,
and the NMR; it extends JBI because it enables
a set of distributed JBI instances to communicate

185

Service-Oriented Systems for Adaptive Management of Service Composition

as a single logical entity that can be managed
through a centralized administrative interface.
The GlassFish application server is the default
runtime environment, although OpenESB can
be integrated in several JEE application servers.

Figure 11 shows how the MOSES components
are placed with respect to the JBI architecture:
most of the components are executed by the JEE
Service Engine, while the business process is
executed by the BPEL Engine. The NMR works
as a glue between the Service Engines and the
Binding Components, having the ability to route
messages between these sets of components.

The MOSES architecture is enriched by
MDAL, which stands for MOSES Data Access
Library. This library allows us to simplify the
usage of the underlying Database layer by abstract-
ing low-level queries with high-level methods.

Figure 12 shows the typical scenario in which a
client issues a SOA request to MOSES. In the first
step, the SOAP request is directed to the HTTP
binding component. The received request is then
forwarded to the NMR, which in turn routes it to
the proper Service Engine, i.e., the BPEL Service

Engine. The latter is in charge of executing the
required business process, after having performed
some client authentication tasks, with the help of
the Adaptation Manager when external invoca-
tions are needed.

The Adaptation Manager, differently from the
other MOSES components, is not implemented
as a JBI Service Unit. It is rather implemented as
a standard Java class belonging to the application
server classpath, and thus it is accessible by any
application served by the application server itself.
In particular, each invoke activity in the BPEL
process, which should be executed by the BPEL
Engine, is replaced by a call to the Adaptation
Manager’s entry method, whose tasks are: to read
the most up-to-date service selection plan from
the Database using the MDAL library, to invoke
the concrete Web service(s), and finally to forward
the Web service response to the BPEL Engine.

Once the business process ends its execution,
the client response is put on the NMR, which
in turn routes it to the HTTP BC, which finally
delivers the message to the client.

Figure 11. MOSES architecture and the JBI environment

186

Service-Oriented Systems for Adaptive Management of Service Composition

Experimental Results

In this section we illustrate the effectiveness of the
adaptive management of service composition by
analyzing a set of experimental results obtained
with the MOSES prototype in controlled experi-
ments. Specifically, we will study how MOSES
is able to adapt its behavior with respect to the
churn of the services it can use to offer the SOA
application. In all the sets of experiments, the util-
ity function of the service broker is to maximize
the reliability of the SOA application according
to the per-flow optimization problem sketched
in Figure 9.

The first set of experiments simulates an ideal
scenario, where the concrete services behave ex-
actly as declared into their SLAs with the service
broker. Therefore, it provides a baseline perfor-
mance result against which we compare the results
obtained in the two other sets of experiments. In
this first set, only the components of the Execute
subsystem are involved, because there is no actual
need to monitor and/or analyze the environment.
Therefore, the same service selection policy holds
unchanged for the whole experiment.

In the second set of experiments we introduce
some churn with respect to the baseline experi-

ment, by letting concrete services gracefully fail
and recover over time. The failure/recovery
model follows a two-state discrete Markov chain,
with stationary probability distribution {prunning,
pfailed}={0.95, 0.05}, in which state changes can
occur on average every 60 seconds. The graceful-
ness is given by the fact that the concrete services
notify their state to MOSES, therefore allowing
it to compute a new service selection policy in-
cluding (excluding) the restored (failed) concrete
services. This second set of experiments employs
the components of the Plan and Execute phases
of the MAPE-K loop. In particular, whenever a
concrete service fails or recovers, the Optimiza-
tion Engine solves a new instance of the service
selection optimization problem.

In the third set of experiments we assume a
real world scenario, where concrete services do
not notify their clients (i.e., MOSES) of a failure,
but we disable the Monitor phase of the control
loop. From the MAPE-K point of view, we can
consider that the components in the Plan and
Execute are enabled, although the Plan phase is
never executed because it is not triggered by the
Analyze step. In other words, as in the first set
of experiments, the same service selection policy
holds for the whole experiment.

Figure 12. MOSES request-response cycle

187

Service-Oriented Systems for Adaptive Management of Service Composition

Finally, in the fourth set of experiments, we
prove the effectiveness of the MAPE-K loop by
activating the monitoring of the candidate concrete
services performed by the WS Monitor component.
The latter is configured to probe all the known
concrete services every 5 seconds to find out what
services are currently available. Whenever the WS
Monitor finds that some service changed its state
(going from running to failed or vice-versa), it
sends a trigger to the Optimization Engine, which
in turn computes the new service selection policy
that will be applied by the Execute subsystem.

In each set, every experiment lasted 30 minutes
and has been repeated twice, using a client request
rate equal to 5 and 10 requests/seconds (in the fol-
lowing, referred to as low and high request rates)
to show the behavioral differences that arise when
MOSES is subject to different loads.

Experimental Setup

For all the sets of experiments, the testing environ-
ment consists of 3 Intel Xeon quadcore servers (2
Ghz/core) with 8 GB RAM each (nodes 1, 2, and
3), and 1 KVM virtual machine with 1 CPU and
1 GB RAM (node 4); a Gb Ethernet connects all
the machines. The MOSES prototype is deployed
as follows: node 1 hosts all the components of
the Execute subsystem, node 2 the storage layer
together with the candidate concrete services, and
node 3 the components in the Monitor+Analyze
and Plan subsystems. Finally, node 4 hosts the
workload generator.

We consider the SOA application defined by
the workflow in Figure 13, composed of 6 state-
less tasks, and assume that 10 concrete services
(with their respective SLAs) have been identified
for abstract tasks S1 and S3, while 8 concrete
services have been identified for any other task.
Their respective SLA parameters, shown in Table

Figure 13. Workflow of the SOA application used in the experiments

188

Service-Oriented Systems for Adaptive Management of Service Composition

1, differ in terms of cost cij, reliability rij, and
response time tij (in sec).

We also suppose that MOSES offers to its
clients the SLA {Tmax, Rmin, Cmax}={7 sec, 0.95,
15}. For simplicity, we consider only a single
service class. The usage profile of this service
classes is given by the following values for the
expected number of service invocations: V1 = V2
= V3 = 1.5, V4 = 1, V5 = V6 = 0.5.

The Adaptation Manager introduces an over-
head due to the runtime binding of the task end-
points to their concrete implementations that may
affect the response time of the SOA application.
In a preliminary test we measured this overhead
under the low and high request rates. We found
it to be 13.3 ms when MOSES is subject to a
low request rate and 20.3 ms for a high request
rate. Given the values of the expected number of
service invocations above reported, the average
number of invoke activities is equal to 6.5. There-

fore, the Adaptation Manager introduces a mean
per-invocation overhead equal to 2.05 ms when
the system is subject to a low request rate and
3.12 ms for the high request rate. A more detailed
analysis of the MOSES overhead can be found
in (Cardellini et al., in press), where the response
time constraint in the optimization problem also
accounts for the overhead introduced by MOSES
itself in adaptively managing the SOA application.

Experimental Results

We first present the results of the baseline scenario.
The Baseline curves in Figures 14a and 14b show
how the reliability of the SOA application varies
over time, when the QoS attribute is measured at
the client-side by aggregating the values every
20 seconds.

The horizontal lines represent the SLA stipu-
lated with the clients and the average reliability

Table 1. SLA parameters for concrete services

189

Service-Oriented Systems for Adaptive Management of Service Composition

perceived by the clients over all the experiment
duration. We can observe that the reliability fluc-
tuates over time; most of the time it stays well
above the SLA value, but occasionally it attains
lower values. Nevertheless, as also shown in
Table 2, where we report the average reliability
of the baseline experiment along with the 95%
confidence interval, MOSES is able to fulfill the
reliability level agreed in the SLA.

In the second set of experiments we let the
service providers gracefully fail, thus simulating,
for instance, service programmed downtimes. The
results in Figures 15a and 15b show how the reli-
ability of the SOA application fluctuates over
time; however, the average reliability is well above
the agreed SLA.

The experimental values in Table 3 show that
the average reliability, as well as the 95% confi-
dence interval under the second scenario are
perfectly comparable to those of the baseline
experiment. Therefore, we can conclude that
graceful leaves and joins do not affect the reli-
ability performance since MOSES is able to adapt
to the changed environment by re-computing the
service selection policy.

Figures 16a and 16b show how the reliability
of the SOA application varies over time when the
concrete service providers exhibit the same churn
rate of the second experiment, but without signal-
ing their state to MOSES. The reliability levels
fall down and the SLA stipulated by MOSES with
its clients is no longer fulfilled. This experiment

Figure 14. a) Baseline reliability over time under low request rate; b) Baseline reliability over time
under high request rate

Table 2. Average reliability and 95% confidence
interval for the baseline experiment

SLA
Average

reliability
95% confidence

interval

Low request
rate

0.95 0.9664 0.0074

High request
rate

0.95 0.9646 0.0054

Table 3. Average reliability and 95% confidence
interval for the experiment with graceful failures

SLA
Average

reliability
95% confidence

interval

Low request
rate

0.95 0.9692 0.0071

High request
rate

0.95 0.9659 0.0053

190

Service-Oriented Systems for Adaptive Management of Service Composition

demonstrates that, if there are changes in the
execution environment and no adaptation actions
are taken to address these changes, the system is
not able to satisfy the required QoS. It also points
out that reliability levels are higher when the
request rate is higher. The motivation is due to

the fact that the service selection policy binds
each abstract task to a small subset of concrete
services when the incoming request rate is low.
On the other hand, with a higher request rate, the
request load on any abstract task is balanced over
a larger set of concrete services, depending on

Figure 15. a) Reliability over time when services are subject to graceful failures under low request rate;
b) Reliability over time when services are subject to graceful failures under high request rate

Figure 16. a) Reliability over time when services are subject to failures, without WS Monitor under low
request rate; b) Reliability over time when services are subject to failures, without WS Monitor under
high request rate

191

Service-Oriented Systems for Adaptive Management of Service Composition

their capacity. Since we set the capacity of every
concrete service to 10 req/sec, it is likely to have
a single concrete service selected for any abstract
task when the incoming request rate is equal to 5
req/sec, while it is likely to have two or more
concrete services selected for any abstract task
when the incoming request rate is 10 req/sec.

The objective of the last set of experiments is
to show the improvement achieved thanks to the
WS Monitor component.

Figures 17a and 17b show how the reliability
of the SOA application varies over time when
the service providers exhibit the same churn rate
of the third experiment without signaling their

state to MOSES, but now with the WS Monitor
enabled on MOSES.

As shown in Table 4, MOSES does not succeed
in fulfilling the SLA stipulated with its clients,
but the provided reliability has a significant im-
provement with respect to the results shown in
Figures 16a and 16b, when the WS Monitor was
disabled.

FUTURE RESEARCH DIRECTIONS

In this section, we briefly discuss some open
challenges regarding the design of SOSs for the
adaptive management of service composition that

Table 4. Comparison of the average reliability and 95% confidence interval for the experiments with
and without the WS monitor

SLA Average reliability 95% confidence interval

Low request rate without WS Monitor 0.95 0.7151 0.0187

Low request rate with WS Monitor 0.95 0.9101 0.0118

High request rate without WS Monitor 0.95 0.7798 0.0122

High request rate with WS Monitor 0.95 0.8974 0.0089

Figure 17. a) Reliability over time when services are subject to failures, with WS Monitor under low
request rate; b) Reliability over time when services are subject to failures, with WS Monitor under high
request rate

192

Service-Oriented Systems for Adaptive Management of Service Composition

can be explored in future research. Some of these
challenges directly stem from our own experience
in designing and using the MOSES framework.

Using MOSES for our experimental evalu-
ations, we found that a non–trivial issue is to
adequately tune a quite large number of system
parameters in the various software tools that
we used to implement the MOSES prototype.
Designing a self-tunable platform can greatly
help the administrator of the service broker. For
example, a self-adaptive tuning of the application
server parameters according to the actual load
of the SOA application can help to improve the
resources utilization in the infrastructure layer,
therefore allowing to reduce the number of re-
quired resources. More generally, future work
can address the provisioning and management
of the platform and infrastructure layers used by
the SOS, also considering cross-cutting issues,
for example regarding the SLAs.

Another challenging research issue is the
development of decentralized approaches for the
Plan phase. The optimization problems that are
often used to define the adaptation plan can be
computationally intensive applications that need
to provide a solution in the shortest time possible,
otherwise the service broker can incur in penalties
due to the lack of SLA compliance. The centralized
approaches that have been so far proposed may
suffer from scalability and fault-tolerance issues
caused by high volumes of requests.

The design of decentralized solutions can
entail not only the Plan phase but also the whole
MAPE-K loop. For example, in case of a single
organization offering QoS-aware SOA applica-
tions, the self-adaptive SOS can be designed
as a decentralized system consisting of a set of
federated SOSs that can coordinate themselves
according to a master-slave scheme. In case of
multiple organizations, more complex solutions
need to be devised: under the hypothesis of fed-
erated cooperating SOSs, distributing the whole
MAPE-K loop among multiple SOSs requires to
devise a distributed solution of the overall optimi-

zation problem. Analyzing the current literature,
we noted that the case of several self-adaptive
service-oriented systems under cooperating or
non-cooperating scenarios is not yet satisfactorily
covered and we believe that investigating how to
cope with these issues is a timely and promising
research indication.

CONCLUSION

The development of distributed applications has
recently shifted from the classic in-house develop-
ment to activities concerning the identification,
selection, and composition of services offered by
third party providers through a service market-
place and this shift is rapidly accelerating with
the advent of Cloud computing. This new model,
which is the basis of the SOA paradigm, increases
the interoperability level of the applications, by
forcing them to only use standard protocols for
any activity. However, when QoS matters, SOA
applications might suffer from their distributed
nature because the QoS levels offered by service
providers may quickly fluctuate over time, due
to the highly varying execution environment. On
the other hand, the dynamic composition of SOA
applications can provide a solution to govern pro-
viders’ QoS fluctuations by choosing at runtime
which providers to use under certain conditions.
Such a control process is often implemented by
an external application governing the SOA appli-
cation itself. There exist various approaches for
realizing the control process, but their common
reference model is the MAPE-K control loop.

In this chapter we analyzed how the MAPE-
K reference model has been applied to design
self-adaptive SOS; for every MAPE-K phase we
presented a taxonomy organized according to the
five Ws and one H concept that clarifies the many
dimensions and options which are available when
designing a self-adaptive SOS. Although every
phase is required in the realization of a control
process, we focused on the Plan phase because it

193

Service-Oriented Systems for Adaptive Management of Service Composition

is the core of the adaptation process; specifically,
we analyzed how the SOS can self-adapt in order
to satisfy some non-functional requirements.
Most approaches in this research line address the
adaptation by selecting the appropriate services
that can be exploited during the SOA application
execution or by properly managing the resource
provisioning in such a way to meet the target
QoS levels.

As a case study, we presented the MOSES
framework, a fully functional prototype that real-
izes every phase of the MAPE-K model relying
on a modular system architecture. We demon-
strated how it is possible to improve the QoS
of a SOA application that operates in a highly
varying execution environment, where component
services continuously appear and disappear. The
experimental results showed that the execution of
a SOA application managed by MOSES allows
us to achieve a reliability improvement of 20%
with respect to a service broker that does not fully
exploit the MAPE-K architecture.

REFERENCES

Agarwal, V., & Jalote, P. (2010). From specifi-
cation to adaptation: An integrated QoS-driven
approach for dynamic adaptation of web service
compositions. In Proceedings of 2010 IEEE In-
ternational Conference on Web Services (ICWS
‘10) (pp. 275-282).

Alrifai, M., & Risse, T. (2009). Combining global
optimization with local selection for efficient
QoS-aware service composition. In Proceedings
of 18th International Conference on World Wide
Web (WWW ‘09) (pp. 881-890). ACM.

Alrifai, M., Skoutas, D., & Risse, T. (2010). Select-
ing skyline services for QoS-based Web service
composition. In Proceedings of 19th International
Conference on World Wide Web (WWW ‘10) (pp.
11-20). ACM.

Anselmi, J., Ardagna, D., & Cremonesi, P. (2007).
A QoS-based selection approach of autonomic
grid services. In Proceedings of 2007 Workshop
on Service-oriented Computing Performance:
Aspects, Issues, and Approaches (SOCP ‘07) (pp
1-8). ACM.

Ardagna, D., Baresi, L., Comai, S., Comuzzi, M.,
& Pernici, B. (2011). A service-based framework
for flexible business processes. IEEE Software,
28(2), 61–67.

Ardagna, D., & Mirandola, R. (2010). Per-flow
optimal service selection for web services based
processes. Journal of Systems and Software,
83(8), 1512–1523.

Ardagna, D., & Pernici, B. (2007). Adaptive
service composition in flexible processes. IEEE
Transactions on Software Engineering, 33(6),
369–384.

Bellucci, A., Cardellini, V., Di Valerio, V., &
Iannucci, S. (2010) A scalable and highly avail-
able brokering service for SLA-based composite
services. In Proceedings of 2010 International
Conference on Service-Oriented Computing
(ICSOC ‘10) (pp. 527–541). Springer.

Berbner, R., Spahn, M., Repp, N., Heckmann, O.,
& Steinmetz, R. (2006). Heuristics for QoS-aware
Web service composition. In Proceedings of IEEE
International Conference on Web Services (ICWS
‘06) (pp. 72-82).

Calinescu, R., Grunske, L., Kwiatkowska, M.,
Mirandola, R., & Tamburrelli, G. (2011). Dynamic
QoS management and optimization in service-
based systems. IEEE Transactions on Software
Engineering, 37(3), 387–409.

Canfora, G., Di Penta, M., Esposito, R., & Villani,
M. L. (2008). A framework for QoS-aware bind-
ing and re-binding of composite Web services.
Journal of Systems and Software, 81, 1754–1769.

194

Service-Oriented Systems for Adaptive Management of Service Composition

Cardellini, V., Casalicchio, E., Grassi, V., Ian-
nucci, S., Lo Presti, F., & Mirandola, R. (in press).
MOSES: A framework for QoS driven runtime
adaptation of service-oriented systems. IEEE
Transactions on Software Engineering, accepted
for publication in June 2011.

Cardellini, V., Casalicchio, E., Grassi, V., & Lo
Presti, F. (2007). Flow-based service selection for
web service composition supporting multiple QoS
classes. In Proceedings of IEEE 2007 International
Conference on Web Services (pp. 743-750).

Cardellini, V., Di Valerio, V., Grassi, V., Iannucci,
S., & Lo Presti, F. (2011). A performance compari-
son of QoS-driven service selection approaches. In
Proceedings of 4th European Conference Service
Wave. Springer.

Cardellini, V., Di Valerio, V., Grassi, V., Iannucci,
S., & Lo Presti, F. (2011). A new approach to
QoS driven service selection in service oriented
architectures. In Proceedings of IEEE 6th Inter-
national Symposium on Service-Oriented System
Engineering (SOSE ’11).

Cormen, T. H., Leiserson, C. E., Rivest, R. L., &
Stein, C. (2001). Introduction to algorithms (2nd
ed.). MIT Press.

Dobson, S., Denazis, S., Fernandez, A., Gati,
D., Gelenbe, E., Massacci, F., & Zambonelli, F.
(2006). A survey of autonomic communications.
ACM Transactions in Autonomic and Adaptive
Systems, 1(2), 223–259.

Ezenwoye, O., & Sadjadi, S. M. (2007). Ro-
bustBPEL2: Transparent autonomization in
business processes through dynamic proxies. In
Proceedings of 8th International Symposium on
Autonomous Decentralized Systems (ISADS ‘07)
(pp. 17-24). IEEE Computer Society.

Hart, G. (2011). The five Ws of online help for
tech writers. TechWhirl. Retrieved January 24,
2012, from http://techwhirl.com/columns/the-
five-ws-of-online-help/

Hwang, C., & Yoon, K. (1981). Multiple criteria
decision making. Lecture Notes in Economics and
Mathematical Systems. Springer.

Kephart, J. O., & Chess, D. M. (2003). The vi-
sion of autonomic computing. IEEE Computer,
36(1), 41–50.

Klein, A., Ishikawa, F., & Honiden, S. (2010).
Efficient QoS-aware service composition with
a probabilistic service selection policy. In Pro-
ceedings of 2010 International Conference on
Service-Oriented Computing (ICSOC 2010) (pp.
182-196). Springer.

Leitner, P., Wetzstein, B., Karastoyanova, D.,
Hummer, W., Dustdar, S., & Leymann, F. (2010).
Preventing SLA violations in service composi-
tions using aspect-based fragment substitution. In
Proceedings of 2010 International Conference on
Service-Oriented Computing (ICSOC 2010) (pp.
365-380). Springer.

Martello, S., & Toth, P. (1987). Algorithms for
knapsack problems. Annals in Discrete Math-
ematics, 31, 70–79.

Menascè, D., Casalicchio, E., & Dubey, V. (2010).
On optimal service selection in service oriented
architectures. Performance Evaluation, 67(8),
659–675.

Menasce, D., Gomaa, H., Malek, S., & Sousa, J.
(2011). SASSY: A framework for self-architecting
service-oriented systems. IEEE Software, 28(6),
78–85.

Michlmayr, A., Rosenberg, F., Leitner, P., &
Dustdar, S. (2010). End-to-end support for QoS-
aware service selection, binding, and mediation in
VRESCo. IEEE Transactions in Service Comput-
ing, 3(3), 193–205.

Mirandola, R., & Potena, P. (2011). A QoS-based
framework for the adaptation of service-based
systems. Scalable Computing: Practice and
Experience, 12(1), 63–78.

195

Service-Oriented Systems for Adaptive Management of Service Composition

Mosincat, A., Binder, W., & Jazayeri, M. (2010).
Runtime adaptability through automated model
evolution. Proceedings of 14th IEEE International
Enterprise Distributed Object Computing Confer-
ence (EDOC 2010), (pp. 217–226).

OASIS. (2007). Web services business process
execution language (WSBPEL). Retrieved from
http://www.oasis-open.org/committees/tc_home.
php?wg_abbrev=wsbpel.

Papazoglou, M. P., Traverso, P., Dustdar, S., &
Leymann, F. (2007). Service-oriented computing:
State of the art and research challenges. IEEE
Computer, 40(1), 38–45.

Rosario, S., Benveniste, A., Haar, S., & Jard, C.
(2008). Probabilistic QoS and soft contracts for
transaction-based Web services orchestrations.
IEEE Transactions in Service Computing, 1(4),
187–200.

Rouvoy, R., Barone, P., Ding, Y., Eliassen, F.,
Hallsteinsen, S., & Lorenzo, J. (2009). MUSIC:
Middleware support for self-adaptation in ubiqui-
tous and service-oriented environments. In Cheng,
B. H., Lemos, R., Giese, H., Inverardi, P., & Magee,
J. (Eds.), Software engineering for self-adaptive
systems (pp. 164–182). Springer-Verlag.

Salehie, M., & Tahvildari, L. (2009). Self-adaptive
software: Landscape and research challenges.
ACM Transactions in Autonomic and Adaptive
Systems, 4(2), 1–42.

Wada, H., Suzuki, J., Yamano, Y., & Oba, K. (in
press). E3: Multi-objective genetic algorithms
for SLA-aware service deployment optimization
problem. IEEE Transactions in Service Comput-
ing.

Yu, T., Zhang, Y., & Lin, K. (2007). Efficient algo-
rithms for Web services selection with end-to-end
QoS constraints. ACM Transactions in Web, 1(1).

Zheng, Z., Ma, H., Lyu, M. R., & King, I. (2011).
QoS-Aware Web service recommendation by col-
laborative filtering. IEEE Transactions in Service
Computing, 4(2), 140–152.

KEY TERMS AND DEFINITIONS

MAPE-K: A reference model for architecting
self-adaptive systems.

Quality of Service (QoS): The property of a
service to provide predictable performance despite
the availability of a limited set of resources.

Self-Adaptive: The capability of a system to
autonomously change its behavior with respect
to changes in itself and/or its surrounding envi-
ronment.

Service Broker: An intermediate entity be-
tween users of SOA applications and candidate
service providers. It offers a value-added service,
possibly satisfying some QoS constraints.

Service Oriented Architecture (SOA): An ar-
chitectural paradigm for building loosely-coupled
network applications based on black-box software
components named services. Such services can be
easily composed to support dynamic and flexible
applications.

Service Selection: Given a workflow, the abil-
ity to choose for each task in the workflow one or
more specific service among a set of functionally
equivalent implementations offered by service
providers. The selection goal is to optimize some
objective function (e.g., global utility) possibly
subject to some constraints.

Workflow: A sequence of connected tasks
and the related data flows representing the ap-
plication logic.

