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Abstract. Architecting software systems according to the service-oriented
paradigm, and designing runtime self-adaptable systems are two rele-
vant research areas in today’s software engineering. In this chapter we
present MOSES, a software platform supporting QoS-driven adaptation
of service-oriented systems. It has been conceived for service-oriented
systems architected as composite services that receive requests gener-
ated by different classes of users. MOSES integrates within a unified
framework different adaptation mechanisms. In this way it achieves a
greater flexibility in facing various operating environments and the pos-
sibly conflicting QoS requirements of several concurrent users. Besides
providing its own self-adaptation functionalities, MOSES lends itself to
the experimentation of alternative approaches to QoS-driven adaptation
of service-oriented systems thanks to its modular architecture.

1 Introduction

The service-oriented architecture (SOA) paradigm encourages the realization of
new software systems by composing network-accessible loosely-coupled services.
Given their intrinsic characteristics, SOA-based systems are characterized by a
continuous evolution: providers may modify the exported services; new services
may become available; existing services may be discontinued by their providers;
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usage profiles may change over time; variations in the communication infras-
tructure may impact the reachability of existing services [7]. As a consequence,
SOA-based systems represent a typical domain where the introduction of self-
adaptation features can give significant advantages in fulfilling and maintaining
over time a given set of non-functional requirements concerning the delivered
quality of service (QoS).

Within this framework, we present in this chapter MOSES (MOdel-based
SElf-adaptation of SOA systems), a software platform for QoS-driven runtime
self-adaptation of service oriented systems. MOSES is tailored for a utilization
scenario where a SOA system architected as a composite service needs to fulfill
either single requests or a sustained traffic of requests generated in both cases
by several classes of users. Within this scenario, MOSES determines the most
suitable system configuration for a given operating environment by solving an
optimization problem, derived from a model of the composite service and of
its environment. The adopted model allows MOSES to integrate in a unified
framework both the selection of the set of concrete services to be used in the
composition, and (possibly) the selection of the coordination pattern for multiple
functionally equivalent services, where the latter allows obtaining QoS levels
that could not be achieved by using single services. In this respect, MOSES is
a step forward with respect to several proposed approaches for runtime SOA
systems adaptation, which limit the range of their actions to the selection of
single services to be used in the composition.

MOSES is architected as a centralized broker, which advertises and offers
to prospective users the composite service it manages. To fulfill the functional
and non-functional requirements agreed on with the service users, MOSES im-
plements the functionalities envisaged in the MAPE-K (Monitor, Analyze, Plan,
Execute, and Knowledge) reference model for autonomic systems [20], thus act-
ing as a runtime controller for the composite service. Special care has been given
in implementing these functionalities according to a modular architecture, so
that different implementations can be easily plugged into the overall MOSES
framework. This makes MOSES amenable for the experimentation of different
adaptation policies aimed at maintaining the QoS delivered by a composite ser-
vice. As shown in the following sections, this has allowed us to experiment with
adaptation policies tailored for different utilization scenarios (e.g., with more or
less stringent QoS requirements, or different models of service demand), and can
allow other researchers to experiment with their own policies. Therefore, MOSES
can be of help to get confidence about the ability of a given adaptation policy
in providing guarantees that the system QoS requirements are satisfied. In this
respect, in Sec. 2.3 we briefly discuss MOSES in terms of the benchmarking crite-
ria proposed in Chap. XXX of this book (Perpetual Assurances in Self-Adaptive
Systems), to assess the MOSES capabilities in providing assurances for SOA
systems and in Sec. 5 we compare MOSES with existing approaches according
to these criteria.

The main features and the overall design of MOSES have been already pre-
sented in [12]. In this chapter, we provide the detailed design of the MOSES
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platform and present some insights of its implementation, with the goal of
providing a framework that can be used and modified by the self-adaptive
systems software engineering community. To this end, we release the source
code of MOSES, which is freely available with an opensource license at http:

//www.ce.uniroma2.it/moses. We hope that this software can provide a plat-
form for developing and experimenting with different QoS-driven adaptation
mechanisms exploited in the context of service oriented systems. On the web site,
along with the source code, we also provide the documentation of the MOSES
modules, so that the interested researchers and practitioners can either modify
the existing mechanisms or plug their own into MOSES.

The remaining of this chapter is organized as follows. In Sec. 2 we classify
MOSES within a frame of reference for QoS-driven self-adaptation of SOA sys-
tems and characterize its adaptation capabilities with respect to a case study
that has been proposed as a testbed for the benchmarking criteria proposed in
this book (see Chap. Chap. XXX of this book (Perpetual Assurances in Self-
Adaptive Systems)). In Sec. 3 we outline the MOSES architecture and the main
tasks of its components. In Sec. 4 we dive into the MOSES implementation.
In Sec. 5 we review related work, focusing on frameworks similar to MOSES,
and discuss their adaptation capabilities according to the benchmarking criteria
proposed in this book. Finally, we conclude in Sec. 6, summarizing some lessons
learned with the MOSES development and presenting directions for future work.

2 MOSES Framework

2.1 Problem Space Characterization

To better delineate the contribution given by MOSES, we briefly outline a char-
acterization of the problem space of QoS-driven self-adaptation for the SOA
domain, taken from [12], providing a frame of reference for MOSES itself and
for other contributions in the existing literature. Figure 1 summarizes the main
concepts of this characterization, which are briefly described in the following.
We refer to [12] for a thorough discussion of these concepts. The taxonomy is
built around some basic questions and challenges for the whole domain of self-
adaptive software systems [36], and the corresponding possible answers based on
the specific features of the SOA domain, with special emphasis on QoS aspects:

– why should adaptation be performed (which are its goals);
– when should adaptation actions be applied;
– where the adaptation should occur (in which part of the system) and what

elements should be changed;
– how should adaptation be implemented (by means of which actions);
– who should be involved in the adaptation process.

Why. Non functional requirements concerning the delivered QoS and cost, are
usually expressed in the SOA domain by Service Level Agreements (SLA) [27].
In a stochastic setting, a SLA can concern guarantees about the average value of
quality attributes, or about the higher moments or percentiles of these attributes.
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Fig. 1: Taxonomy of self-adaptation for SOA.

When. In the SOA domain, adaptation usually occurs at runtime, and can be
reactive or proactive. In reactive approaches, collected data are evaluated and the
adaptation to problematic events takes place after they have occurred. Proactive
approaches take advantages of predictive models to detect in advance the need
of changes, thus possibly invoking the adaptation before the SLA violation could
actually happen.

Where-What. From the viewpoint of service composition, adaptation in the SOA
domain may take place at two different levels: (i) concrete services only : the
adaptation only involves the concrete composition, acting on the implementation
each abstract task is bound to, leaving unchanged the composition logic (i.e., the
overall abstract composition); (ii) services and workflow : the adaptation involves
both the concrete and abstract composition; in particular, the composition logic
can be altered.

From the viewpoint of its scope, adaptation in the SOA domain can be char-
acterized in terms of: (i) the granularity level at which adaptation is performed;
(ii) the number of SOA systems operating in the same environment that are
directly involved in the adaptation process. In the first case (granularity), adap-
tation can concern the fulfilment of requirements for a single service request, or
the overall flow of requests addressed to a SOA system. In the second case (num-
ber of SOA systems), adaptation can focus on a single SOA system, or multiple
systems competing for overlapping sets of services.
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How. Possible adaptation actions include: (i) service tuning ; (ii) service selec-
tion (selection for each abstract task of a matching single operation offered by
a concrete service); (iii) coordination pattern selection (selection for each ab-
stract task of a set of functionally equivalent operations offered by different
concrete services, coordinating them according to some spatial or temporal re-
dundancy pattern, e.g., k-out-of-n); (iv) workflow modification (modification or
reconfiguration of the workflow composition logic, e.g., through the activation
and deactivation of features in the variability model [2]).

Who. In case of multiple SOA systems, their adaptation can be under the control
of: (i) a single authority ; (ii) multiple cooperating authorities; (iii) multiple non
cooperating authorities.

2.2 System Model

MOSES manages the runtime self-adaptation of composite services. The overall
utilization scenario where MOSES is intended to operate can be outlined as
follows (we refer to [12] for a more detailed description).

Managed system. MOSES manages the class of SOA systems consisting of
composite services whose orchestration logic can be described by a structured
workflow built using the following composition rules: (i) sequential composition;
(ii) conditional selection; (iii) conditional iteration; (iv) fork-join parallel com-
position.

Service demand. MOSES focuses on a scenario where several classes of users
address their requests to a composite service. Each class may have its own QoS
requirements, and negotiates a corresponding SLA with the system. The current
MOSES implementation includes modules that allow the management of SLAs
concerning either each single request, or the overall flows of requests generated
by different users.

Environment dynamics. The MOSES goal is to keep the managed system able
to fulfil the QoS requirements of its users despite the occurrence of variations
in the system operating environment. Currently, tracked variations that could
trigger an adaptation action include: (i) the arrival/departure of a user with
the associated QoS requirements; (ii) observed variations in the QoS attributes
of the concrete services used by the service composition; (iii) addition/removal
of concrete services implementing some task of the abstract composition; (iv)
variations in the usage profile of the tasks in the abstract composition.

Adaptation actions. MOSES dynamically binds each abstract service speci-
fied in the composite service workflow to a concrete implementation taken from
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a known set of available services. When the current bindings result no longer ad-
equate to fulfil the existing QoS requirements (as a consequence of an occurred
environment variation) the adaptation action performed by MOSES consists in
a change of some of those bindings. Given an abstract service S in the workflow,
possible changes currently include: (i) binding S to an implementation consisting
of a single concrete service; (ii) binding S to an implementation consisting of a
set of functionally equivalent services, coordinated according to a sequential try
until success pattern (greater reliability and higher cost with respect to single
service binding); (iii) binding S to an implementation consisting of a set of n
functionally equivalent services, coordinated according to a parallel 1-out-of-n
pattern (smaller response time and higher cost with respect to single service
binding).

We point out that actually the MOSES adaptation actions include not only
the dynamic deterministic binding of an abstract service to a concrete imple-
mentation, but also the dynamic probabilistic binding, where the implementa-
tion is probabilistically selected from a suitable set of alternatives. This allows,
for example, the probabilistic partitioning of requests in a flow among different
implementations, thus giving more flexibility in achieving the required QoS level.
More details can be found in [12, 13].

QoS requirements. MOSES offers to the prospective concurrent users of the
composite service it manages the possibility of specifying QoS requirements ex-
pressed as min/max thresholds on the average value or percentile of some QoS
attributes. In the current MOSES implementation, considered QoS attributes
include the service response time, cost and reliability.

Besides trying to fulfil the threshold-based QoS requirements of the compos-
ite service users, MOSES can also take into consideration an additional require-
ment concerning the optimization of a function of the composite service QoS
attributes. Depending on the utilization scenario, this (utility) function could
be aimed at optimizing specific QoS attributes for different classes of users
(e.g., minimizing their experienced response time) and/or it could be aimed
at optimizing the MOSES own utility, e.g., minimizing the overall cost to of-
fer the composite service (that would maximize the MOSES owner incomes).
These different optimization goals could be possibly conflicting, thus leading
to a multi-objective optimization problem. MOSES deals with it by using the
Simple Additive Weighting (SAW) technique [18].

To fulfil these requirements, MOSES relies on the availability of a set of
concrete services that can be used to instantiate the abstract services in the
managed composite service. Each concrete service in this set is assumed to offer
a SLA concerning the guarantees it gives about its QoS attributes, provided
that the load generated by the user does not exceed a given threshold (specified
in the same SLA). The guarantees specified in the SLA are analogous to those
managed by MOSES, i.e., concerning min/max thresholds on the average value
or percentile of the QoS attributes.
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To manage the resulting overall set of QoS requirements and constraints, and
to determine the suitable adaptation actions, MOSES instantiates and solves a
suitable instance of the following optimization problem template:

max F (x) (1)

subject to: Qα(x) ≤ Qαmax

Qβ(x) ≥ Qβmin

S(x) ≤ L
x ∈ A

where x is the decision vector for the adaptation actions to be performed,
F (x) is the objective function, Qα(x) and Qβ(x) are, respectively, those QoS
attributes for which a max or min threshold is specified, S(x) are the constraints
on the offered load, and x ∈ A is a set of functional constraints on the x value.

Within the MOSES framework, variations in the QoS requirements (e.g., new
QoS thresholds specified by the users, or new utility objectives to be achieved)
can be simply managed by a suitable re-instantiation of the optimization problem
to be solved.

Problem space region covered by MOSES. In summary, the colored boxes
in Fig. 1 evidence the regions of the problem space resulting from the character-
ization outlined above that are covered by MOSES.

2.3 Benchmarking Criteria

Chap. XXX of this book (Perpetual Assurances in Self-Adaptive Systems)proposes
some benchmarking criteria that can be used to compare different approaches for
“perpetual assurances for self-adaptive systems”. The same chapter also presents
in Sec. 2.3 a case study (Tele Assistance System (TAS)) that specifically refers to
the SOA domain considered by MOSES. The TAS case study goal is to provide
a set of specific challenges for that domain, which can be used as a testbed for
the capabilities of a self-adaptation approach to fulfil requirements driven by the
proposed benchmark criteria.

We defer to Sec. 5 a discussion of the compliance of MOSES with some of
the benchmarking criteria. In the same section we also compare MOSES with
other existing approaches according to the same criteria. In this section, instead,
we briefly discuss how MOSES can tackle the challenges discussed for the TAS
scenario (we refer to each challenge with the name used for it in Sec. 2.3 of Chap.
XXX of this book (Perpetual Assurances in Self-Adaptive Systems), and refer to
that chapter for its detailed description).

S1 - Individual service failure. Since concrete services implementing the
Alarm Service may have different failure rates and costs, MOSES is able to select
the single concrete service (or some redundancy pattern) that fulfils the cost and
reliability requirements. In particular, MOSES tackles this challenge by solving
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the following optimization problem received as input:

min cost(AlarmService)

subject to: λ(AlarmService) ≤ X

where λ(s) denotes the failure rate of service s.
S2 - Variation of failure rate of services over time. MOSES deals with

variation at runtime of the cost and/or failure rate of different concrete services
for the Medical Analysis Service and Alarm Service thanks to its continuous
monitoring activity, which can lead to a recalculation of a new solution for the
optimization problem provided as input. In particular, analogously to case S1,
this corresponds in the MOSES framework to solving a different instance of the
optimization problem:

min cost(AlarmService) + cost(MedicalAnalysisService)

subject to: λ(AlarmService) + λ(MedicalAnalysisService) ≤ X

S3 - New service becomes available. Assuming that the newly arrived in-
stance of Alarm Service is added to the pool of available services considered by
MOSES, this addition is an event that triggers the recalculation of the optimiza-
tion problem solution (which could possibly lead to selecting the newly arrived
Alarm Service instance).

S4 - New type of service becomes available. Adding a new service type
to an already existing workflow implies a replanning of the overall execution plan
that was managed by the original workflow. Presently, MOSES is not designed
to automatically deal with this kind of scenario. The new workflow must be built
outside of the MOSES framework, and then provided to MOSES as a new input.

3 MOSES High-level Architecture

Figure 2 shows the MOSES architecture, whose modules are organized accord-
ing to the MAPE-K loop – BPEL Engine, Composition Manager, Adaptation
Manager, Optimization Engine, QoS Monitor, Execution Path Analyzer, WS
Monitor, Service Manager, SLA Manager, and Data Access Library –, and their
interactions. A discussion about their implementation is presented in Sec. 4.

The Execute macro-component comprises the Composition Manager, BPEL
Engine, and Adaptation Manager modules. The first module receives from the
broker administrator the description of the composite service in some suitable
workflow orchestration language (e.g., BPEL [33]), and builds a behavioral model
of the composite service. To this end, the Composition Manager interacts with
the Service Manager for the identification of the operations that implement the
tasks required by the service composition. Once created, the system model is
saved in the MOSES storage (i.e., the Knowledge macro-component) to make it
accessible to the other system modules.

While the Composition Manager is invoked rarely during the MOSES opera-
tiveness, the BPEL Engine and Adaptation Manager are the core modules for the
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Fig. 2: MOSES high-level architecture.

execution and runtime adaptation of the composite service. The BPEL Engine
is the software platform that actually executes the composite service, described
in BPEL [33], and represents the user front-end for the composite service provi-
sioning. It interacts with the Adaptation Manager to allow the invocation of the
component services. The Adaptation Manager is the actuator at runtime of the
adaptation actions. Indeed, for each operation invocation, it binds dynamically
the request to the real endpoint(s) that represents the operation. This(these)
endpoint(s) is(are) identified on the basis of the optimization problem solution
determined by the Optimization Engine. The BPEL Engine and the Adaptation
Manager also acquire raw data needed to determine respectively the usage profile
of the composite service and the performance and reliability levels (specified in
the SLAs) actually perceived by the users and offered by the concrete services.
Together, the BPEL Engine and the Adaptation Manager are responsible for
managing the user requests.

The Optimization Engine implements the Plan macro-component of the
MAPE-K loop. It solves the optimization problem, which is based on the behav-
ioral model initially built by the Composition Manager and instantiated with
the parameters of the SLAs negotiated with both the MOSES users and the
providers of the concrete services. The model is kept up to date by the monitor-
ing activity carried out by the MOSES Monitor and Analyze macro-components.
The solution of the optimization problem determines the adaptation policy in
a given operating environment, which is saved on the MOSES Storage and re-
trieved by the Adaptation Manager for its actual implementation.

The modules in the Monitor and Analyze macro-components capture changes
in the MOSES environment and, if they are relevant, modify at runtime the sys-
tem model kept in the Storage layer and trigger the Optimization Engine to make



10 V. Cardellini et al.

it calculate a new adaptation policy. For each adaptation trigger mentioned in
Sec. 2.2, we indicate here the corresponding MOSES module(s) responsible for
tracking it: (i) the arrival/departure of a user with the associated SLA, possibly
performing an admission control [1] (SLA Manager); (ii) observed variations in
the SLA parameters of the constituent concrete services (QoS Monitor); (iii)
addition/removal of an operation implementing a task of the abstract composi-
tion, the latter due either to graceful failures or crashes (Service Manager and
WS Monitor); (iv) variations in the usage profile of the abstract tasks in the
service composition (Execution Path Analyzer).

Finally, the Knowledge macro-component is accessed through the MOSES
Data Access Library (MDAL), which allows to access the parameters describing
the composite service and its operating environment (they include the set of
tasks in the abstract composition, the corresponding candidate operations with
their QoS attributes, and the current solution of the optimization problem that
drives the composite service implementation).

4 MOSES Prototype

We have designed the MOSES prototype on the basis of the high-level architec-
ture presented in the previous section and shown in Fig. 2. In this section, we first
review the main features of the software prototype, which has been presented
in [12, 8]; then, in Sec. 4.1 we present the relevant details regarding the imple-
mentation of the core MOSES modules and in Sec. 4.2 we discuss how MOSES
can be extended to support a new service selection policy that may require the
monitoring of additional QoS parameters. In Sec. 4.3 we discuss the overheads
introduced by the adaptation policies and mechanisms implemented by MOSES.
Finally, in Sec. 4.4 we briefly describe the evaluation tool we developed to test
the MOSES performance and which is available within the MOSES package.

The MOSES prototype exploits the rich capabilities offered by the Ope-
nESB framework [34] and the relational database MySQL, which both provide
interesting features to enhance the scalability and reliability of complex systems.
OpenESB, which was initially designed and developed under the direction of Sun
Microsystems and is currently maintained by its own community, is a Java-based
open source Enterprise Service Bus (ESB) that meets the requirements of SOA
and provides a stable and lightweight JBI implementation. JBI, which stands for
Java Business Integration, is considered as a philosophy for system integration,
describing how to define and use a virtual bus to communicate between compo-
nents. More precisely, it defines a messaging-based pluggable architecture and
its major goal is to provide an enabling framework that facilitates the dynamic
composition and deployment of loosely coupled participating applications and
service-oriented integration components. The JBI specification defines as core
components the Service Engines (SEs), the Binding Components (BCs), and the
Normalized Message Router (NMR). The SEs enable pluggable business logic
and receive messages from the bus and send messages to the bus; the BCs en-
able pluggable external connectivity, being able to generate bus messages upon



MOSES: a Platform for Experimenting with QoS-driven Adaptation Policies 11

receipt of stimuli from an external source, or to generate an external action
in response to a message received from the bus; the NMR directs normalized
messages from source to destination components according to specified policies.
Figure 3 illustrates the OpenESB-based architecture of MOSES.

Fig. 3: MOSES OpenESB-based architecture.

Each MOSES component is executed by one SE, that can be either Sun BPEL
Service Engine (a highly scalable orchestrator based on BPEL 2.0) for the busi-
ness process logic, or J2EE Engine for the logic of the other MOSES modules.
The resulting prototype has a good deployment flexibility, because each compo-
nent can be accessed either as standard Web service or as EJB module through
the NMR. However, to increase the prototype performance, we have exploited
the NMR presence for all the inter-module communications, so that message ex-
changes are “in-process” and avoid to pass through the network protocol stack,
as it would be for SOAP-based communications.

With regard to the MOSES storage layer, we rely on the relational database
MySQL. However, to free the MOSES future developers from knowing the stor-
age layer internals, we have developed a data access library, named MOSES
Data Access Library (MDAL), that completely hides the data backend. This li-
brary currently implements a specific logic for MySQL, but its interface can be
enhanced with other logics.

4.1 MOSES Modules

We now describe the implementation of the core MOSES modules for driving
the adaptation decisions (Optimization Engine), executing at runtime the adap-
tation decisions (Adaptation Manager), monitoring the QoS attributes of the
concrete services offered by the third-party service providers (QoS Monitor and
WS Monitor), managing the arrival and departure of users with the associated
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SLA (SLA Manager), and storing the knowledge needed by the MAPE-K control
loop (storage layer). Since the remaining modules (Composition Manager, Ser-
vice Manager, Execution Path Analyzer) that offer some useful but supplemen-
tary functionalities are not yet fully developed, they are currently not included
in the MOSES distribution.

Optimization Engine The Optimization Engine is the MOSES module that
computes the solution of the optimization problem sketched in Sec. 2.2. Cur-
rently, MOSES supports two classes of optimization strategies for service selec-
tion (per-flow and per-request), corresponding to two different granularity levels.

At the per-request grain, the adaptation focuses on each single request sub-
mitted to the system, e.g., [3, 4, 10, 11, 25]; it aims at fulfilling the QoS constraints
of that specific request, thus allowing potentially finer customization features.
However, most per-request policies exhibit scalability and stability problems in
a large scale system subject to a quite sustained flow of requests, because each
request is managed independently of all the other concurrent ones [13].

The per-flow grain considers the flow of requests of a user rather than the
single request, and the adaptation goal is to fulfill the QoS constraints that
concern the global properties of that flow, e.g., the average composite service
response time or its availability, e.g., [6, 12, 21]. However, adaptation policies
adopting the per-flow grain are not able to ensure strict fulfillment of the required
QoS attributes to each single request.

In MOSES we implemented three alternative optimization policies:

– the per-flow policy we presented in [12], where the service selection and the
coordination pattern selection are jointly addressed with an efficient Linear
Programming (LP) formulation;

– the per-request policy proposed by Ardagna and Pernici [4];
– the load-aware per-request we proposed in [13]; it relies on a Mixed Inte-

ger Linear Problem (MILP) formulation and exploits the multiple available
implementations of each abstract task, thus realizing a runtime probabilis-
tic binding that allows to achieve a randomized load balancing among the
different concrete services available for the same functionality.

The Optimization Engine module is not self-contained as it relies on some
external optimization software package to solve the optimization problem. In
the current implementation, we use MATLAB R© [24] for the per-flow class and
CPLEX R© [19] for the per-request class. In both optimization problem classes,
the solution providing the current adaptation policy is stored into MOSES’s
MySQL database through MDAL.

Adaptation Manager The Adaptation Manager, which is responsible of the
runtime binding of the abstract tasks to the corresponding implementations, is a
proxy module interposed between the BPEL process and the concrete services. It
is called every time the BPEL Engine needs to invoke an external Web service.
Differently from the other MOSES modules, it is not implemented as a JBI
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Service Engine. It is rather implemented as a standard Java class belonging to the
application server classpath, and thus it is accessible by any application served
by the application server itself. Its implementation offers a generic interface to
the BPEL process so that it can be invoked with any kind of SOAP message as
payload, wrapped in a proper envelope. Its task is to extract the SOAP message
from the envelope and to drive it to the correct concrete service(s) according
to the information received through the headers of the envelope and a pre-
defined policy. To this end, the Adaptation Manager reads the most up-to-date
adaptation policy plan from the database using the MDAL library, invokes the
concrete service(s), and forwards the service response to the BPEL Engine.

We observe that the BPEL process needs to be customized in order to interact
with the Adaptation Manager of MOSES. Such changes are all about replacing
the invocation to concrete services with invocations to the Adaptation Manager
and can be simply accomplished by following the instructions we provide with
the MOSES documentation.

QoS Monitor The QoS Monitor in MOSES employs a passive methodology
to collect the actual values of QoS attributes provided by the concrete services,
in particular response time and reliability. Data are collected without injecting
additional load, but rather observing the system behavior in response to actual
service invocations. Indeed, at each concrete service invocation, the perceived
QoS is stored on a continuous time basis in the database using the MDAL library.
Rather than using active probes that generate additional traffic on the monitored
concrete services, we exploit passive collectors so to reduce the monitoring costs.
However, this may result in a slower detection of SLA violations and can thus
be appropriate when timeliness is not critical for the system [15].

The QoS Monitor is actually implemented as a MySQL stored procedure
for performance reasons, being activated every time the Adaptation Manager
invokes a concrete service. In the current MOSES implementation, we consider
only the service response time as monitored QoS parameter; however, the exten-
sion to consider other QoS parameters is trivial.

To analyze the collected data regarding the response time, we use the online
adaptive cumulative sum (Cusum) algorithm [30] for service response time mon-
itoring and abrupt change detection. As discussed in [13], the online adaptive
Cusum detector we implemented combines an Exponential Weighted Moving
Average (EWMA) filter to track the slow varying response time series average
with a two-sided Cusum test to detect abrupt changes in the series average which
cannot be timely accounted by EWMA filter.

The Analyze phase of the MAPE-K control loop is completed by a detached
thread of the Optimization Engine. Whenever the QoS Monitor detects that a
SLA violation in the response time of some concrete service, it sets to true a flag
stored in the database. Such a flag is periodically checked by the Optimization
Engine detached thread: if it is set to true, the Optimization Engine calculates
the new adaptation policy using the updated model, where the perceived QoS
values measured by the QoS Monitor replace those agreed in the SLA.
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WS Monitor The WS Monitor, which is implemented as a Web service and
executed by a J2EE Service Engine, is configured to periodically probe all the
concrete services known to MOSES in order to find out which services are cur-
rently available. Whenever the WS Monitor finds that some service changed its
state (going from running to failed or vice-versa), it sends a trigger to the Op-
timization Engine. In its turn, the latter, using the updated model that reflects
the service availability/unavailability, computes the new adaptation policy, that
will be then executed by the Adaptation Manager.

SLA Manager The SLA Manager performs a coarse-grain admission control
in MOSES. Under the per-flow adaptation policy, it allows MOSES to decide
whether to accept or reject a new potential user in such a way to guarantee
non-functional QoS requirements to its already admitted users. Such admission
control mechanism is required because the candidate concrete services, with
whom the broker has defined a SLA, can be in a limited number with respect
to the incoming request load and can thus be unable to provide the QoS levels
required by the prospective users, as well as those of ongoing users already in
the SOA system.

In the current MOSES implementation, we provide only a myopic admis-
sion control strategy, where the broker takes admission decisions using only the
present system state, on the basis of the SLA of the requesting user and the
SLAs of its currently admitted users. To this end, the SLA Manager invokes the
Optimization Engine adding the requirements of the new potential user; if the
instance of the per-flow optimization problem can be solved, then the contract
will be established, otherwise it will be discarded. In [1] we proposed a forward-
looking admission control policy based on Markov Decision Processes (MDP),
with the goal to maximize the broker discounted reward while guaranteeing non-
functional QoS requirements to its users. However, the MDP-based policy is not
yet implemented into the MOSES prototype.

The SLA Manager allows also to free up resources when an existing contract
expires; to this end, it invokes again the Optimization Engine to determine a
new adaptation policy.

Storage Layer The storage system behind MOSES is accessed through the
MOSES Data Access Library (MDAL). Such module is of fundamental impor-
tance since it holds all the information needed to optimally drive the adaptation;
therefore, it has been designed and implemented so to not constitute a bottle-
neck for the entire system. The goal of MDAL is to decouple the stored data
from the programming interfaces used to access it: as a result, MOSES develop-
ers do not need to know how data are actually stored because they are hidden
behind a simple interface. Furthermore, the internals of the storage layer could
be changed in the future without affecting other MOSES modules. Specifically,
MDAL provides a set of entities that model the domain in which MOSES oper-
ates and a set of implemented interfaces to read, write, update, and delete the
entities.
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For the storage, MOSES relies on a relational database. Its ER diagram,
shown in Fig. 4, includes as main entities: (i) Process, which represents the
composite services deployed inside MOSES, providing a high-level description of
the business processes and of their execution graphs; (ii) User, which represents
the registered users; (iii) AbstractService, which represents the abstract part
of the WSDL files and is complemented by the AbstractOperation weak entity;
(iv) ConcreteService, which represents the actual services invoked by each
business process, including its SLA parameters, and is complemented by the
ConcreteOperation weak entity; (v) SLA, which represents the QoS classes offered
for the corresponding composite service, including the QoS values agreed for each
service class in the SLA and the actual perceived QoS values monitored during
the MOSES execution; (vi) Group, which represents the coordination patterns
(the currently supported ones are single, alt, and par or [12]).

Fig. 4: Database ER diagram.

MOSES presently uses the relational database MySQL, which provides trans-
actional features through the InnoDB storage engine and supports clustering and
replication. We carefully optimized the MDAL methods to let the Adaptation
Manager efficiently read the adaptation policy stored in the database, since this
could happen even thousands of times per second. Since the solution of the opti-
mization problem is scattered among multiple database tables, in order to avoid
expensive and repeated table joins, MDAL creates a new solution table from
temporary in-memory tables that are then dropped whenever a new optimal
solution is computed. Furthermore, we improved the performance of executing
queries to the database by exploiting the connection pool mechanism provided
by Glassfish, which allows to cache database connections so that they can be
reused when future requests to the database are required.
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4.2 MOSES Extensions

MOSES has a modular and easily extendible architecture. It has been realized
in such a way that the prospective developers could both easily change the
behaviour of already developed components and add new currently unplanned
functionalities. For instance, in order to develop a new service selection policy
that uses the QoS parameters already supported by MOSES, the developer has
just to implement with his/her own code the Optimization Engine Java interface
and change the proper MOSES configuration file. The new class will be dynam-
ically loaded at runtime. Such an extension does not require any modification to
the other MOSES modules.

The addition of new functionalities may require instead to change the data
model. For instance, if the prospective developer is interested in considering a
service selection based on the actual network latency between MOSES and the
concrete services, s/he must add that QoS attribute to the data model. Such a
change must be then reflected into MDAL and a new MOSES module must be
developed to make MOSES able to measure the new metric. The newly developed
module can then be easily plugged into the architecture presented in Fig. 3, where
it will be able to exploit other services, first of all the Optimization Engine. The
latter must be also properly extended to handle the new QoS attribute. We
observe that the modifications to MDAL needed for the new module and for the
extended Optimization Engine do not impact the normal operativeness of all the
other modules, which can still use the original version of the data access library.

Details on how to extend MOSES can be found in the documentation avail-
able at http:/www.ce.uniroma2.it/moses/.

4.3 MOSES Overheads

As observed in Chap. XXX of this book (Perpetual Assurances in Self-Adaptive
Systems), to assure compliance with the requirements for self-adaptive sys-
tems at runtime, the employed techniques must not interfere with the ability
of the self-adaptive system to deliver its intended functionality effectively and
efficiently. To achieve this goal, in the MOSES design and implementation we
took care of the different types of overheads introduced by the runtime adap-
tation management. They can be classified according to the MOSES macro-
components: (i) overhead due to the Plan macro-component; (ii) overhead of the
Execution macro-component due to the runtime binding of the task endpoints
to concrete implementations; (iii) overhead due to the Monitor and Analyze
macro-components.

Plan Overhead The overhead introduced by the Optimization Engine depends
on the time taken to calculate a new adaptation policy (and hence the class of op-
timization problem formulation) as well as on the synchronous or asynchronous
invocation of the Optimization Engine with respect to the service execution flow,
as illustrated in Fig. 5.
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(a) Per-request adaptation policy.

(b) Per-flow adaptation policy.

Fig. 5: Interaction among the MOSES modules in the service execution flow.

As regards the optimization problem formulation, the overhead depends on
the computational complexity of the optimization problem that drives the adap-
tation policy. We demonstrated in [12] that the adoption of a linear programming
model as optimization problem helps considerably in terms of scalability with re-
spect to other approaches in literature that rely instead on more computationally
expensive formulations: specifically, our approach results from one to two orders
of magnitude faster. For example, for problem instances of reasonably large size
(1000 service tasks in the abstract composite service and 50 concrete services
implementing each task), the LP problem formulation adopted by MOSES re-
quires 8.64 s. to be solved, against 451.30 s. of the per-flow approach in [6] and
19.88 s. of the per-request approach in [4] (see Table 5 in [12] for the complete
experiment). Nevertheless, the exploitation of redundancy patterns can result in
excessive computational costs in case of large scale problem instances where the
number of candidate services grow dramatically. Such costs can be restrained
by either limiting the use of these patterns to a subset of the abstract tasks, or
by limiting the maximal number of candidate services that can be used to im-
plement a redundancy pattern. To this end, the redundancy degree is a tunable
parameter within the per-flow policy of the Optimization Engine.

As regards the synchrony of the optimization problem solution and the ser-
vice execution flow, we observe that the per-request adaptation policy requires
to solve the optimization problem synchronously to each service request (see
Fig. 5a), because no QoS class is defined a-priori and the required QoS attributes
are set by the user for each request addressed to the broker. After having solved
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the optimization problem, the corresponding adaptation policy is stored in the
database and then used for the subsequent invocations pertaining to the same
user request.

On the contrary, in the per-flow adaptation policy, the optimization problem
is solved asynchronously with respect to the service execution flow (see Fig. 5b),
while incoming service requests are served by the Adaptation Manager according
to the previously calculated policy, which is stored in the database. Therefore,
the computational cost of the optimization problem does not directly impact on
the MOSES ability to respond to the user requests (because in the meanwhile
the old, sub-optimal policy can be used), but only affects its responsiveness in
updating the adaptation policy.

Execute Overhead The overhead in the Execute phase is related to the runtime
binding of abstract tasks with concrete services carried out by the Adaptation
Manager and affects each request to the composite service as many times as
the number of invoke activities executed in the BPEL process, as shown in
Fig. 5. For every invocation of an abstract task, the Adaptation Manager, which
is stateless, retrieves the current adaptation policy kept in the storage layer and,
according to it, determines the actual operation(s) (and possibly the coordination
pattern) to implement the abstract task.

We measured the overhead added by the MOSES runtime binding to the
execution of the GlassFish ESB engine, finding that the MOSES response time
is on average 74% higher than that provided by the plain BPEL engine [12].

Monitor and Analyze Overhead We observe that the Analyze phase does not
affect the overall service time perceived by a user, since the related operations
are executed asynchronously with respect to the composite service.

The most time consuming and frequent monitoring activity is that performed
with respect to the QoS parameters (specifically, the response time) offered by
the concrete services. In this case, the MOSES monitoring overhead is about 1 ms
for each invoke activity in the composite service, as it only involves inserting the
operation response time in a database table: for each invoke activity, MOSES
gets the timestamp before and after the invocation itself, calculates the observed
response time and then puts it into the storage layer.

4.4 MOSES Evaluation Tool

To issue requests to the composite service managed by MOSES and to mimic
the behavior of users that establish SLAs before accessing the service, we im-
plemented a workload generator in C language using the Pthreads library. The
workload generator was designed to test the per-flow adaptation policy but can
be as well as used for the per-request adaptation policies, as we did in [13]. It
is based on an open system model, where users requesting a given service class
k offered by MOSES arrive at mean user inter-arrival rate Λk. Each class k
user u is characterized by its SLA parameters and by the contract duration tku.
Each incoming user is subject to an admission control, carried out by the SLA
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Manager as discussed in Sec. 4.1. If the SLA Manager admits the user, it starts
generating requests to the composite service according to the rate λku until its
contract ends. Otherwise, the user terminates.

In the workload model of our generator we assume exponential distributions
of parameters Λk and 1/tk for the user inter-arrival time and contract duration,
respectively. We also assume that the request inter-arrival rate and the opera-
tions service time follow a Gaussian distribution. Such classic distributions can
be easily changed in case new studies will evidence some peculiar characteris-
tics of SOA traffic. The workload generator uses multiple independent random
number streams for each stochastic component of the workload model. The gen-
erator reports as metrics for the composite service managed by MOSES the QoS
attributes (i.e., response time, reliability, and cost) that are currently considered
by MOSES.

To experimentally evaluate the performance of the self-adaption policies, we
set up a composite service that mimics a travel planner [12]. The concrete ser-
vices that we provide in the MOSES package are simple stubs, without internal
logic; however, their non-functional behavior can be easily set to conform to the
guaranteed levels expressed in their SLA.

5 Related Work

Several solutions have been proposed for the self-adaptation of SOA systems,
mainly focusing on the runtime service selection (e.g., [3, 5, 6, 4, 10, 14, 16, 17,
22, 23, 32, 37, 38]. Service selection has been and still is a challenging problem
because the number of candidate services offering the same functionalities but
differing in QoS is increasing with the prevalence of service-based systems and
Cloud computing. However, only few frameworks and platforms have been de-
signed, implemented and evaluated in the scope of self-adaptation of SOA sys-
tems. To the best of our knowledge, the platforms that share some common
features with MOSES include MUSIC [35], SASSY [28, 26], VieDAME [31], DIS-
CoRSO [5], and VRESCo [29]. In this section we review their characteristics and
features according to the benchmarking criteria proposed in Chap. XXX of this
book (Perpetual Assurances in Self-Adaptive Systems), which are summarized
in Tab. 1.

MOSES handles requirement variability by solving an optimization problem,
aimed at maximizing a utility function subject to constraints given by the cur-
rent operating environment. It implements two classes of optimization problems,
named per-flow and per-request as described in Sec. 4.1. In the per-flow scenario
the application architect is expected to define the QoS classes that MOSES will
advertise and offer to perspective users. Conversely, in the per-request scenario,
no QoS class is defined a-priori and the required QoS attributes must be set by
the user for each request addressed to the broker. As a consequence, in the former
scenario MOSES can compute a-priori an optimal adaptation strategy for each
service class defined by the application architect and subsequent re-optimizations
are only due to changes in the environment or to user arrival/departure. In case
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Table 1: Summary of assurance characteristics of existing frameworks
Benchmark aspect Criteria MOSES MUSIC SASSY VieDAME DISCoRSO

Variability X X X X X
Inaccuracy &

incompleteness
X X X X X

Capabilities of
approaches to provide

assurances

Conflicting criteria X X X X X
User Interaction X

Handling alternatives X X X X X

Basis of assurance
benchmarking

Historical data X X X X X
Projections in

the future
X

Human evidence X
Stringency of assurances Assurance rational X X

Performance of
approaches

Timeliness X
Computational

overhead
X X X

Complexity X X X

the user tries to establish a service contract when MOSES has not sufficient
available resources, the optimization problem will result unfeasible, thus lead-
ing to a rejection of the new contract. On the other hand, in the per-request
scenario MOSES has to compute a new adaptation policy for each request it
receives, being each request characterized by its own QoS requirements. Should
the user require too stringent QoS attributes, the optimization problem will be
unfeasible, thus leading to the request rejection. Conflicting optimization goals
are managed by MOSES using the SAW technique in the utility function. Since
MOSES is not designed for long lasting processes, user interaction is not ex-
pected at runtime, but adaptation policy preemption is possible in the per-flow
adaptation strategy. MOSES continuously monitors service execution time and
reliability. The collected data is then analyzed to discover possible SLA viola-
tions and therefore to trigger a new optimization request. MOSES provides strict
QoS assurances in case of the per-request adaptation strategy, while it is capable
of assuring average QoS attributes on a flow of request with the per-flow adap-
tation strategy. From the performance perspective, MOSES is able to provide
a runtime dynamic binding with a very small overhead (more details are pro-
vided in Sec. 4.3), while the optimization process, in the per-flow arrangement,
is designed as a LP problem, which can be solved in polynomial time. The per-
request optimization problems are formulated as MILP problem, thus having a
NP-hard complexity.

MUSIC handles requirements variability by adapting the applications it man-
ages according to the current context (e.g., the availability of certain resources
such as GPS signal and WiFi networks). Inaccuracy and incompleteness at design
time of what will be the runtime environment are managed through a constant
monitoring activity: MUSIC is able to detect the health state of known services
and, should any of them not being compliant with the negotiated QoS levels, it
can be replaced by some other known service. Furthermore, MUSIC can discover
new services and integrate them seamlessly in the service composition logic. Dif-
ferently from the other considered platforms, MUSIC is able to concurrently
manage several applications on a single device (e.g., a smartphone). Therefore,
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given the inherent constraints of the device it runs on, it must be able to max-
imize a utility function that addresses all the QoS parameters of every running
application, trying to provide a weighted performance compromise among them.
For this behavior to be effective, the user needs to interact with the framework
in order to choose, for instance, the service class for a given application. Both
human evidences and monitored historical performance data are used to deter-
mine whether to compute a new adaptation strategy. The framework, however,
is not thought for mission-critical applications and there is no assurance it will
run with an optimal configuration, because the authors did not formulate any
optimization problem. Rather, the best possible configuration is chosen from a
set of possible configurations after evaluating a utility function; however, how to
populate the set of possible configurations is not discussed.

SASSY is a model-driven framework that provides runtime adaptation of
service compositions in response to system variations as those caused by ser-
vices violating the negotiated SLA. It adopts a MAPE-K loop to monitor the
exploited services, analyze monitored data, plan a new implementation of the
application, and finally execute the application. SASSY allows the application
architect to specify at design time the QoS attributes desired for the applica-
tion, which are then used to build a runtime model that is then exploited to
achieve the QoS goals. Possibly conflicting criteria are managed by weighting a
utility function and optionally adding constraints like cost. User interaction is
not expected at runtime: the entire framework is designed to let the application
architects specify their QoS constraints at design time. However, given such QoS
constraints, new alternatives are automatically evaluated in response to chang-
ing operating conditions (e.g., new services are discovered or existing services
violate their SLA). The reactive behavior of SASSY is backed by an analysis of
data regarding the performance of the exploited services. Since the formulated
optimal service selection problem is NP-hard, a heuristic based on hill-climbing
was proposed to solve it efficiently. As a consequence, there is no guarantee that
the actual instantiated architecture will strictly satisfy the required QoS.

VieDAME is able to handle variability: it decouples the required functional-
ities from the actual concrete services and provides a runtime dynamic binding.
The selected concrete services are then continuously monitored in order to ver-
ify whether they satisfy the agreed SLA. Should VieDAME find some violation,
the bound implementations can be replaced, according to the specific service
selector used to implement the dynamic binding. Furthermore, VieDAME ad-
dresses the problem of carefully designing domain-specific QoS requirements by
providing a simple language (named VieDASSL) that can be exploited by do-
main experts to define QoS requirements. VieDAME service selection is based
on a score computed on the basis of some service selection rules named Factor
rules: the simplest is the Simple Factor Rule, which is able to manage at most
one QoS attribute at a time, thus not providing a tool to manage conflicting
criteria. The latter are addressed with the Sum Selection Rule, which provides
to the domain expert a tool to describe a weighted sum of QoS attributes for the
implementation of a given functionality. Alternative services are considered for
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two purposes: load balancing and SLA violations. VieDAME is built on top of a
MAPE-K loop for autonomic systems which continuously monitors the perceived
QoS attributes of every concrete service involved and, based on historical data,
it determines whether to replace the services. VieDAME does not support strict
fulfillment of QoS attributes: it exploits VieDASSL to define rules that are then
used to drive the computation of scores for the available services. Such scores
are finally used to build a classification of the services and the best one is chosen
to implement the required functionality. To avoid overloading the best service,
a selection post-processor is also implemented: instead of always using the same
best concrete service, a subset of the available services with a score greater than
a threshold is considered. The CPU overhead introduced by the VieDAME run-
time binding and monitoring is in the range of 10%-20% with respect to the
execution of the same BPEL process without self-adaptation features.

DISCoRSO lets the application architects define both local and global QoS
constraints. During the application execution, QoS attributes are continuously
monitored in order to detect possible SLA violations and re-optimize the whole
execution process. To this end, monitored data is stored into the database and
then used by the analyzer module which is the responsible of SLA violation de-
tections. DISCoRSO uses a mix of historical data analysis and projections in the
future to minimize the probability of not satisfying the SLA of the whole ap-
plication, also by eventually triggering a pre-emptive live re-optimization. This
behavior is particularly useful to provide QoS assurances on long-term execu-
tions. The optimization problem is formulated as a MILP problem (thus having
NP-hard complexity) and supports the management of possibly conflicting cri-
teria. Its optimal solution, which must be computed for every invocation to
the composite application, supports a strict fulfillment of the required QoS at-
tributes.

VRESCo neither proposes nor implements optimal or sub-optimal solutions
to provide an adaptation strategy: it rather provides a framework for dynamic
binding and a query language that can be used to retrieve execution plans that
must be afterwards processed by an optimization algorithm. Therefore, VRESCo
cannot provide by itself assurances on QoS attributes, rather it provides an exe-
cution platform which can be enriched by adding optimization features. Specif-
ically, referring to MAPE-K loop, it only implements the Execute phase. How-
ever, VRESCo is the only considered platform which explicitly supports Service
Mediation: it accepts from the user a high-level representation of the data that
will be used as input for the concrete services. These data are then lowered
(i.e., transformed from high-level representation into low-level format) in order
to be compatible with the given concrete service. The response is instead lifted
(i.e., transformed from low-level format to high-level representation) in order
to be compatible with user expectations. From a performance perspective, the
VRESCo runtime binding adds about 400 ms to the service execution time,
without considering the service mediation. This additional time is due to the
addition of a proxy which, for each service invocation, queries the database in
order to know which service to invoke.
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6 Conclusions

We have presented MOSES, a software platform supporting QoS-driven adapta-
tion of service-oriented systems. MOSES is architected as a broker that controls
the self-adaptation of a composite service by implementing the functionalities of
a MAPE-K control loop. The modular MOSES architecture facilitates the inte-
gration in the overall platform of different adaptation policies and mechanisms,
thus making it a suitable testbed for their experimentation, thanks also to the
availability of the complete platform source code.

As described in the previous sections, MOSES provides a complete imple-
mentation of the core functionalities of the MAPE-K loop, tailored for the SOA
environment. However, we remark that some useful functionalities, which would
make MOSES a comprehensive solution for the management of SOA systems,
are currently not included in the MOSES distribution. They include, in par-
ticular: (i) the negotiation of SLAs with the prospective users of the managed
composite service, and with the providers of services exploited by MOSES; (ii)
the discovery of services to be included in the pool of possible candidates for
the composition of the managed service; (iii) the automatic derivation of the
optimization problem that constitutes the core of the MOSES strategy, from a
model of the composite service, QoS requirements and constraints.

The QoS-driven self-adaptation policies provided by MOSES suffer from two
limitations: first, they do not consider the network latency and bandwidth be-
tween the broker and the concrete services; second, they use point estimates of
the QoS attributes of the concrete services which may not correctly reflect the
actual statistics, e.g., under high variance the point estimates may take too long
to converge to the actual value. We plan to address the first issue by including
network parameters within the MOSES model and devising a new formulation
of the optimization problem. We will tackle the second issue by adopting robust
optimization techniques [9] that are capable to provide solutions which satisfy
the composite service QoS requirements despite the QoS attributes uncertainty
and/or variability.

As a final remark, we note that MOSES itself is a complex system that could
benefit from the addition of self-adaptation features to automatically scale in/out
in response to variations in the load of user requests it has to manage, or to adjust
its reliability. This extension of the MOSES platform is subject of ongoing work.
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