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Abstract— Supervisory Control and Data Acquisition 
(SCADA) systems became vital targets for intruders because of 
the large volume of its sensitive data. The Cyber Physical Power 
Systems (CPPS) is an example of these systems in which the de-
regulation and multipoint communication between consumers 
and utilities involve large volume of high speed heterogeneous 
data. The Non-Nested Generalized Exemplars (NNGE) algorithm 
is one of the most accurate classification techniques that can 
work with such data of CPPS. However, NNGE algorithm tends 
to produce rules that test a large number of input features. This 
poses some problems for the large volume data and hinders the 
scalability of any detection system. In this paper, we introduce 
our new Feature Selection and Data Reduction Method (FSDRM) 
to improve the classification accuracy and speed of the NNGE 
algorithm and to reduce the computational resource consump-
tion. FSDRM provides the following functionalities: (1) it reduces 
the dataset features by selecting the most significant ones, (2) it 
reduces the NNGE’s hyperrectangles classifiers. The experiments 
show that the FSDRM reduces the NNGE hyperrectangles by 
29.06%, 37.34%, and 26.76% and improves the classification 
accuracy of the NNGE by 8.57%, 4.19%, and 3.78% using the 
Multi, Binary, and Triple class datasets respectively. 

Keywords—Intrusion Detection, Power Systems, Data Reduction, 
Feature Selection, Pruning non-generalized exemplars, NNGE 

I. INTRODUCTION 
Modern SCADA systems’s operators typically require da-

ta to be transferred between industrial and external net-
works. This has created the potential for malware and 
hackers to gain access to and disrupt real time control sys-
tems and dependent infrastructure. The CPPS are one of 
these vital SCADA systems that require special cybersecuri-
ty efforts. The Wide Area Measurement Systems (WAMS) of 
the CPPS plays an important role in monitoring and control-
ling the CPPS since it provides large volume of information 
and an efficient communication infrastructure. However, this 
introduces cyber security vulnerabilities to these systems. In-
truders may exploit such vulnerabilities to create cyber-attacks 
against the electric power grid. The CPPS need to be resilient 

to cyber-attacks through a precise and scalable attack classifi-
cation technique that can deal with the large volume of high 
speed heterogeneous data provided by the WAMS and facili-
tate the autonomic control of the complex operation of the 
CPPS. Several approaches have been proposed to secure the 
CPPS systems such as the behavior rule-based methodology 
[1] monitoring devices in the smart grid that is used to detect 
the insider threats, the anomaly detection techniques [2] which 
extract the normal behaviors from various communication 
protocols of Industrial Control Systems (ICSs) to create a full 
description of the communication pattern, The Specification-
Based IDS [3,4] that monitors system security states and sends 
the alerts when the system behavior approaching to an unsafe 
or disallowed state, the common path mining approach [5] that 
creates an IDS using heterogeneous data for detecting power 
system cyberattacks  using the State Tracking and Extraction 
Method (STEM) algorithm [5] to pre-process data and then 
uses frequent item set mining to extract common paths associ-
ated with specific system behaviors, and recently a NNGE 
with a Hoeffding Adaptive Trees approach [5, 6] is used to 
create an offline and online event intrusion detection systems 
using STEM to process the CPPS security datasets. However, 
these approaches are still neither accurate nor scalable enough 
to process the high speed big data of the CPPS. The NNGE 
algorithm is among the most accurate classification technique 
that can work with heterogeneous datasets formats such as the 
WAMS data. NNGE is able to classify multiclass scenarios, 
sequential data, and handle heterogeneous datasets formats 
such as discrete, nominal, symbolic, continuous, and non-
value features [7, 8]. In this work, we introduce a new data 
reduction method called FSDRM, Feature Selection and Data 
Reduction Method, which provides feature selection, exemplar 
pruning, feature reduction, and hyper rectangles reduction 
functionalities. FSDRM improves the classification accuracy, 
speed, and reduces the computational resource consumption of 
the NNGE algorithm through:  

1) Selecting the most significant features in the dataset. To
this target, we develope a new fitness function for the Par-
ticle Swarm Optimization (PSO) algorithm [9] that adopts



 
 

 

the classification function of the NNGE algorithm by se-
lecting the significant features that their values are closer 
to a margin of the covering hyper-rectangle.  

2) Pruning of non-generalized exemplars using the highest 
ranked features of the PSO. FSDRM uses the Evolution-
ary Pruning Algorithms (EPA-NNGE) [10] to improve the 
classification accuracy of NNGE and to reduce the model 
size by reducing the hyperrectangles and ignoring the 
non-selected features among the selected significant ones 
defined by the new fitness function of the PSO.  

To evaluate the accuracy of the FSDRM, we compare the 
detection rates of the NNGE using FSDRM against current 
classification approaches including the NNGE with its best 
feature selection approach namely the Correlation based Fea-
ture Selection (CFS) [11]. The comparison uses an existing 
intrusion detection power grid dataset [12]. To evaluate the 
improvement of the detection speed and computational re-
source consumption, we compare the number of reduced hy-
perrectangles using the NNGE with CFS, FSDRM with the 
feature reduction only, FSDRM with both the feature reduc-
tion and exemplar pruning. This paper is organized as follow-
ing, after section 1 introduces the NNGE algorithm, the CCPS 
testbed, and the test datasets, section 2 surveys the state of art 
of the attempts to improve the NNGE. After that, section 3 
introduces the FSDRM, then section 4 discusses the experi-
mental results, finally, section 5 concludes the paper and 
draws the furfure work.  

A. The NNGE 
NNGE [7] is an instance based classifier in which the algo-

rithm creates if then else like rules represented by generalized 
exemplars. Generalized exemplars may be singles in which 
case the exemplar represents exactly one example from the 
training database. Alternatively, they may represent more than 
one example of the same class from the training database. Hy-
perrectangles are generalized rules which represent a class and 
single examples are previous examples of a class which do not 
fit into a hyperrectangle. After training, new examples are 
classified by calculating the euclidean distance metric from 
the example to all exemplars. The new example is classified as 
the class of the nearest exemplar. The NNGE is detailed in [7]. 

B. The CPPS Testbed and Datasets 
The datasets that we used consists of synchrophasor meas-

urements from Phasor Measurement Units (PMUs) of four 
substations. As shown in the testbed diagram of Figure 1, G1 
and G2 are power generators. R1 through R4 are Intelligent 
Electronic Devices (IEDs) that can switch the breakers on or 
off. These breakers are labeled BR1 through BR4. Line one 
spans from breaker one (BR1) to breaker two (BR2) and line 
two spans from breaker three (BR3) to breaker four (BR4). 
Each IED automatically controls one breaker; thus R1 controls 
BR1, R2 controls BR2 and so on accordingly. Operators can 
also manually issue commands to the IEDs R1 through R4 to 
trip the breakers BR1 through BR4. To enhance the cyberat-
tack detection rate, the security attributes such as relay control 
panel SNORT [13, 14] logs are included in the test datasets. 

The size of this heterogeneous dataset is approximately 38 
Gigabytes and it includes 128 features (e.g., 29 attributes for a 
single PMU measurement, and four PMUs generate 116 fea-
tures along with 12 log attributes), which includes nine power 
system events and 36 cyber-attacks. Details of the attributes 
have been introduced in previous work [5, 6, 11]. 

 
Fig. 1. Power System Framework for Generating Test Datasets [11] 

II. STATE OF THE ART 
There are several research works have been conducted to 

improve the classification accuracy of the NNGE algorithm, in 
this section, we briefly highlight them. Daniela et al [10] in-
vestigate the ability of an evolutionary pruning mechanism to 
improve the predictive accuracy of a classifier based on non-
nested generalized exemplars.  In [7], authors proposed some 
NNGE variants based on the analyses of the impact of three 
elements of the NNGE classifier on the classification accuracy 
of the NNGE algorithm. These elements are the hyperrectan-
gles splitting procedure, the pruning of non-generalized exem-
plars, and the presentation order of training instances. In [3] 
authors used the NNGE to create rules for classifying the at-
tacks by using the Ant-Miner Algorithm. First they created 
rules using NNGE. After that they synthesized the rules by 
removing repetition rules by custom developed rule mining 
NNGE parser which removes repeated rules obtained.  

III. THE IMPROVED NNGE ALGORITHM  
The improved NNGE algorithm uses our new FSDRM to 

provide a scalable and accurate classification solution that 
reduces the attack detection time and the computational re-
sources consumption. In our experiments, we evaluate the 
influence of the following two factors on the accuracy and 
computational performance of the NNGE. These factors are 
described later and summarized below in the following: 
a) The reduction of the input features using a modified Par-

ticle Swarm Optimization (PSO) fitness function. The 



 
 

 

PSO algorithm is used to compute the learning features 
weights and then rank the learning features according to 
their computed weights. The features with the highest 
weight are only selected to be used with the NNGE. To 
achieve this, we have developed a fitness function for the 
PSO algorithm to compute the learning features weights 
of the weighted euclidean distance of the NNGE.   
 

b) Pruning of non-generalized exemplars using the highest 
ranked features of the PSO. The NNGE algorithm learns 
incrementally by first classifying, then generalizing each 
new example. When classifying an instance, one or more 
hyperrectangles may be found that the new instance is a 
member of, but which are of wrong class. The algorithm 
prunes these so that the new example is no longer a mem-
ber. Once classified, the new instance is generalized by 
merging it with the nearest exemplar of the same class, 
which may be a single instance or a hyprerectangle. The 
only drawback of the pruning algorithm is that the algo-
rithm tends to produce rules that test a large number of 
input features that in turn hinders the scalability of the 
classification model. To this target, we use our FSDRM to 
reduce the input features and the NNGE hyperrectangles.  

A. FSDRM Features Reduction Using a Modified PSO 
Fitness Function 
The previous attempts of feature selection approaches that 

were tested with the NNGE algorithm such as CFS Expert 
Knowledge [11], the Mutual Information based Feature Selec-
tion (MIFS) with the Joint Mutual Information (JMI) method 
[11], and the MISF with the Joint Mutual Information Maxi-
misation (JMIM) method [11] have treated all features as 
equally important in computing the euclidean distance to the 
nearest hyper rectangles and this makes them are not accurate 
or suitable for the CPPS where each feature has a different 
weight. Furthermore, they give insignificant improvements in 
domains with relevant features such as the CPPS, where any 
of the features may influence the others. In this section, we 
introduce a new mechanism that ranks the input features based 
on their significance and considers the relevant features and 
their influence on the covering hyper-rectangle of the NGGE 
algorithm. A feature is considered more significant if its value 
is closer to a margin of the covering hyper-rectangle. The sig-
nificant features enable the NNGE to accurately define the 
shortest euclidean distance between a new example and a set 
of exemplars in memory to make a decision whether the new 
example belongs to a particular class. We implement our ap-
proach using the particle swarm Optimization (PSO) algorithm 
that performs well in domains that have a large number of 
relevant and/or irrelevant features. PSO is one of stochastic 
optimization method that is based on the swarming strategies in 
fish schooling and bird flocking [9]. It considers each solution 
to the problem in a D-dimensional space as a particle flying 
through the problem space with a certain position and velocity 
and finds the optimal solution in the complex search space 
through the interaction of particles in the population. The im-
plementation of PSO requires few parameters to be adjusted and 
is able to escape from local optima. The velocity and position of 

the ith particle are denoted by the two vectors respectively, Vi = 
(vi1, vi2,…, viD) and Xi = (xi1, xi2,…, xiD). Each particle moves in 
the search space according to its previous computed best parti-
cle position (pbest) and the location of the best particle in the 
entire population (gbest). The velocity and position of the parti-
cles are updated using Eq. 1 and 2 [9]: 

        (1) 

= +                         (2) 

Where, the velocity of the  ith particle at iteration t is given by 
vi(t) and its position is given by xi(t) at the same iteration t, w is 
a weight factor to balance the global and local search function 
of particles, c1 and c2 are two learning factors which control the 
influence of the social and cognitive components and they are 
usually set to 2, rand1 and rand2 are two random numbers 
within the range of [0, 1],  pbesti(t) is the best previous position 
that corresponds to the best fitness value for ith particle at itera-
tion t, and gbest(t) is the global best particle by all particles at 
iteration t. The fitness value of the particle is evaluated after 
changing its position to xi(t+1). The gbest and pbest are updated 
according to the current position of the particles. The new parti-
cle velocity of each dimension vi(t+1) is tied to a maximum 
velocity Vmax that is initialized by the user. As the PSO processes 
are repeated, all particles evolve toward the optimum solution. 
Our modification focuses on adapting the PSO to work with the 
NNGE algorithm by developing a new fitness function x(t) as 
shown in Equations 3, 4, and 5. The PSO fitness function de-
fines the correct classification rate using the features picked by 
each particle.  

  (3) 
  (4) 

       (5) 

Where,   
−  is the fitness of particle i (one record of the dataset) 

at iteration t and it denotes how much a particle i features 
values are closer to a margin of the covering hyper-
rectangle H which is going to be split through the NNGE 
classifier using the selected subset of features A of parti-
cle i. In other words, the main target of the fitness func-
tion is to choose the feature which ensures the most “bal-
anced split” and in case there is a tie (two or more fea-
tures have the same distance to a margin of H), the attrib-
ute leading to the largest number of training examples in-
cluded in one of the splitting hyper-rectangles will be 
chosen. 
 

−  : is the feature subset of particle i at iteration t. i.e., 
A={f1, f2, …..f|A|},  

− : is the length of the feature subset without the non-
value features, 

− n: is the total length of the feature subset including the 
non-value features, 

−  : is a measure of the classi er performance. It returns, 
for the whole subset of features A of particle i at iteration 



 
 

 

t, the shorts distance that any of these features can achieve 
to a margin of the covering hyper-rectangle H.  

−   : are two parameters that control the relative weight 
of classi er performance and feature subset length,  
[0, 1] and  = 1 . This formula denotes that the 
classi er performance and feature subset length have dif-
ferent effect on fitness function.  In our experiments, we 
consider that classi er performance is more important 
than subset length because most of the power grid dataset 
records are of similar size and they have very few non 
value features, so we set them to  =0.9,  =0.1. 
 

− : it denotes how much a certain feature f value is closer 
to a margin of the covering hyper-rectangle H. 

 

− Ei is the conflicting example of particle i, it represents an 
example record of dataset that needs to be classified.  

 

− , : The minimum and maximum margin values, 
respectively, of the covering hyper-rectangle H.  

 

The iteration of the PSO will continue and stop when either 
one of the stopping criteria is met; (i) maximum number of 
iterations defined to PSO or (ii) the fitness of the proposed 
feature subset has exceeded the maximum fitness value being 
set. We will use the fitness function given in Eq. 3 to compute 
the fitness of each particle in the dataset. For each feature f, 
the parameter  will be computed, then at each point a stop-
ping criteria is met, ( ) the minimum value of  parameters 
corresponding to each feature f is selected.  

After that, all features are sorted according to their signifi-
cance to the NNGE classification from the smallest to the 
largest one. Only few numbers of good features that exceed a 
particular threshold T is computed during the training phase 
are selected. In the Second phase, NNGE is used for classifi-
cation using the top significant features that have fitness val-
ues  lower than T. The classification step is based on the 
computation of the distance D(E,H) between an example 
E=(E1, E2, …, En) and a hyper-rectangle H as given in Eq. 6 
[7, 10].  

D(E,H) =                      (6) 

Where, 
− N is number of features in the current Example E. 
− They define the range of values over the 

training set which correspond to attribute i. 
−  is the interval [ , ], 
−  is the distance between the features values and the 

corresponding hyper-rectangle “side” and it is comput-
ed according to Eq. 7. 
 

        (7) 

B. FSDRM’s Hyperrectangles Reduction Using the 
Evolutionary Pruning Approach. 
There are two main approaches to reduce the size of clas-

sifiers: pre-pruning and post-pruning. The pre-pruning ap-
proach aims to select the good training instances or prototypes 
and those aiming to select the relevant attributes. This is 
achieved by FSDRM through the feature reduction using the 
PSO algorithm. The post-pruning approach is applied to a set 
H = {H1,H2, . . .,HK} of NNGE hyperrectangles once it has 
been generated with the aim to reduce its size and to improve 
its classification accuracy. In this paper, the selection of the 
hyperrectangles is based on the evolution of a population of 
binary encoded elements corresponding to various subsets of 
the initial set of hyperrectangles. In [10], two evolution prun-
ing algorithms are introduced, the first version of the algo-
rithm called EP-NNGE (Evolutionary Pruning in NNGE) and 
the EPA-NNGE algorithm. Authors of [10] proved that EPA-
NNGE achieves high accurate classification results. In this 
paper, we use the EPA-NNGE to prune the hyperrectangles of 
the NNGE. EPA-NNGE is based on the idea of evolving a 
population of M binary strings containing K components. Each 
element x of the population corresponds to a subset of H, e.g. 
if a component xk has the value 1, it means that Hk is selected 
into the model, while if it is 0, it means that Hk is not selected. 
The quality of an element x is quantified using two measures: 
one related to the accuracy of the classifier based on the se-
lected hyperrectangles H(x) and the other is related to the re-
duction of the model size. Thus the fitness is given by Eq. (8). 
 

   (8) 
Where, 

− Acc denotes the accuracy that is computed by counting 
the correctly classified instances covered by the hyper-
rectangle that also means the total number of instances 
covered by the hyperrectangle after excluding the con-
flicting examples. 

 

− |H| denotes the number of hyperrectangles. 
−   (0, 1) is a parameter controlling the compromise 

between the two quality measures. 
 

The population elements of the EPA-NNGE algorithm are 
evaluated using Eq. (8). The computation of the classification 
accuracy of the EPA-NNGE algorithm is based on the compu-
tation of the distance between a test instance and a hyper-
rectangle and only the selected attributes (as are they specified 
by the corresponding part Xs of the population elements) are 
only considered. This means that instead of using Eq. (6), we 
will use Eq. 9. 
 

D(E,H) =        (9) 

IV. EXPERIMENTAL ANALYSIS AND RESULTS. 
In our experiments, we evaluate the following:  



 
 

 

1. The effectiveness of the new fitness function of the PSO 
in selecting the significant features that their values are 
closer to a margin of the covering hyper-rectangle of the 
NNGE and the impact of this reduction on the classifica-
tion accuracy of the NNGE.  
 

2. The impact of the NNGE’s exemplar pruning using the 
EPA-NNGE pruning algorithm on the classification accu-
racy of the NNGE and on reducing the model size which 
in turns reduces the computational resources consump-
tion. The experiments evaluate the reduction of the com-
putational resources consumption in terms of: (a) number 
of reduced hyperrectangles and (b) number of ignored 
features that are defined by the pruning process in the 
training phase of the NNGE algorithm.   

A. Evaluate the Impact of The FSDRM Feature Reduction 
Using the New PSO Fitness function  

In these experiments, we evaluate the impact of the 
FSDRM feature reduction using the new PSO euclidean 
fitness function on the NNGE classification accuracy and the 
model size. We use the power grid dataset described in Section 
1.2. In the training phase, we compute a particular threshold to 
extract the most significant features. The threshold values in 
the Binary, Triple, and Multi class datasets respectively are 
44.38, 61.23, and 81.78. Any feature with a fitness value larger 
than these thresholds is ignored. The algorithm defines the 
most significant features for the three class datasets. Table 1 
shows the top 10 features of each dataset.   

TABLE 1: THE MOST SIGNIFICANT SELECTED FEATURES FITNESS VAL-
UES IN THE BINARY, TRIPLE, AND MULTI CLASS DATASETS. 

Binary Class  Triple MULTI  
Or-
der 

Feature 
Name 

Fit-
ness 

Value  

Or-
der 

Feature 
Name 

Fit-
ness 

Value 

Or-
der 

Feature 
Name 

Fitness 
Value

1 R2-CPA1 9.2 1 R1-VPA1 12.5 1 relay1_log 22.2 
2 R3-CPA1 11.1 2 relay1_log 13.2 2 relay3_log 25.3 
3 relay1_log 12.5 3 R1-CPM1 16.0 3 R4-VPA2 29.1 
4 relay4_log 13.8 4 R2-VPA1 18.8 4 R4-VPM2 33.6 
5 relay2_log 17.1 5 relay4_log 18.9 5 R4-VPA3 37.1 
6 relay3_log 19.7 6 R2-CPM1 22.0 6 relay4_log 42.5 
7 R1-VPA1 20.1 7 R3-VPA1 26.3 7 relay2_log 49.8 
8 R4-CPA1 21.0 8 R3-CPA1 29.4 8 snort_log1 51.0 
9 snort_log3 28.5 9 R3-CPM1 33.0 9 snort_log2 55.3 
10 R1-CPA1 31.0 10 relay2_log 38.2 10 R4-VPM1 59.3 

To test the accuracy of the selected features, we apply the 
NNGE classifier using Eq. 6 to compute the classification 
rates using the three datasets, see Table 2. In the following, we 
compare the output of our FSDRM with the new PSO fitness 
function against the most accurate five classification 
algorithms that we have tested before [11] namely, the 
traditional NNGE, Instance-based Learning (IBL), J48 tree, 
Random Forest, and JRip. According to our previous 
experiments [11], the best feature selection approach among 
the existing ones is the CFS. We used the CFS with the 
previous mentioned five classification algorithms using the 
three datasets to compare the classification accuracy of these 
approaches against our approach. 

 

TABLE 2  :  NNGE  CLASSIFICATION RATE USING THE BINARY, TRIPLE, 
AND MULTI CLASS DATASETS 

Feature Selection  Binary Class  Triple CLASS MULTI CLASS 

With (%) 98.38 98.01 94.03 
Without (%) 65.42 66.41 23.66 

 
Table 3 shows that FSDRM with the new PSO fitness func-

tion uses less number of features and outperforms the classifi-
cation accuracy of the current classification algorithms. 

 
TABLE 3: A COMPARISON BETWEEN THE FSDRM USING THE PSO 

ALGORITHM AND THE OTHER EXISTING APPROACHES 
Approach Binary Class Triple CLASS MULTI CLASS  

No. of 
Features

Detection 
Rate (%)

No. of 
Features 

Detection 
Rate (%) 

No. of 
Features 

Detection 
Rate (%) 

FSDRM 
(PSO) 

17 98.38 19 98.01 22 94.03 

NNGE 
(CFS) 

28 94.68 28 94.62 28 87.77 

IBL 28 97.20 17 97.38 28 92.10 
J48 28 93.69 28 93.69 28 84.45 

Random 
Forest 

28 96.77 28 96.77 28 90.41 

JRip 28 91.20 28 91.22 129 73.94 
 

B. Evaluate the Impact of the FSDRM’s Hyperrectangles 
Reduction using the EPA-NNGE Pruning Algorithm 

In these experiments, we evaluate the impact of the 
FSDRM hyperrectangles reduction using the EPA-NNGE 
pruning algorithm on the classification accuracy and the mod-
el size. In these experiments, we use the significant features 
selected in the previous experiments of Section 4.1 as follow-
ing, 17 features from the Binary dataset, 19 features from the 
Triple dataset, and 22 from the Multi class datasets. Since our 
main goal of our approach is to improve both the classification 
accuracy and to reduce the model size, we edit the evolution-
ary process by a fitness function based on a value of  that 
corresponds to an equilibrium point at which the EPA-NNGE 
accuracy rate and the hyperrectangles reduction rate are equal. 
The EPA-NNGE accuracy rate is computed for each dataset as 
a ratio between the numbers of correctly classified rec-
ords/instances to the total number of records/instances in the 
dataset. The hyperrectangles reduction ratio is defined as (|H| 

 |H(xbest)|)/|H|) where xbest is the instance with the corre-
sponding best f(x) value which is computed using Eq. 8.  The 
influence of the parameter  on the accuracy and on the reduc-
tion of the model size is evaluated for the Binary class dataset 
as shown in Figures 2. According to our experments, the best 
values of  that corresponds to the equilibrium point in the 
three datasets are 0.74, 0.53, and 0.44 respectively. To evaluate 
the impact of the pruning algorithm on the reduction of the 
model size, we consider both the hyperrectangles reduction 
ratio described before and the reduced number of features that 
are given in table 4. 

An overall view of the accuracy gain ratio, hyperrectangles 
reduction ratio, and attributes reduction ratio for the Binary, 
Triple, and Multi Class Dataset are shown in Table 5 for the 



 
 

 

FSDRM Hyperrectangles reduction using the EPA-NNGE and 
PSO vs. the traditional NNGE with CFS without the pruning 
capabilities. The accuracy gain is computed as (Acc(FSDRM) 

Acc(NNGE))/Acc(NNGE) * 100). The ratio of the reduced 
hyperrectangles is computed as |HFSDRM|/|HNNGE| * 100). The 
ratio of the reduced features is computed as (NFSDRM / NNNGE * 
100). Table 5 shows the accuracy gain, features reduction ra-
tio, and hyperrectangles reduction ratio. The largest gain in 
accuracy (9.25%) was obtained using the Multi class dataset. 
This can be explained by the fact that this dataset has the 
hightest hyperrectangles reduction ratio (13.07%) and the 
lowest feature reduction ratio (35.71%). The smallest reduc-
tion in the model size (including the feature reduction and 
hyperrectangles reduction ratios) occurs using the Tripl dataset 
because it has the lowest accuracy gain (4.29%).   

 
TABLE 4: A COMPARISON BETWEEN EACH FSDRM FEATURE AND THE 

TRADITIONAL NNGE WITH CFS 
 Binary Class Triple CLASS MULTI CLASS 

Dataset 
Approach No. of 

Features 
Detection 
Rate (%) 

No. of 
Features

Detection 
Rate (%) 

No. of 
Features

Detection 
Rate (%)

FSDRM 
(PSO+EPA) 

15 99.21  14 98.91 18 97.03 

FSDRM 
(PSO) 

17 98.38 19 98.01 22 94.03 

NNGE (CFS) 28 94.68 28 94.62 28 87.77 

 

 
Fig. 2: Influence of  on the EPA-NNGE accuracy gain and hyper-

rectangles reduction using the Binary class dataset. 
 

TABLE 5: A COMPARISON BETWEEN THE FSDRM AND THE TRADI-
TIONAL NNGE WITH CFS USING THE THREE CLASSES DATASETS 

Binary Triple MULTI 
Accuracy Gain (%) 4.53 4.29 9.25 
Feature Reduction Ratio (%) 46.43 50 35.71 
Hyperrectangles Reduction Ratio (%) 9.68 7.41 13.07 

V. CONCLUSION AND FUTURE WORK: 
In this paper, we introduced the FSDRM, a feature selec-

tion and data reduction method to improve the detection accu-
racy, speed, and to reduce the computational resource con-
sumption of the NNGE algorithm. FSDRM reduces the 
NNGE’s hyperrectangles by pruning the non-generalized ex-
emplars using the highest ranked features selected by the PSO 

algorithm with a new feature selection function. The experi-
ments show that the NNGE using FSDRM outperforms the 
current classification techniques for the Multi, Binary, and 
Triple class datasets respectively as following; it outperforms 
the accuracy of the NNGE with CFS by 9.25%, 4.53%, and 
4.29%, and reduces the features by 35.71%, 46.43%, and 50%. 
It also reduces the hyperrectangles by pruning the traditional 
NNGE examplers by 13.07%, 9.68%, and 7.41%. From the 
computational performance prospective, FSDRM’s feature 
reduction and exemplar pruning reduce the hyperrectangles by 
29.06%, 37.34%, and 26.76%.    
 

For future work, we will evaluate the scalability, computa-
tional resource consumption, and the speed of the FSDRM. 
Furthermore, we will also study the influence of quantizing 
and clustering the input data of the STEM using a neural net-
work model instead of using domain expert input data on the 
accuracy and computational performance of our approach.  
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