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Towards Self-Defense of
Non-Stationary Systems
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Abstract—One of the major trends in research on Intrusion Response Systems is to use a model of the system to be protected and/or
a model of the attacker to predict the evolution of the system and of the strategy of the attacker. However, very often, modeled systems
exhibit a non-stationary behavior due to changes in their configuration, in the software base and in the users behavior. If not properly
captured by the system model, such a non-stationary behavior could lead to divergences between the expected and the actual
behaviors, thus invalidating the model-based approach. In this paper, we introduce a model-free technique for self-defense of
non-stationary systems based on Q-Learning. We experimentally show that the proposed approach is able to effectively capture the
dynamics of the underlying system and quickly adapts to changes in the environment.

Index Terms—Intrusion Response System, Autonomic Security Management
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1 INTRODUCTION

Securing an organization’s IT infrastructure against cyber-
attacks is an activity of paramount importance. This en-
deavor can be challenging due to system size and attack sur-
face of the network (i.e., the numerous potential sources of
exploit attempts). Organizations with limited cyber-security
expertise face additional risk. Determining if an attack has
taken place, responding to it appropriately and in a timely
manner is a hard problem even for the most advanced cyber-
security professionals. Identifying anomalies, characterizing
malicious behavior, detecting malware, and responding ap-
propriately are all activities seasoned cyber-security profes-
sionals are challenged with.

In the past decade, there has been considerable research
focused on Intrusion Detection [17]. While important, these
results leave the system administrator the task of manually
responding to the detected attacks. However, any non-
automated attempts at system defense could cause delays,
which in turn provide the attackers more time to reach their
objectives [4]. For this reason, we envisage an Autonomic
Security Management (ASM) system designed to cover both
detection and response, and we discuss in this paper the
methodology underlying the response selection mechanism
in presence of a system with non-stationary behavior.

The ASM structure, outlined in Figure 1, is composed
of two main parts: a controller that implements the self-
protection algorithms with the supporting modules and
the controlled system. The former is represented by the
Autonomic Security Management block, while the latter is
represented by the Enterprise System block. The architecture
of the ASM follows the Monitor, Analyze, Plan, Execute
(MAPE, [12]) loop for autonomic systems. The Monitor
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phase leverages existing monitoring tools already deployed
in the Enterprise System, and produces streams of events
that are forwarded to the Analyze phase. The latter is in
charge of (i) filtering the incoming streams, (ii) correlating
them and (iii) deciding which events constitute a threat
for the system. When a threat is found, the Plan phase is
activated. The Plan is in charge of dynamically composing a
sequence of actions that are designed to protect the system
in response to the detected threat. The Execute phase is
activated afterwards, along with the optional component
Decision Support Tool that presents the decision to the system
administrator and will wait for acknowledgement. Subse-
quently, all the defense actions are pushed to the proper
delivery queue and executed on the enterprise system.

Fig. 1: Organization Network secured with ASM

To the best of our knowledge, most of the works pro-
posed in the field of automatic intrusion response deal either
with the model of an attacker (e.g., [13]), or with the model
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of a defender (e.g., [5]) or, in some case, they propose a joint
model (e.g., [18]). However, none of them address the prob-
lem of a dynamic environment. In a previous work [8], we
introduced an approach based on planning over a Markov
Decision Process (MDP [2], [15]) for the computation of
optimal system defense strategies. However, even though
the MDP-based approach is in theory sufficient to protect a
system that behaves exactly as modeled, the effects of the
defense actions executed on the system might change over
time. Furthermore, new actions might become available and
others might disappear. These situations can arise due to
different reasons, including shifts in system configurations,
software updates, and changes in user behavior. One way
to address this issue is to monitor the execution of the
actions and to update the parameters of the model, for
instance by using filters like Exponential Weighted Mov-
ing Average (EWMA, [7]). However, this approach would
require the re-execution of a computationally expensive
planning every time a change is detected. With the adoption
of certain heuristics as described in [9], and considering
the massively parallel implementation proposed in [10],
this scenario would be feasible for small to medium sized
systems. However, it remains infeasible for larger systems
due to the exponential nature of the problem.

For these reasons, we investigate the implementation of
a self-adaptive planner that leverages a model-free rein-
forcement learning approach [15]. The main idea is to let
the planner automatically evolve as the target system does
without the need to run a computationally expensive plan-
ning phase when a change to the system occurs. However,
one of the main issues with model-free agents is the time
needed to learn from the environment or, in other words,
in a discrete setting, the time steps needed to converge to
a near-optimal solution. In order to accelerate the training
phase, we plan on using a hybrid approach, where the
agent is first trained on a simulated environment based
on an approximated model of the system (developed using
prior expertise obtained from experimentation). When its
cumulative reward is satisfactory, it is detached from the
simulator and attached to the real system. The proposed
approach has a twofold advantage over the model-based
one: on one hand, it will avoid the computationally ex-
pensive planning, thus reducing the time-to-protection; on
the other hand, by supporting and automatically evolving
approximated models, it will not require any additional
intervention from the system administrator to change the
initial model. Experimental results show that an agent
starting with zero knowledge can effectively capture the
dynamics of the underlying system and can quickly react
to events, such as, the addition, removal, and change of
configuration of the defense actions.

The paper is organized as follows: Section 2 introduces
the mathematical framework that we use to model the
system behavior and describes the reference system model;
in Section 3 we discuss the testbed and the experimental
results; related work is discussed in Section 4. Finally, in
Section 5 we draw the conclusions and hint at future work.

2 METHODOLOGY AND MODEL

We use a common mathematical framework for reinforce-
ment learning: the Markov Decision Process (MDP). MDP is
a probabilistic approach to model the stochastic behavior of
a system. It can be formalized by the tuple 〈S,A, P, T,R, γ〉.
The symbol S represents the state space that an agent can
navigate and sk ∈ S represents the agent state at discrete
time k. A is the finite set of actions available to the agent
to navigate the state space. Specifically, by executing at
time k an action a ∈ A in the current state sk ∈ S, the
agent moves to a successor state sk+1 ∈ S. The transition
dynamics from the current to the next state are given by the
transition probability function P . This function specifies for
each source state sk ∈ S, for each destination state sk+1 ∈ S,
and for each action a ∈ A, the value P (sk, a, sk+1), that is,
the probability that by executing the action a in state s at
time k, the resulting state will be sk+1. T ⊆ S is the subset of
the final states of the MDP that corresponds to the system’s
secure region.

Every time an action is executed, the MDP agent is
rewarded with a bonus (or penalized with a cost), according
to the reward function R. That is, Rk = R(sk, a, sk+1)
represents the reward that the agent will earn (or the cost
the agent will pay) for executing at time k the action a in
state sk and being taken to some state sk+1. MDPs are also
characterized by a discount factor, γ, which specifies the
preference of short-term rewards over long-term ones.

The overall behavior of the agent is described by a policy
π that specifies a probability distribution such that π : S ×
A → [0, 1]. That is, π(a|sk) represents the probability that
the agent will execute action a while in state s at discrete
time k. The objective is to find a policy π∗ such that the

discounted reward Rk =
∞∑
j=0

γjRk+j+1 is maximized.

Optimal and sub-optimal algorithms for solving MDPs
have been proposed (e.g., [2], [11]). However, a combination
of the Value Iteration (VI, [2]) and Policy Iteration (PI, [15])
algorithms is commonly used because of their simplicity.

The aforementioned algorithms fall into a category of
MDP solvers named planners and are model-based. These
solvers assume complete knowledge of all the elements of
the MDP, and some of them (i.e., VI and PI) are able to
provide optimal solutions, in terms of achievable cumula-
tive reward. However, in a typical reinforcement learning
problem, the transition function P and the reward function
R are generally unknown, preventing the problem from
being directly solved with a planner. Model-free techniques,
such as, Q-Learning [16], SARSA [15], and Artificial Neural
Networks (ANNs) [14] use an approach based on trial-and-
error interactions with a dynamic environment to learn the
behavior of the system. In this work, we use Q-Learning
with an intention to create a baseline for future comparison
of other algorithms.

Q-Learning is a Temporal-Difference approach to esti-
mate the action-value function of an MDP, defined by:

Q(sk, a)← Q(sk, a) + α[Rk+1 + γmax
a

Q(sk+1, a)−Q(sk, a)]

The current state-action value Q, also known as q-value,
represents the expected discounted return that the agent
can earn starting from sk and executing a. The update rule
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defined by Q-Learning is constituted by two components: a
prior knowledge acquired by interacting with the system
up to time k, and the current knowledge, acquired as
temporal difference with respect to the previous value. The
α coefficient is known as the learning rate: the higher is the
value of α, the higher the importance that is given to the
current learning experience with respect to the past ones.
Q-Learning has been shown to converge with probability 1
to Q∗, the optimal state-action value function.

2.1 System Model

The reference model we use throughout this paper, repre-
sents a typical deployment of a three-tier web application,
with a firewall to divide front-end components from the
back-end components. The front-end network hosts the
web server (WS), while the back-end network hosts an
application server and a database server. Due to space
considerations, we only describe the details of the WS, but
the same modeling technique and considerations apply to
the other components as well.

Each server is characterized by a collection of variables
that compose the overall system state. Variables can either
refer to server or operating system specific attributes, or
to the services that are running on the server. In our case,
the WS exposes two services: Apache httpd and the FTP
server vsftpd. The WS is characterized by the following
variables (we do not list the variables associated with
httpd): isWebServerOn, isWebServerUnderAttack
identify respectively whether the WS is on and under
attack, isFSCorrupted, CPULoad represent whether
any filesystem needs repair and the current CPU
load, isVsftpdStarted, isVsftpdVulnerable,
isVsftpdNewVersionAvailable,
isVsftpdUnderAttack identify respectively whether
the FTP server is started, vulnerable, up to date, and under
attack. In the domain of automated intrusion response,
with the objective of simplifying the formulation of the
system model, it is common to consider the actions
independently from the state where they are executed [9].
In this paper, we use a simplified version of the reward
function that only depends on the executed actions, that
is, for all states s0, s1 ∈ S and actions a ∈ A we have that
R(s0, a, s1) = R̂(a) holds, and:

R̂(a) = −wT
T (a)

Tmax
− wC

C(a)

Cmax

− wConfConf(a)− wII(a)− wAA(a)

where wT , wC , wConf , wI , wA ∈ [0, 1] reflect the importance
of, respectively, execution time T (a), cost C(a), confiden-
tiality Conf(a), integrity I(a), availability A(a), and opti-
mization criteria for action a. We list in Table 1 the reward
parameters of the actions related to the WS. Additional
actions with similar rewards are however defined for the
other components of the system. These parameters are used
for the experiments described in Section 3.

Actions operate on the state variables and allow the
system to transition among states. In order to implement
the MDP’s transition function P , every action includes a
post-condition in the form of a probability distribution over

Action a T (a) C(a) Conf(a) I(a) A(a)

ScaleUP WS 10 10 0 0 0
ScaleDown WS 10 -10 0 0 0

Startup WS 60 0 0 0 0
Shutdown WS 60 0 0 0 1
Cut Cord WS 1 0 0 0 1
fsck WS 1800 0 0 0 0

Start httpd 5 0 0 0 0
Stop httpd 5 0 0 0 1

Update httpd 1800 0 0 0 0
Patch httpd 10 1 0 0 1
Start vsftpd 5 0 0 0 0
Stop vsftpd 5 0 0 0 1

Update vsftpd 1800 0 0 0 0
Patch vsftpd 10 1 0 0 1

TABLE 1: Web Server Actions

the next possible states. For instance, the post-condition of
both the actions patchVsftpd and updateVsftpd is:
Prob = 0.9→ isVsftpdNewVersionAvailable=false,

isVsftpdVulnerable=false

Prob = 0.1→ ∅

In other words, both of them have the same effect on the
system, but with different rewards.

Furthermore, every action is also characterized by a pre-
condition, which identifies the states in which it can be
executed. For instance, the pre-condition for startHttpd
is: isWebServerOn ∧ ¬isHttpdStarted.

The subset T of the secure states is: T =
{s ∈ S|secure(s)}, where secure(s) is defined as:
isWebServerOn ∧ ¬isWebServerUnderAttack ∧
¬isFSCorrupted ∧ CPULoad < 70 ∧
isVsftpdStarted ∧ ¬isVsftpdVulnerable ∧
¬isVsftpdUnderAttack.

3 EXPERIMENTAL RESULTS

The objective of this work is to show that reinforcement
learning techniques, such as Q-Learning, can be used to
dynamically adapt the defense policies to the non-stationary
behavior of the target system. To this end, we designed three
experimental scenarios, where a given system changes its
behavior due to either (i) the availability of an additional
action; (ii) the change in the reward parameters of the
existing actions; and (iii) the removal of a previously avail-
able action. In all the experiments, an agent starts learning
the system behavior without any prior knowledge. After
200, 000 learning episodes, an environment change occurs.
A learning episode is the sequence of actions that take the
system from the current state into a state belonging to the
secure region.

The metric that we use to evaluate the effectiveness of
the proposed approach is the cumulative reward achieved
by the learning agent, that is, the sum of the rewards that it
obtains by moving from a given initial state to a final state.
We show how the cumulative reward varies according to the
number of learning episodes and the learning coefficient.
We compare the obtained reward to the average cumulative
reward µ that would have been achieved with complete
knowledge of the system. For the latter, we also compute
the standard deviation σ, and we plot the average optimal
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cumulative reward range as [µ−σ, µ+σ]. The agent uses an
ε − greedy policy, with ε = 0.1, meaning that 90% of times
the agent will exploit the action with the maximum q-value,
while 10% of times a sub-optimal action will be chosen.

We used the same initial state for all the
experiments; due to space limitations, we only
report the attributes related to the WS and to
the vsftpd service: [isWebServerOn=true;
isWebServerUnderAttack=true;
isFSCorrupted=false; CPULoad=400;
Instances=1; isVsftpdStarted=true;
isVsftpdVulnerable=true;
isVsftpdNewVersionAvailable=true;
isVsftpdUnderAttack=false]. In other words, the
system is currently being attacked by a Denial of Service
(CPULoad=400 means that the current workload could be
sustained with 4 servers with CPU load at 100% each, while
in the current state there is only 1 active server instance).
Although vsftpd is not under attack, a vulnerability
has been found (isVsftpdVulnerable=true)
and a new software version is already available
(isVsftpdNewVersionAvailable=true).

The weights for R̂ have been set as follows: wT =
0.33, wC = 0.33, wConf = 0, wI = 0, wA = 0.34.

The simulator has been realized using the Java BURLAP
library [1], which implements many well-known algorithms
for planning and learning with MDPs. We executed the
experiments on a single node of the Shadow supercomputer
at Mississippi State University, equipped with 20 2.8Ghz
cores and 512GB of RAM.

3.1 Availability of an Additional Action

This set of experiments shows that the proposed technique
is able to quickly incorporate new actions in the defense
policies, if they exhibit a better reward. We started this
experiment by letting an agent learn the behavior of a
system that did not have the patchVsftpd action. As a
consequence, only updateVsftpd was present to fix the
vulnerability. After 200, 000 learning episodes, we intro-
duced the patchVsftpd action, and the agent was able
to quickly take advantage of the new action in the average
in the next 10 training steps from its introduction, reflecting
the ε = 0.1 parameter of the ε− greedy policy.

Figure 2 shows the cumulative reward of the learning
agent according to the number of played episodes. As ex-
pected, the agent with the lowest learning coefficient is also
the slowest to approximate the optimal q-value function,
as it converges to Q∗ after nearly 200, 000 episodes. With
α ≥ 0.5, instead, Q∗ is approximated in only about 60, 000
learning episodes. It is worth noting that the reward gap
between the learning agents and the planning with complete
knowledge is proportional to ε. Thus, it can be tuned to
trade convergence speed with accuracy and vice versa.

3.2 Change of the Reward Parameters

This set of experiments shows that the proposed technique
is able to quickly react to changes in the reward parameters
of the actions. We started this experiment by letting an agent
learn the behavior of the system described in Section 2.1
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Fig. 3: Change of the Reward Parameters

and, after 200, 000 learning episodes, we swapped the re-
ward parameters of patchVsftpd and updateVsftpd.
In the first part of the experiment, the former was always
chosen because it offered a better reward, but in the second
part, its reward was sub-optimal. It is possible to see, in-
deed, that the cumulative reward in Figure 3 has a negative
peak at 200, 000 learning episodes, which is due to the
abrupt, and unexpected, change of behavior of the system.
However, the agent was able to quickly adapt to the new
environment, as all the curves with α ≥ 0.3 converged
again in approximately 100 learning episodes. Of course, the
higher the learning coefficient, the faster is the adaptation to
the new environment.

3.3 Removal of an Action
In this set of experiments we show how the agent reacts to
the removal of a defense action. We always start by training
the agent with the system described in Section 2.1 and after
200, 000 learning episodes, we removed the patchVsftpd
action, which was preferred over updateVsftpd for its bet-
ter reward. Figure 4 shows the cumulative reward obtained
by the agent, which has a negative peak at 200, 000 learning
episodes due to the abrupt removal of the action. The time
needed to find a new good approximation of Q∗, in terms of
learning episodes, is in this case higher than that of the other
experiments. This is due to the fact that Q-Learning updates
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Fig. 4: Removal of an Action

the q-value for a given state-action pair 〈s, a〉 only upon the
selection of action a in state s. Since updateVsftp has a
low reward, it also has a low probability of being chosen.

4 RELATED WORKS

Researchers have used reinforcement learning to address
system security in various ways [13] [5]. Dejmal et al.,
applied reinforcement learning to denial of service attacks
in a Peer-to-Peer network [3]. Reinforcement learning has
also been used for security risk assessment to dynamically
assess risks and select defense mechanisms [6]. While these
approaches show that reinforcement learning techniques are
appropriate when addressing security concerns, we have
not found any prior work that addresses the dynamic nature
of the computing environment and the time required to
reach a near optimal solution using a model-free approach
to intrusion response. In our previous work, we used the
Markov decision process (MDP) framework to model a
system controlled by an intrusion response system [9].
In this paper, we present a novel, model-free approach
to autonomic security management that applies a hybrid
technique using simulation to converge on a near optimal
configuration thus reducing the time to independent system
execution. Our results show that we can capture the dynam-
ics of the system and respond to actions by dynamically
changing the system configuration.

5 CONCLUSIONS AND FUTURE WORKS

Automating the defense of computer systems is critical to
reduce the chances of successful malicious attacks. Most of
the research in this area over the past decade has been done
on intrusion detection, whilst research on intrusion response
is still at its early stages. The works proposed so far try to
model either the behavior of the attacker, or the behavior of
the defender. In some cases, a game theoretical formulation
is provided to combine the behaviors of the attacker and
the defender. However, we observe that computer systems
may exhibit non stationary behavior due to configuration
changes, availability of new applications, and change in user
behavior. It is important therefore not to base the entire
defense life-cycle only on a static model of the system,
because it might not be representative of its actual behavior.

We proposed and evaluated an automatic intrusion re-
sponse based on Q-Learning, which is able to automatically
adapt to changes in the environment. We showed that a
learning agent can quickly react to the addition of a new
defense action and to the change of the reward parameters
of existing actions. The removal of actions requires instead
more time to adapt to, due to how Q-Learning is designed.
As a consequence, we can say that although it is certainly
infeasible to train an agent with zero knowledge on a
real system, due to the large number of needed learning
episodes, it is certainly feasible to train it with a model-
based simulation of the target system. Such an agent can
then be detached from the simulator and attached to the
real system where it can exploit its ability to adapt to
environmental changes and to learn the differences between
the system model and the real system.

In the future, we will compare different learning tech-
niques, among which, Q-Learning, SARSA and ANN. Fur-
thermore, we will extend scope to include attacker behavior.
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