
A Scalable and Highly Available Brokering

Service for SLA-Based Composite Services

Alessandro Bellucci, Valeria Cardellini, Valerio Di Valerio, and Stefano Iannucci

Università di Roma “Tor Vergata”, Viale del Politecnico 1, 00133 Roma, Italy
{cardellini,iannucci}@ing.uniroma2.it

Abstract. The introduction of self-adaptation and self-management
techniques in a service-oriented system can allow to meet in a chang-
ing environment the levels of service formally defined with the system
users in a Service Level Agreement (SLA). However, a self-adaptive SOA
system has to be carefully designed in order not to compromise the sys-
tem scalability and availability. In this paper we present the design and
performance evaluation of a brokering service that supports at runtime
the self-adaptation of composite services offered to several concurrent
users with different service levels. To evaluate the performance of the
brokering service, we have carried out an extensive set of experiments
on different implementations of the system architecture using workload
generators that are based on open and closed system models. The ex-
perimental results demonstrate the effectiveness of the brokering service
design in achieving scalability and high availability.

1 Introduction

The complexity of service-oriented systems poses an increasing emphasis on the
need of introducing runtime adaptation features, so that a SOA-based system
can meet its quality of service (QoS) requirements even when operating in highly
changing environments. In addition, the SOA paradigm allows to build new
applications by composing network-accessible services offered by loosely coupled
independent providers. A service functionality, e.g., booking an hotel, may be
implemented by several competing services (referred to as concrete services)
with different QoS and cost attributes, thus allowing a prospective user to select
the services that best suit his/her requirements. Hence, being able to effectively
deliver and guarantee the QoS levels required by differentiated classes of users
may bring competitive advantage to a composite service provider over the others.

In this paper, we present the design and performance evaluation of MOSES
(MOdel-based SElf-adaptation of SOA systems), a runtime adaptation frame-
work for a SOA system architected as a brokering service and operating in a
sustained traffic scenario. MOSES offers to prospective users various compos-
ite services, each of which presents a range of service classes that differ for the
QoS performance parameters and cost. Its goal is to drive the adaptation of the
composite services it manages to fulfill the SLAs negotiated with its users, given

P.P. Maglio et al. (Eds.): ICSOC 2010, LNCS 6470, pp. 527–541, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

528 A. Bellucci et al.

the SLAs it has negotiated with the concrete services used to implement the
composite services, and to optimize a utility goal (e.g., the broker revenue).

The major goals of the MOSES brokering service are: (1) its ability to man-
age in an adaptive manner the concrete services so that it guarantees the QoS
parameters agreed in the SLAs with the composite service users; (2) its scalabil-
ity and availability, being the brokering service subject to a sustained traffic of
requests; therefore, its architecture should not affect the performance of the man-
aged composite services. To achieve these goals, we have designed the MOSES
architecture as an instantiation for the SOA environment of a self-adaptive soft-
ware system, where the software components are organized in a feedback loop
aiming to adjust the SOA system to internal and external changes that occur
during its operation. Moreover, the MOSES prototype exploits the rich capabili-
ties offered by OpenESB (an implementation of the JBI standard) and MySQL,
which both provide interesting features to enhance the scalability and availabil-
ity of complex systems. We have evaluated the performance and scalability of
the MOSES prototype through an extensive set of experiments using workload
generators that are based on open and closed system models. The results show
that under every load condition the MOSES prototype based on OpenESB and
MySQL achieves a significant performance improvement in terms of scalability
and reliability with respect to a previously developed version of MOSES [4]. In
addition, the clustered version of the prototype further enhances the performance
introducing only a negligible overhead due to the load balancing.

The MOSES architecture is inspired by existing implementation of frameworks
for QoS brokering of Web services (e.g., [1,2,10]). Menascé et al. have proposed a
SOA-based broker for negotiating QoS goals [10] but their broker does not offer a
composite service and its components are not organized as a self-adaptive system.
PAWS [1] is a framework for flexible and adaptive execution of business processes
but some of its modules work at design time, while MOSES adaptation operates
only at runtime. Proxy-based approaches, similar to that used by MOSES for
the runtime binding to concrete services, have been previously proposed, either
for re-binding purposes [2] or for handling runtime failures in composite services
as in the TRAP/BPEL framework [5]. The SASSY framework for self-adaptive
SOA systems has been recently proposed in [11]: it self-architects at run-time
a SOA system to optimize a system utility function. Nonetheless, to the best
of our knowledge none of the previous works in the SOA field has evaluated
the proposed prototype in terms of performance and scalability, but this kind
of evaluation is needed for any prototype to be adopted and developed in an
industrial environment.

The methodology at the basis of MOSES has been presented in [3]; its distin-
guishing features are the per-flow approach to adaptation and the combination
of service selection and coordination pattern selection. The per-flow approach
means that MOSES jointly considers the aggregate flow of requests, generated
by multiple classes of users; to the contrary, most of the proposed adaptation
methodologies (e.g., [1,2,14]) deal with single requests to the composite service,
which are managed independently one from another. The second feature regards

A Scalable and Highly Available Brokering Service 529

the adaptation mechanisms used by MOSES, that combine service selection with
coordination pattern selection. The first mechanism aims at identifying for each
abstract functionality in the composite service one corresponding concrete ser-
vice, selecting it from a set of candidates (e.g., [1,2,14]), The coordination pat-
tern selection allows to increase the offered QoS by binding at runtime each
functionality to a properly chosen subset of concrete services, coordinating them
according to some redundancy pattern.

The paper is organized as follows. In Sect. 2 we present an overview of the
MOSES architecture. The MOSES design and implementation are discussed in
Sect. 3. We present the testing environment and analyze the experimental results
assessing the effectiveness of MOSES design in Sect. 4. Finally, we draw some
conclusions and give hints for future work in Sect. 5.

2 Overview of the MOSES Architecture

The MOSES architecture represents an instantiation for the SOA environment
of a self-adaptive software system [8], focused on the fulfillment of QoS require-
ments. The architecture of an autonomic system comprises a set of managed
resources and managers, that operate as part of the IBM’s MAPE-K (Monitor,
Analyze, Plan, Execute and Knowledge) reference model [9]. This autonomic
loop collects information from the system, makes decisions and then organizes
the adaptation actions needed to achieve goals and objectives, and controls the
execution. Figure 1 shows the MOSES architecture, whose core components are
organized in parts according to the MAPE-K cycle. In the following we provide
a functional overview of the tasks carried out by the MOSES components, while
in Sect. 3 we discuss in details their design and implementation.

The Execute part comprises the Composition Manager, BPEL Engine, and
Adaptation Manager. The first component receives from the brokering service

Service Manager

,

Adaptation
Manager

SLA Manager

QoS Monitor

Optimization Engine

D
at

a
A

cc
es

s
Li

br
ar

y

S
to

ra
ge

Composition
Manager

Monitor and Analyze

Plan

Execute

Knowledge

BPEL Process
Users Concrete Services

Execution Path
Analyzer

BPEL Engine

WS Monitor

Service Registry

Fig. 1. MOSES high-level architecture

530 A. Bellucci et al.

administrator a new BPEL process to be deployed inside MOSES and builds
its corresponding behavioral model. To this end, it interacts with the Service
Manager to identify the concrete services that implement the functionalities
required by the service composition. Once created, the behavioral model, which
also includes information about the discovered concrete services, is stored in the
Knowledge part to make it accessible to the other system components.

While the Composition Manager is invoked rarely, the BPEL Engine and
Adaptation Manager are the core modules for the execution and runtime adap-
tation of the composite service. The first is the software platform that actually
executes the business process and represents the user front-end for the compos-
ite service provisioning. It interacts with the Adaptation Manager to invoke the
proper component services: for each abstract functionality required during the
process execution (i.e., invoke BPEL activity), the Adaptation Manager dy-
namically binds the request to the real endpoint that represents the service. The
latter is identified by the solution of a linear programming (LP) optimization
problem [3] and can be either a single service instance or a subset of service in-
stances coordinated through some pattern. The MOSES methodology currently
supports as coordination patterns the 1-out-of-n parallel redundancy and the
alternate service [3]. With the former, the Adaptation Manager invokes the con-
current execution of the concrete services in the subset identified by the solution
of the LP problem, waiting for the first successful completion. With the latter,
the Adaptation Manager sequentially invokes the concrete services in the subset,
until either one of them successfully completes, or the list is exhausted.

The Optimization Engine realizes the planning aspect of the autonomic loop.
It solves the LP optimization problem, which is based on the behavioral model
initially built by the Composition Manager and instantiated with the parameters
of the SLAs negotiated with the composite service users and the concrete ser-
vices. The model is kept up to date by the monitoring activity carried out by the
components in the Monitor-and-Analyze part. Since the optimization problem
is formulated as an LP problem, it is suitable to be solved at runtime because of
its efficiency [3] and does not represent a bottleneck for MOSES scalability. The
problem solution provides indications about the adaptation actions that must
be performed to optimize the use of the concrete services with respect to the
utility goal of the brokering service and within the SLA constraints.

The Monitor-and-Analyze part comprises all the components that capture
changes in the MOSES environment and, if they are relevant, modify at runtime
the behavioral model and trigger a new adaptation plan. Specifically, the QoS
Monitor collects and analyzes information about the QoS levels perceived by
the composite service users and offered by the concrete services providers. The
WS Monitor checks periodically the concrete services availability. The Execution
Path Analyzer monitors variations in the usage profile of the composite service
functionalities by examining the business process executed by the BPEL Engine;
it determines the expected number of times that each functionality is invoked by
each service class. The Service Manager and the SLA Manager are responsible
for the SLA negotiation processes in which the brokering service is involved.

A Scalable and Highly Available Brokering Service 531

Specifically, the first negotiates the SLAs with the concrete services, while the
latter is in charge to add, modify, and delete users SLAs and profiles. The SLA
negotiation process towards the user side includes the admission control of new
users; to this end, it involves the use of the Optimization Engine to evaluate
MOSES capability to accept the incoming user, given the associated SLA and
without violating already existing SLAs. Since the Service and SLA Managers
can determine the need to modify the behavioral model and solve a new instance
of the LP problem, we have included them within the Monitor-and-Analyze part.

In the current MOSES prototype, each component in the Monitor-and-Analyze
part, independently from the others, senses the composite service environment,
checks whether some relevant change has occured on the basis of event-condition-
action rules and, if certain conditions are met, triggers the solution of a new LP
problem instance. Tracked changes include the arrival/departure of a user with
the associated SLA (SLA Manager), observed variations in the SLA parameters
of the concrete services (QoS Monitor), addition/removal of concrete services
corresponding to functionalities of the abstract composition (WS Monitor and
Service Manager), variations in the usage profile of the functionalities in the
abstract composition (Execution Path Analyzer).

Finally, the Knowledge part is accessed through the Data Access Library,
which allows to access the parameters of the composite service operations and
environment, among which the solution of the optimization problem and the
monitored model parameters.

3 MOSES Design

We have designed the MOSES architecture on the basis of the Java Business
Integration (JBI) specification. JBI is a messaging-based pluggable architecture,
whose components describe their capabilities through WSDL. Its major goal is to
provide an architecture and an enabling framework that facilitates the dynamic
composition and deployment of loosely coupled participating applications and
service-oriented integration components. The key components of the JBI envi-
ronment are: (1) the Service Engines (SEs) that enable pluggable business logic;
(2) the Binding Components (BCs) that enable pluggable external connectivity;
(3) the Normalized Message Router (NMR), which directs normalized messages
from source to destination components according to specified policies.

After thoroughly comparing the available and stable open source implemen-
tations for JBI, we chose OpenESB1, developed by an open source community
under the direction of Sun Microsystems, because it is an implementation and
extension of the JBI standard. It implements JBI because it provides binding
components, service engines, and the NMR; it extends JBI because it enables a
set of distributed JBI instances to communicate as a single logical entity that
can be managed through a centralized administrative interface. GlassFish ap-
plication server is the default runtime environment, although OpenESB can be
integrated in several JEE application servers.
1 ESB stands for Enterprise Service Bus.

532 A. Bellucci et al.

3.1 MOSES within the JBI Environment

Each MOSES component is executed by one Service Engine, that can be either
Sun BPEL Service Engine for executing the business processes logic and internal
orchestration needs, or J2EE Engine for executing the business logic of all the
MOSES components except the BPEL Engine. Developing the components with
J2EE Engine improves the flexibility, because they can be accessed either as
standard Web services or as EJB modules through the NMR.

Fig. 2. Typical execution flow in the ESB-based MOSES prototype

The typical execution flow of a request to the composite service is illustrated
by the sequence diagram in Fig. 2. As first step, the registered user issues a
SOAP request to the MOSES front-end, that is the HTTP BC; the request
format follows what expected by the BPEL process to whom the request is ad-
dressed. The HTTP BC normalizes the HTTP request and sends it to the BPEL
Engine through the NMR. Upon receipt of the message, the BPEL Engine de-
normalizes the message and starts to serve the request. The first task performed
within the process is the invocation of the authentication module (not shown in
the high-level architecture of MOSES) to verify that the user issuing the request
is properly registred. If not, an exception is forwarded to the user. Otherwise, for
each invoke activity within the BPEL process, the Adaptation Manager reads
the solution of the LP problem from the storage layer and for that abstract func-
tionality invokes the subset of concrete services using the coordination pattern
as determined by the solution (Fig. 2 shows the use of the 1-out-of-n parallel
redundancy pattern for one service invocation). Finally, when the response is
ready for the user (these steps are not shown in Fig. 2), the BPEL Engine puts
the response message on the NMR, the HTTP BC de-normalizes it, obtaining a
plain SOAP response message that is finally forwarded to the user.

Alternative execution flows can be split in monitoring and administration
flows. The former denotes each flow that is related to the resources monitoring
and can trigger the execution of the Optimization Engine to determine a new
optimal solution. The WS Monitor, QoS Monitor, and Execution Path Analyzer
are periodically invoked by the Scheduler BC, and each of them can trigger the

A Scalable and Highly Available Brokering Service 533

Optimization Engine when a new adaptation plan is needed. The Service Man-
ager can be invoked either by the Scheduler BC or by the Composition Manager
when new concrete services are needed. The SLA Manager is invoked by users
when they register or establish new SLAs with MOSES; the Composition Man-
ager is invoked by the MOSES administrator to manage new BPEL processes.

We observe that MOSES requires that only the BPEL Engine, the Adaptation
Manager and the storage layer must be up and running to complete the request-
response cycle. When only these components work, the broker can orchestrate
the composite service (although in a sub-optimal way, being not able to solve a
new instance of the optimization problem), but it still succeeds in providing a
response to the users.

3.2 MOSES Components

We analyze in detail only the Adaptation Manager and storage layer design,
because these are the components that mostly influence the MOSES performance
and scalability. We have designed and implemented all the other components,
except the Service Manager; their detailed description can be found in [4]. We
note that all inter-module communications exploit the NMR presence: message
exchanges are faster than those based on SOAP communication, because they are
“in-process”, thus avoiding to pass through the network protocol stack. However,
thanks to OpenESB we can expose every MOSES component as a Web service.

The tasks of the Adaptation Manager are to modify the request payload in
order to make it compatible with the subset of invoked concrete services and to
invoke these services according to the coordination pattern determined by the
solution of the optimization problem.

Being the Adaptation Manager the MOSES component that receives the high-
est request rate, its design is crucial for scalability and availability. We have
investigated three alternative solutions for its implementation. The first realizes
the component directly in BPEL, but we discarded it because the Sun BPEL
Service Engine does not currently support the forEach BPEL structured activ-
ity with the attribute parallel set to ’yes’. We needed this activity to realize
in BPEL the 1-out-of-n coordination pattern. With the second alternative we
investigated how to realize the Adaptation Manager as a Java EE Web service.
We found a feasible solution (based on the Provider interface offered by the
JAX-WS API) but we discarded it because it causes a non negligible and useless
performance overhead for the service invocation itself. The solution we finally
implemented realizes the Adaptation Manager as a Java class which is directly
invoked inside the BPEL process. The advantage is the higher communication
efficiency and the consequent reduction of the response time perceived by the
users of the composite service, as shown in Sect. 4.

The storage layer represents a critical component of a multi-tier distributed
system, because the right tradeoff between responsiveness and other performance
indexes (like availability and scalability) has to be found.

We have investigated various alternatives to implement the MOSES storage
layer and decided to rely on the well-known relational database MySQL, which

534 A. Bellucci et al.

offers reliability and supports clustering and replication. However, to free the
MOSES future developers from knowing the storage layer internals, we have
developed a data access library, named MOSES Data Access Library (MDAL),
that completely hides the data backend. This library currently implements a
specific logic for MySQL, but its interfaces can be enhanced with other logics.

3.3 MOSES Clustered Architecture

In designing the clustered architecture of MOSES we made a tradeoff between
flexibility and performance. By flexibility we mean the ability to distribute the
MOSES components at the finest level of granularity (i.e., each component on a
different machine); however, we have found that having a high degree of flexibility
impacts negatively on the overall MOSES performance [4]. Therefore, we have
carefully distributed the MOSES components in order to minimize the network
overheads for inter-module communications and storage access. Following this
guideline, we have collocated the BPEL Engine and the Adaptation Manager
on the same machine; in such a way, for each invoked external service whose
binding is executed at runtime by the Adaptation Manager, the BPEL Engine
does not need to communicate through the network. In addition, being these two
components executed by the same JVM, the Adaptation Manager is called as a
Java class rather than as a Web service, with consequent performance speedup.

Figure 3 illustrates the MOSES clustered architecture composed by three
clusters, where each one owns two replicas of the components placed in that
cluster. The BPEL Engine and the Adaptation Manager constitute the core
cluster, while the other two clusters provide additional features that are not
mandatory for the basic execution. The front-end cluster provides the broker
with the ability to receive new BPEL processes and negotiate SLAs with users.
The back-end cluster comprises the components to monitor and analyze the
environment and to determine a new adaptation plan. In front of those clusters
that are accessed by the composite service users, there is an HTTP load balancer
that distributes the requests among the replicas.

Fig. 3. MOSES clustered architecture

A Scalable and Highly Available Brokering Service 535

As regards the distribution of the storage layer, the core cluster hosts its
own high available DB server with strong consistency to execute the DB queries
as fastest as possible. The back-end cluster’s DB is instead synchronized with
the core cluster’s DB using an external weak consistency policy and an internal
strong consistency policy. Finally, the front-end cluster does not own a DB at all:
we assume that the request rate directed to it is much lower than that directed
to the core cluster; therefore, we prefer to pay a penalty for the DB accesses gen-
erated by the front-end cluster rather than having on it a new MySQL instance
with its own replication strategy and related overhead.

4 Experimental Results

In this section we present the results of the experiments we have conducted on
the MOSES prototype based on OpenESB. We compare its performance to that
of a previous version of the MOSES prototype, whose components have been
developed in Java as Web services. We refer to the latter as MOSES WS,
while the current version is referred to as MOSES ESB. We also analyze the
performance of the clustered MOSES ESB. Prior to present the experimental
environment and the tools supporting the performance testing, we briefly review
the main features of MOSES WS, whose detailed discussion can be found in [4].

4.1 MOSES WS

MOSES WS was entirely designed and implemented using the Web services
stack as core technology. It included each component of the high-level MOSES
architecture in Sect. 2; we also realized its replicated version.

Some choices we made during the MOSES WS design have turned out not
to be appropriate, especially from the performance point of view. First of all,
the adoption of Apache ZooKeeper [15] for the storage layer. ZooKeeper is a
distributed coordination system for distributed applications, that provides syn-
chronization primitives as well as a shared tree data structure. We relied on it to
have an uniform data view from every application instance and to build mecha-
nisms such as distributed counters and distributed locks. However, the penalty
for this choice is a significant performance overhead, caused by a large amount
of disk I/O operations. Secondly, we used ActiveBPEL from Active Endpoints
as BPEL engine. Although we chose it for its better performance with respect
to Apache ODE and for its usage in many research works on SOA systems, it
turned not to be sufficiently stable; moreover, it was also suddenly retired. Fi-
nally, the adoption of SOAP as the core application protocol for the components
inter-communications gave us a great flexibility, because we could place the com-
ponents everywhere, even in a geographically distributed fashion. However, the
cost paid for such flexibility is the overhead for managing the SOAP messages.

4.2 Experimental Setup

The testing environment is composed by 3 Intel Xeon quad-core servers
(2 Ghz/core) with 8 GB RAM each (referred to as nodes 1, 2, and 3); 2

536 A. Bellucci et al.

dual-processor Athlon MP servers with 1 GB RAM each (nodes 4 and 5); a
Gb Ethernet connection for the quad-core machines, 100Mbps for the others.

We have analyzed the performance of MOSES ESB in the non-clustered and
clustered versions: for each of these configurations we have executed the experi-
ments using two different workload generators that are based on closed and open
system models. Using the closed system model, we have identified the maximum
system throughput. The open system model has been useful to find the effective
response time in a real world SOA environment, where the generation of new re-
quests does not depend on the completion of previous ones, and to establish how
MOSES response time changes according to a controlled variation in the request
rate. Closed and open system models can lead to different system behaviors, as
discussed in [13]: therefore, using both we can analyze MOSES performance in
a more complete way. The closed-model experiments have been performed with
The Grinder [6], while httperf was used for the open-model load testing [7]. The
first is an open source powerful load testing framework, that allows to test every
application accessible through a Java API. For our testing purposes, we have
used the Grinder plugin HTTPlugin, therefore encapsulating the SOAP request
message to the composite service inside the HTTP request message. The latter is
an open-source tool largely used for measuring the performance of Web servers:
therefore, it can be also used to measure the performance of Web services when
they can be accessed through HTTP.

Differently from traditional Web workload, SOA workload characterization
has been not deeply investigated up to now (some results have been published
in [12]). Therefore, to evaluate the performance of our SOA system, we have
defined a BPEL process that mimics a “trip planner” SOA application, with
6 invoke activities (corresponding to 6 functionalities of the abstract composi-
tion). The tasks are orchestrated using most of the BPEL structured activities,
including flow, which is used for the concurrent execution of the activities. Two
concrete services can be selected for each functionality in the abstract composi-
tion and the binding is carried out at runtime by the Adaptation Manager; the
used service(s) and the coordination pattern depend on the solution of the LP op-
timization problem managed by the Optimization Engine. For the experiments,
we disabled the monitoring activities executed by the QoS and WS Monitors.
The invoked Web services are simple stubs with no internal logic, being the
analysis of MOSES scalability the goal of our performance study.

In the next sections we present the performance results, first considering the
non-clustered version of MOSES ESB and MOSES WS under closed and open
system models. Then, we analyze the performance of the MOSES ESB clustered
architecture. We anticipate that the experimental results show that MOSES ESB
outperforms MOSES WS for every load condition. The choice of MySQL and
the optimization of some components (e.g., the Adaptation Manager) allows
to remove most performance problems of MOSES WS; furthermore, from the
stability point of view GlassFish proved to have a high availability: even after
many stress tests no response error was received.

A Scalable and Highly Available Brokering Service 537

4.3 Closed-Model Experiments

In a closed system model, there is a fixed number of users who use the system
forever. Each user repeats two steps: (a) submits a job; (b) receives the response
and “thinks” for some amount of time. In a closed system, a new request is only
triggered by the completion of a previous one. We set a think time equal to 0,
because our aim is to perform a stress testing of the system to determine its
effective throughput. Each closed-model test was performed on a three-machine
environment, where node 1 hosted a full MOSES instance without data backend,
node 2 the data backend together with the concrete services, and node 3 The
Grinder. The latter generates an increasing number of client processes named
“worker processes”, each of which behaves like a user above described.

Figure 4(a) shows the MOSES WS throughput in terms of Transactions Per
Second (TPS), which represents the mean number of transactions per second for
a given number of worker processes. MOSES WS does not achieve a high TPS:
the maximum value is around 21 TPS, which is definitively too low to cope
with a relatively sustained incoming request rate. Furthermore, the maximum
TPS value is reached with a relatively high number of worker processes. The
motivation is that we get high response times (on average equal to the number of
worker processes divided by the TPS value) and a non-optimal CPU utilization.
By analyzing the components of the response time, we found that a large fraction
of the response time is spent in waiting for the data storage layer, which is based
on Apache ZooKeeper. Figure 4(a) illustrates the performance reason that lead
us to design and develop the second version of our prototype, i.e., MOSES ESB.

Figure 4(b) shows the MOSES ESB performance in terms of TPS within
the same testing environment. MOSES ESB achieves a significant performance
improvement with respect to MOSES WS: the maximum TPS value is around
140 and this maximum is achieved with only 9 worker processes.

As regards the availability of the two prototypes, MOSES ESB is again the
winner: MOSES WS reported an error percentage equal to 1.87 (2593 errors on
a total of 139030 requests), while MOSES ESB never returned an error message
for the entire experiment duration.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 5 10 15 20 25 30 35 40 45 50 55 60

T
ra

ns
ac

tio
ns

 p
er

 s
ec

on
d

(T
PS

)

Worker processes

MOSES WS

(a) MOSES WS

 20

 40

 60

 80

 100

 120

 140

 160

 2 4 6 8 10 12 14 16 18

T
ra

ns
ac

tio
ns

 p
er

 s
ec

on
d

(T
PS

)

Worker processes

MOSES ESB

(b) MOSES ESB

Fig. 4. Throughput in the closed system model

538 A. Bellucci et al.

4.4 Open-Model Experiments

In an open system model there is a stream of arriving users with an average
arrival rate. Each user submits one job to the system under test, waits for the
response, and then leaves. The main difference between open and closed systems
is that the arrival of a new request is only determined by a new user arrival and
does not depend on the completion of a previously issued request. We believe
that the real world SOA environment in which MOSES can operate is closer to
an open system model, because users with already established SLAs can generate
new requests independently of the completion of previously issued requests.

The overall experiment is composed by a maximum of 140 runs, each one
lasting 180 seconds, during which httperf generates HTTP requests at a constant
rate. We note that there is a 1-to-1 mapping between an HTTP request and a
request to the composite service provided by MOSES. The main performance
metric we collected for each run is the mean response time, i.e., the time spent
on average for the entire request-response cycle. The deployment environment
for the open-model experiment is the same of the closed one.

Figure 5(a) shows the response time achieved by MOSES WS in the open
model testing environment. When the system is stable (corresponding to a rate
ranging from 1 to 19 requests per second), the response time varies between 600
ms and 3 sec. When the request rate reaches 20, the system becomes unsta-
ble and we observe an uncontrolled grow of the queues length. We have found
that the high response times of MOSES WS is due to I/O waits. In prelimi-
nary experiments, we have also compared the response time of the composite
service managed by MOSES with that of the same service offered by a stan-
dalone BPEL engine [4]. When the system is stable, we found that the response
time of MOSES WS is on average 266% higher than that achieved by the Ac-
tiveBPEL engine. This overhead is very similar to that reported in [5] for the
TRAP/BPEL framework, which has a simpler architecture and provides less
adaptation functionalities than MOSES WS. Although the SOA system man-
ager expects to pay some performance penalty for the system self-adaptiveness,
our effort in designing MOSES ESB has been to reduce such overhead.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 2 4 6 8 10 12 14 16 18 20 22

R
es

po
ns

e
tim

e
[s

ec
]

Request arrival rate [req/sec]

MOSES WS

(a) MOSES WS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 20 40 60 80 100 120 140

R
es

po
ns

e
tim

e
[s

ec
]

Request arrival rate [req/sec]

MOSES ESB
GlassFish ESB with Sun BPEL Engine

(b) MOSES ESB

Fig. 5. Response time in the open system model

A Scalable and Highly Available Brokering Service 539

Figure 5(b) shows the results for MOSES ESB. First, we observe that in
this case the overall experiment is composed by almost 140 runs against 22
runs for MOSES WS. The system is stable up to 130 requests per second, which
represents the saturation point. The I/O waits are now reduced to less than 1% of
the overall CPU execution time and this positively impacts on the smoothness of
the curve with respect to that of MOSES WS. Figure 5(b) also shows the response
time obtained by the standard GlassFish ESB with Sun BPEL Engine when no
self-adaptive capability is provided. When the composite service is managed by
MOSES ESB, the response time is on average 108% higher than that served by
GlassFish ESB (the percentage increase ranges from a minimum of 30% to a
maximum of 209%). Therefore, the careful design of MOSES ESB allows us to
substantially reduce the overhead introduced by the self-adaptiveness.

Figure 6 compares the performance achieved by MOSES ESB and MOSES
WS, using a logarithmic axes scale (base 2 and 10 for x and y axes, respectively).
The performance improvement achieved by MOSES ESB is clearly evident. As
regards the availability of the two prototypes, MOSES ESB again returned no
error message, while MOSES WS reported 21 errors in 3600 seconds.

 0.1

 1

 10

 1 2 4 8 16 32 64 128

R
es

po
ns

e
tim

e
[s

ec
]

Request arrival rate [req/sec]

MOSES WS
MOSES ESB

Fig. 6. Comparison of the response time in the open system model

4.5 Performance of MOSES ESB Clustered

The experiments for the clustered version of MOSES ESB have also been based
on the open and closed system models. These sets of experiments were exe-
cuted with the same hardware already used for the non-clustered version, but
we slightly changed the component deployment schema. We used 5 machines,
where nodes 1 and 2 hosted a GlassFish instance, node 3 the data backend and
the concrete services, node 4 the load balancer, and node 5 either The Grinder or
httperf. GlassFish allows the system administrator to choose between two load
balancers: Sun Java Web Server or Apache Web Server with a load balancing
plugin. The first is a closed-source Web server; therefore, we have chosen the lat-
ter being open-source. Nevertheless, we were constrained to use a closed-source
plugin in order to have an active load-balancing subsystem, which allows to react
at the load-balancer level to any failure of the connected GlassFish instances,
for example by re-issuing the request to an active instance.

540 A. Bellucci et al.

 0

 30

 60

 90

 120

 150

 180

 210

 240

 270

 2 4 6 8 10 12 14 16 18 20 22 24

T
ra

ns
ac

tio
ns

 p
er

 s
ec

on
d

(T
PS

)

Worker processes

MOSES ESB clustered
MOSES ESB

(a) Throughput in the closed model

 0.05

 0.1

 0.15

 0.2

 0.25

 20 40 60 80 100 120 140 160 180 200

R
es

po
ns

e
tim

e
[s

ec
]

Request arrival rate [req/sec]

MOSES ESB clustered
MOSES ESB

(b) Response time in the open model

Fig. 7. Performance comparison of MOSES ESB and MOSES ESB Clustered

Figure 7(a) shows the throughput improvement achieved by adding a Glass-
Fish instance to the MOSES cluster. The load balancer introduces a negligible
overhead and the overall performance is incremented by almost a factor of 2. Fig-
ure 7(b) compares the clustered version of MOSES ESB with its non-clustered
counterpart using the open system model. Similarly to what obtained in the
closed-model experiment, we can see that for a low request load, the clustered
version is a bit slower than the non-clustered one because of the load balancer
component. However, this gap is rapidly filled starting from the request rate
equal to 50. After this point, the clustered version is clearly the winner, achiev-
ing a response time that halves that of the non-clustered prototype.

5 Conclusions

In this paper we have presented an OpenESB-based prototype for a scalable and
highly available brokering service that provides runtime QoS-driven adaptation
of composite services. We have analyzed its performance and scalability, com-
paring them to those of a previous version of the prototype. The experimental
results demonstrate that the key choices made during the MOSES ESB develop-
ment have allowed to obtain significant performance improvements with respect
to MOSES WS, which presents some similarities with other prototypes devel-
oped for service selection in SOA applications. With respect to MOSES WS,
the response time achieved by MOSES ESB is two orders of magnitude lower,
while the throughput is one order of magnitude higher. Furthermore, MOSES
ESB clustered obtains a nearly linear performance improvement according to
the number of installed GlassFish instances.

We are planning new experiments using MySQL cluster, that allows to increase
the system availability and to improve further the performance through its in-
memory DB feature. We will also extend MOSES to support stateful as well as
asynchronous long-running services and to proactively monitor SLA violations.

A Scalable and Highly Available Brokering Service 541

Acknowledgment. Work partially supported by the Italian PRIN project
D-ASAP.

References

1. Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B., Plebani, P.: PAWS: A framework
for executing adaptive Web-service processes. IEEE Softw. 24(6), 39–46 (2007)

2. Canfora, G., Di Penta, M., Esposito, R., Villani, M.: A framework for QoS-aware
binding and re-binding of composite web services. J. Syst. Softw. 81(10) (2008)

3. Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F., Mirandola, R.: QoS-driven
runtime adaptation of service oriented architectures. In: ACM ESEC/SIGSOFT
FSE, pp. 131–140 (2009)

4. Cardellini, V., Iannucci, S.: Designing a broker for QoS-driven runtime adaptation
of SOA applications. In: IEEE ICWS 2010 (July 2010)

5. Ezenwoye, O., Sadjadi, S.: A proxy-based approach to enhancing the autonomic
behavior in composite services. J. of Networks 3(5), 42–53 (2008)

6. The Grinder, http://sourceforge.net/projects/grinder/
7. httperf, http://www.hpl.hp.com/research/linux/httperf/
8. Huebscher, M.C., McCann, J.A.: A survey of autonomic computing - degrees, mod-

els, and applications. ACM Comput. Surv. 40(3), 1–28 (2008)
9. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Com-

puter 36(1), 41–50 (2003)
10. Menascé, D.A., Ruan, H., Gomaa, H.: QoS management in service oriented archi-

tectures. Perform 7-8(64), 646–663 (2007)
11. Menascé, D.A., Ewing, J.M., Gomaa, H., Malek, S., Sousa, J.P.: A framework for

utility-based service oriented design in sassy. In: WOSP/SIPEW 2010 (2010)
12. Nagpurkar, P., Horn, W., Gopalakrishnan, U., Dubey, N., Jann, J., Pattnaik, P.:

Workload characterization of selected JEE-based Web 2.0 applications. In: Proc.
IEEE Int’l Symposium on Workload Characterization, pp. 109–118 (September
2008)

13. Schroeder, B., Wierman, A., Harchol-Balter, M.: Open versus closed system mod-
els: a cautionary tale. In: USENIX NSDI 2006 (2006)

14. Yu, T., Zhang, Y., Lin, K.J.: Efficient algorithms for Web services selection with
end-to-end QoS constraints. ACM Trans. Web 1(1), 1–26 (2007)

15. Apache ZooKeeper, http://hadoop.apache.org/zookeeper/

http://sourceforge.net/projects/grinder/
http://www.hpl.hp.com/research/linux/httperf/
http://hadoop.apache.org/zookeeper/

	A Scalable and Highly Available Brokering Service for SLA-Based Composite Services
	Introduction
	Overview of the MOSES Architecture
	MOSES Design
	MOSES within the JBI Environment
	MOSES Components
	MOSES Clustered Architecture

	Experimental Results
	MOSES WS
	Experimental Setup
	Closed-Model Experiments
	Open-Model Experiments
	Performance of MOSES ESB Clustered

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

