
A Performance Comparison of

QoS-driven Service Selection Approaches

Valeria Cardellini, Valerio Di Valerio, Vincenzo Grassi, Stefano Iannucci, and
Francesco Lo Presti

DISP, Università di Roma “Tor Vergata”, Italy
{cardellini,di.valerio,iannucci}@ing.uniroma2.it

{vgrassi,lopresti}@info.uniroma2.it

Abstract. Service selection has been widely investigated as an effective
adaptation mechanism that allows a service broker, offering a composite
service, to bind each task of the abstract composition to a correspond-
ing implementation, selecting it from a set of candidates. The selection
aims typically to fulfill the Quality of Service (QoS) requirements of the
composite service, considering several QoS parameters in the decision.
We compare the performance of two representative examples of the per-
request and per-flow approaches that address the service selection issue
at a different granularity level. We present experimental results obtained
with a prototype implementation of a service broker. Our results show
the ability of the per-flow approach in sustaining an increasing traffic of
requests, while the per-request approach appears more suitable to offer
a finer customizable service selection in a lightly loaded system.

1 Introduction

A major trend to tackle the increasing complexity of service-oriented systems
(SOSs) is to design them as runtime self-adaptable systems, so that they can
operate in highly changing and evolving environments. The introduction of self-
adaptation allows a system offering a composite service to meet both functional
requirements, concerning the overall logic to be implemented, and non func-
tional requirements, concerning the quality of service (QoS) levels that should
be guaranteed to its user. The adaptation in a SOS may take place at two dif-
ferent levels. At the horizontal level, the adaptation involves mainly the service

selection, that determines the binding of each task in the composite service to
actual implementations, leaving unchanged the composition logic, while at the
vertical level the composition logic can be altered [7].

In this paper, we focus on the adaptation at the horizontal level and consider
the granularity level at which the adaptation can be performed. With the per-

request grain, the adaptation concerns a single request addressed to a composite
service, and aims at making the system able to fulfill the QoS requirements of

⋆ The original publication is available at http://www.springerlink.com/ in Towards a

Service-based Internet, LNCS Vol. 6994, pp. 167-178, 2011.

that request, independently of the concurrent requests that may be addressed to
the system. With the per-flow grain, the adaptation concerns an overall flow of
requests, and aims at fulfilling QoS requirements concerning the global properties
of that flow.

In this paper, we compare the performance of the per-flow and per-request ap-
proaches considering a service broker that offers a composite service to prospec-
tive users having differentiated QoS requirements. To this end, we consider two
representative methodologies that tackle the service selection at the per-request
and per-flow grains and incorporate them into the MOSES (MOdel-based SElf-
adaptation of SOA systems) prototype [4], a runtime adaptation framework for
a SOS architected as a service broker. We compare the performance of the two
methodologies under two workload scenarios characterized by different workload
patterns, considering as main performance metric the fulfillment of the compos-
ite service’s response time agreed by the broker with its users.

Most of the proposed methodologies for service selection focus on the per-

request case (e.g., [1, 2, 5, 8, 9, 11, 12]) and have been formalized as optimization
problems. Zeng et al. [12] present a global planning approach based on inte-
ger programming. Ardagna and Pernici [2] model the service composition as a
mixed integer linear problem and their technique is particularly efficient for large
process instances. Alrifai and Risse [1] combine global optimization with local
selection techniques to reduce the optimization complexity. Canfora et al. [5] fol-
low a quite different strategy based on genetic algorithms. Since the per-request
service selection problem is NP-hard, heuristic algorithms have been proposed,
e.g., [8, 9, 11]. For the per-request approach we focus on the methodology in [2],
which is one of the top performing state-of-the-art approaches.

A few works have focused on the per-flow granularity. Beside the proposal
in [6], that we use as representative case of the per-flow approach and takes the
form of a linear problem, a per-flow methodology is in [3], where service selection
is based on a constrained non-linear optimization problem. The work in [3] is also,
until now, the only comparison between the per-flow technique therein presented
and the per-request proposals in [1, 2]; however, the performance comparison
in [3] concerns only the optimization time reduction due to the different problem
formulations and is conducted through simulation. On the other hand, in this
paper we compare the per-flow and per-request approaches plugging them into
the MOSES prototype, thus analyzing their impact on the overall performance
of a real service-oriented system.

The paper is organized as follows. In Sect. 2 we analyze the per-request and
per-flow service selection approaches. In Sect. 3 we provide an overview of the
MOSES system. In Sect. 4 we present the MOSES-based experiments to compare
the performance and effectiveness of the two approaches. We conclude in Sect. 5.

2 QoS-driven Service Selection Approaches

We consider a service broker, which offers to prospective users a composite ser-
vice with a range of different service classes, which imply different QoS levels and

monetary prices, exploiting for this purpose a set of existing concrete services.
The broker acts as a full intermediary between users and concrete services, per-
forming a role of service provider towards the users and being in turn a requestor
to the concrete services used to implement the composite service. Its main task
is to drive the adaptation of the service it manages to fulfill the Service Level
Agreements (SLAs) negotiated with its users, given the SLAs it has negotiated
with the concrete services while optimizing a suitable broker utility function,
i.e., response time or cost. Within this framework, one of the main broker tasks
is to determine a service selection that fulfills the SLAs it negotiates with its
requestors, given the SLAs it has negotiated with the providers. The selection
criteria correspond to the optimization of a given utility goal of the broker.

In this section we present the per-request and the per-flow approaches to
service selection, following the formulations presented in [2] and [6], respectively.

Let us denote by S the set of abstract tasks that compose the composite
process P offered by the broker, where Si ∈ S, i = 1, . . . ,m, represents a single
task, being m the number of tasks composing P . Figure 1(a) shows an example
of business process workflow. For each task Si, we assume that the broker has
identified a pool ℑi = {csij} of candidate concrete services implementing it.

For each candidate service, the broker negotiates a SLA with its provider,
establishing the values of the QoS attributes provided by each concrete service in
correspondence with a mean volume of requests generated by the broker for that
service. Then, the broker may negotiate a SLA with each requestor, establishing
the offered QoS level of the composite service. We consider the following subset

A A

A

S4

S5

A

S4

S6

Fig. 1. Example of workflow (left) and execution paths (right)

of representative QoS attributes:

• response time: the interval of time elapsed from the service invocation to its
completion;

• availability: the probability that the service is accessible when invoked;

• cost : the price charged for the service invocation.

Our general model for the SLA between the composite service users and the ser-
vice broker (acting the provider role) consists of a tuple 〈Rmax, Amin, Cmax, L〉,
where: Rmax is the upper bound on the service response time, Amin is the lower
bound on the service availability, Cmax is the upper bound on the service cost

per invocation. The provider can also specify the additional parameter L, that
indicates that performance thresholds Rmax and Amin will hold provided that
the request rate generated by the users does not exceed the load threshold L.

The broker (acting the user role) negotiates and defines SLAs with the
providers of the concrete services. For each csij ∈ ℑi, we denote with the tu-
ple 〈rij , aij , cij , lij〉 the corresponding SLA, whose parameters have the same
meaning of the SLAs negotiated by the broker with the composite service users.

The SLAs stipulated in the per-request and per-flow approaches differ in two
aspects. The first one regards the granularity level at which the SLAs with the
composite service users are managed by the service broker. In the per-request
approach, the broker tries to meet the QoS constraints for each individual request

submitted to the composite service, irrespective of whether it belongs to some
flow generated by one or more users, and taking into account the worst case

(i.e., the maximum number of iterations in a loop and different branches). On
the other hand, in the per-flow approach the service level objectives stated in
the SLA concern the average value of the QoS attributes calculated over all
the requests pertaining to the flow of requests generated by a given user. In
the per-flow formulation in [6] the analysis focused on the average case rather
than the worst one. To compare the two approaches, in this paper we modify the
original formulation in [6], so that the per-flow approach takes the worst case into
consideration (specifically, the maximum number of invocations to each abstract
task rather than the average number). The second difference about the SLAs
in the two approaches regards the load threshold, which is not contemplated by
the per-request approach. As we will see in Sec. 4, this limits the applicability
of the per-request approach, which hardly scales with workload increases.

2.1 Per-request Approach

In the per-request approach we need to identify the concrete service to be bound
to each abstract service for all execution paths [2]. The per-request optimization
problem is formulated as a Mixed Integer Linear Programming (MILP) problem.
We denote with the vector x = [x1, . . . ,xm] the optimal policy for a request to
the composite service, where each entry xi = [xij], xij ∈ {0, 1}, i ∈ S, j ∈ ℑi,
denotes the adaptation policy for task Si and the constraint

∑
j∈ℑi

xij = 1
holds. That is, xij is the decision variable equal to 1 if task Si is implemented
by concrete service csij , 0 otherwise. Assume that the per-request policy x de-
termines that for a given request xi = [0, 0, 1, 0]. According to this policy, for Si

the broker binds the request to csi3.
Following the per-request strategy in [2], we need to consider all the possible

execution paths derived from the workflow. An execution path epn is a set of
tasks epn = {S1, S2, . . . , SI} ⊆ S, such that S1 and SI are respectively the
initial and final tasks of the path and no pair Si, Sj ∈ epn belongs to alternative
branches. An execution path may also contain parallel sequences but it does not
contain loops, which are peeled (see Fig. 1(b) for two execution paths derived from
the workflow of Fig. 1(a)). A probability of execution freqn is associated with
every execution path and can be evaluated as the product of the probabilities

of executing the branch conditions included in the path. Branch conditions that
arise from loop peeling produce other execution paths. Therefore, the set of all
the execution paths identifies all the possible execution scenarios of the process.

The general goal of the optimization problem is to maximize the aggregated
QoS value, considering all of the possible execution scenarios, i.e., all the ex-
ecution paths arising from the business process. For simplicity’s sake, in the
formulation below we consider that the service broker’s goal is to minimize for
each request the response time of the composite service it offers.

Problem per-request: min
∑

epn

freqn ∗Rn(x)

subject to: Rn(x) ≤ Rmax ∀epn (1)

logAn(x) ≥ logAmin ∀epn (2)

Cn(x) ≤ Cmax ∀epn (3)

xij ∈ {0, 1} ∀j ∈ ℑi,
∑

j∈ℑi

xij = 1 ∀i ∈ S (4)

Rn(x), An(x) and Cn(x) denote the response time, availability, and cost of
the execution path epn. We note that the minimization of the response time is
only one of the possible objective functions that can be used, depending on the
utility goal of the broker. An alternative expression can be found in [2], where the
objective function is formulated using the weighted z-scores of QoS attributes.

2.2 Per-flow Approach

While in the per-request approach the optimization problem atomically considers
a single request, in the per-flow it is assumed to have a set K of service classes,
with k ∈ K ⊆ N, for each business process P . Hence, the SLA with each user u
of a class k ∈ K is defined as a tuple 〈Rk

max, A
k
min, C

k
max, L

k
u〉. The optimization

problem takes simultaneously into account the overall flow of requests belonging
to the service classes. Anyway, the granularity level of the service classes may
be arbitrarly fine, so that each user could have its own service class.

In the per-flow approach we need to identify the concrete service to be bound
to each abstract service for all the service class. For each class k, we denote with
the vector x

k = [xk
1 , . . . ,x

k
m] the optimal policy, where each entry x

k
i = [xk

ij],
0 ≤ xij ≤ 1, i ∈ S, j ∈ ℑi, denotes the adaptation policy for task Si and the
constraint

∑
j∈ℑi

xk
ij = 1 holds. That is, the policy define a probabilistic binding

between Si and its implementation in ℑi, whereby each entry xk
ij of xk

i denotes
the probability that the class-k request will be bound to concrete service csij . As
an example, consider the case ℑi = {csi1, csi2, csi3, csi4} for task Si. Assume that
the per-flow policy x determines that for a given class k x

k
i = [0, 0.2, 0.5, 0.3].

According to this policy, given a class-k request for Si, the broker binds the
request: with probability 0.2 to csi2, 0.5 to csi3, and 0.3 to csi4.

The per-flow approach is formulated as a Linear Programming (LP) problem,
and therefore its computational cost is lower than the alternative approach. As

in the per-request formulation, we consider the minimization of the response
time, but in this case the latter regards the aggregated flow of requests.

Problem per-flow: min
∑

k∈K

L
k
R

k(L,x)

subject to: R
k(L,x) ≤ R

k
max ∀k ∈ K (5)

logAk(L,x) ≥ logAk
min ∀k ∈ K (6)

C
k(L,x) ≤ C

k
max ∀k ∈ K (7)

∑

k∈K

x
k
ijV

k
α,iL

k ≤ lij ∀j ∈ ℑi,∀i ∈ S (8)

x
k
ij ≥ 0 ∀j ∈ ℑi,

∑

j∈ℑi

x
k
ij = 1 ∀i ∈ S (9)

where: L = [Lk]k∈K and Lk =
∑

u L
k
u is the aggregated class-k users ser-

vice request rate (being u a user); Rk(L,x), Ak(L,x), and Ck(L,x) the class-k
response time, availability, and cost, respectively, under the adaptation policy
x = [xk]k∈K . Their expression requires knowledge of V k

α,i, which is the α-quantile
of the number of times Si is invoked by class-k requests: for further details we
refer the reader to [6]. Here (8) represents the request load assigned to each
concrete service and ensures that the load does not exceed the volume of invoca-
tions lij agreed with the service providers. As in the per-request approach, the
minimization of the response time is just a possible utility goal of the broker.

3 MOSES System

MOSES is a QoS-driven runtime adaptation framework for service-oriented sys-
tems, intended to act as a service broker and designed with a flexible and modular
system architecture. In the following, we provide an overview of the MOSES sys-
tem; a detailed description of the per-flow methodology (for whom MOSES has
been originally designed) and prototype can be found in [6] and [4], respectively.

We first describe the core MOSES modules and then the remaining ones
that enrich the basic functionalities. The Optimization Engine computes the op-
timal solution that drives the runtime binding according to the two alternative
approaches in Sect. 2. To achieve a flexible implementation, the Optimization
Engine exposes the same interface to the other MOSES modules irrespectively of
the specific approach. The BPEL Engine executes the business process, described
in BPEL, that defines the user-relevant business logic. Finally, the Adaptation

Manager is the actuator of the adaptation actions determined by the Optimiza-
tion Engine: it is actually a proxy interposed between the BPEL Engine and any
external service provider. Its functionality is to dynamically bind each abstract
task’s invocation to the real endpoint identified by the Optimization Engine.

The main execution sequence for a composite service request managed by
MOSES differs according to the service selection approach. With the per-request
one, every core module is involved in the execution, as depicted in Fig. 2(a): the

user issues a process invocation to the BPEL Engine which, in turn, requests
to the Optimization Engine the optimization problem solution, considering the
specific SLA parameters agreed with the user for that request. The optimal
solution, that encompasses all the abstract tasks that will be invoked during the
request execution, is kept in the Storage layer, so that it can be retrieved for
each abstract task to concrete implementation binding that occurs during the
processing of that request. When the BPEL Engine reaches an invoke activity,
it contacts the Adaptation Manager, which retrieves the needed runtime binding
information from the Storage and invokes the selected concrete service.

The per-flow approach follows a different pattern: the optimization problem
solution is not computed synchronously at the receipt of every request for the
composite service, but rather only for the flow to whom that request belongs and
only when some monitoring module determines its need to react to some change
occurred in the MOSES environment. The corresponding sequence diagram is
thus simplified, because it does not include the gray shaded box in Fig. 2(a).

Service Manager

,

Adaptation

Manager

SLA Manager

QoS Monitor

Optimization Engine

D
a

ta
 A

c
c
e

s
s
 L

ib
ra

ry

S
to

ra
g
e

Composition

Manager

Monitor + Analyze

Plan

Execute

Knowledge

BPEL Process Users Concrete Services

Execution Path

Analyzer

BPEL Engine

WS Monitor

Service Registry

Fig. 2. MOSES system: request execution flow (left) and high-level architecture (right)

In a system subject to a quite sustained request rate, performing a per-
request solution of the optimization problem could cause an excessive computa-
tional load, especially for a large-scale optimization problem, being the problem
formulated as MILP. To mitigate this issue, we have improved the per-request
execution sequence by introducing the caching of each calculated solution of the
optimization problem corresponding to a given instance of the system model.
Therefore, if a request matches with a cached solution (in terms of SLA and
system parameters), similarly to the per-flow approach, the binding is retrieved
from the Storage layer without involving the Optimization Engine.

MOSES is architected as a self-adaptive system based on the MAPE-K (Mon-
itor, Analyze, Plan, Execute, and Knowledge) reference model for autonomic sys-
tems [10]. Figure 2(b) shows how the MOSES modules implement each MAPE-
K macro-component, together with the system inputs (i.e., the business process
and the set of concrete services). This input is used to build a model (Execute),
which is kept up-to-date at runtime (Monitor). The monitored parameters are

analyzed (Analyze) in order to know if adaptation actions have to be taken; if
needed, a new adaptation policy is calculated (Plan).

The modules in the Monitor+Analyze macro-component capture changes in
the MOSES environment and, if they are relevant, modify at runtime the stored
system model and trigger the Optimization Engine. The Service Manager and
WS Monitor detect the addition or removal of concrete services, respectively.
The QoS Monitor detects violations of the service level objectives stated in the
SLAs between MOSES and the service providers. The Execution Path Analyzer

tracks variations in the usage profile of the abstract tasks. The SLA Manager

manages the arrival/departure of a user with the associated SLA, eventually
performing a contract admission control.

4 Experimental Comparison

In this section, we present the experimental analysis we have conducted using
the MOSES prototype to compare the per-flow and per-request approaches.

4.1 Experimental Setup

The MOSES prototype is based on the Java Business Integration (JBI) imple-
mentation called OpenESB and the relational database MySQL. We use Sun
BPEL Service Engine for the business process logic, and MATLAB and CPLEX
to solve respectively the per-flow and per-request optimization problems. We
refer to [4] for a detailed description of the MOSES prototype.

The testing environment consists of 3 Intel Xeon quad-core servers (2 Ghz/core)
with 8 GB RAM each (nodes 1, 2, and 3), and 1 KVM virtual machine with 1
CPU and 1 GB RAM (node 4); a Gb Ethernet connects all the machines. The
MOSES prototype is deployed as follows: node 1 hosted all the MOSES modules
in the Execute macro-component, node 2 the storage layer together with the
candidate concrete services, and node 3 the modules in the Monitor+Analyze
and Plan macro-components. Finally, node 4 hosted the workload generator. We

Table 1. SLA parameters for concrete services (left) and service classes (right)

cs rij aij cij

cs11 2 0.995 6

cs12 1.8 0.99 6

cs13 2 0.99 5.5

cs14 3 0.995 4.5

cs15 4 0.99 3

cs21 1 0.995 2

cs22 2 0.995 1.8

cs23 1.8 0.99 1.8

cs24 3 0.99 1

cs rij aij cij

cs31 1 0.995 5

cs32 1 0.99 4.5

cs33 2 0.99 4

cs34 4 0.95 2

cs35 5 0.95 1

cs41 0.5 0.995 1

cs42 0.5 0.99 0.8

cs43 1 0.995 0.8

cs44 1 0.95 0.6

cs rij aij cij

cs51 1 0.995 3

cs52 2 0.99 2

cs53 3 0.99 1.5

cs54 4 0.95 1

cs61 1.8 0.99 1

cs62 2 0.995 0.8

cs63 3 0.99 0.6

cs64 4 0.95 0.4

Class k Rk
max

Ak
min

Ck
max

1 14 0.9 39

2 17 0.88 35

3 19 0.86 32

4 22 0.84 29

consider the workflow of Fig. 1(a), composed of 6 stateless tasks, and assume
that 4 concrete services (with their respective SLAs) have been identified for
each task, except for tasks S1 and S3 for which 5 implementations have been
identified. The respective SLA parameters, shown in Tab. 1(left), differ in terms
of cost cij , availability aij , and response time rij (in sec). The concrete services
are simple stubs; however, their non-functional behavior conforms to the guar-
anteed levels expressed in their SLA. The perceived response time is obtained by
modeling each service as a M/G/1/PS queue implemented inside the Web service
deployed in the Tomcat container. For all concrete services the load threshold
lij is equal to 10 req/sec and the response time knee is beyond it.

On the user side, we assume a scenario with four classes of the composite
service managed by MOSES. The SLAs negotiated by the users are characterized
by a range of QoS requirements as listed in Tab. 1(right), with users in class 1
having the most stringent performance requirements (being willing to pay the
highest cost) and users in class 4 the least stringent ones (being willing to save
money). The usage profile of the service classes is given by the following values for
the maximum number of service invocations: V k

α,1 = V k
α,2 = V k

α,3 = 3, V k
α,4 = 1,

k ∈ K; V k
α,5 = 0.7, V k

α,6 = 0.3, k ∈ {1, 3, 4}; V 2
α,5 = V 2

α,6 = 0.5, being α = 0.96.
To issue requests to the composite service managed by MOSES we have

developed a workload generator in C language using the Pthreads library. It
mimics the behavior of users that establish SLA contracts before accessing the
composite service. For the per-flow approach, upon the arrival of a new contract
there is a preliminary invocation to the SLA Manager for the admission con-
trol: a new contract is accepted if the per-flow problem can be solved given
the SLA requested by the new user and the SLAs agreed by MOSES with its
currently admitted users. On the other hand, for the per-request approach there
is no admission control, because each request is treated independently of other
concurrent requests. Once its SLA contract has been accepted, the user u starts
issuing requests to the composite service at a rate Lk

u until the contract ends.

4.2 Experimental Results

To compare the per-flow and per-request service selection approaches, we con-
sider two different workload scenarios. In the first scenario, we consider each
service class per time (i.e., in a specific experiment the requests pertain only to
one of the service classes in Table 1(right)) and we stress the MOSES system
by progressively increasing the request rate. To this end, we set for all the con-
tracts a fixed duration equal to 100 sec and Lk

u=1 req/sec, while the contract
interarrival rate ranges from 0.01 to 0.3 contr/sec for each step of the overall
experiment: this setting corresponds to an overall request arrival rate Lk from 1
to 30 req/sec. Each single step (corresponding to a given request rate) lasts 15
minutes. At each step, to avoid overwhelming a just started GlassFish instance,
which has a significant setup time, the workload generator does not immediately
issue requests at the required request rate but within a ramp (set to 100 sec),
during which the request rate is linearly incremented until it reaches the desired
value.

For space reasons we focus our analysis on the most sensitive SLA parame-
ter to the workload increase, i.e., the response time, obtained by the requests of
class 1, which has the most stringent SLA requirements. Figure 3(a) shows the re-

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

R
es

po
ns

e
tim

e
(s

ec
)

Request rate (req/sec)

perReq_w/o-QoSM
perFlow

(a) Per-flow vs per-request ap-
proach

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
es

po
ns

e
tim

e
(s

ec
)

Request rate (req/sec)

perReq_w/o-QoSM
perReq_with-QoSM_2s

perReq_with-QoSM_0.7s

(b) Per-request approach with
and without QoS Monitor

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SL
A

 v
io

la
tio

n
%

 f
or

 r
es

po
ns

e
tim

e

Request rate (req/sec)

perReq_w/o-QoSM
perReq_with-QoSM_2s

perReq_with-QoSM_0.7s
perFlow

(c) Percentage of SLA violation

Fig. 3. Scenario 1: response time of the composite service for class 1

sponse time of the composite service achieved by the two alternative approaches
for an increasing request rate and with the MOSES monitoring modules disabled
(except the SLA Manager). We observe that while the per-flow response time
remains well below the agreed SLA value (equal to 14 sec), for the per-request
approach (denoted by perReq w/o-QoSM) the response time increases exponen-
tially approximately at the concrete services’ load threshold (set to 10 req/sec).
In a lightly loaded system, the per-request approach is effective to address the
adaptation to each single request. However, when the workload increases, it in-
curs in stability and management problems, since it takes adaptation actions just
for a single request, independently of the other concurrent requests. Therefore,
the concrete services identified as the best ones by the per-request deterministic
policy are overwhelmed by the requests. On the other hand, the probabilistic
per-flow policy chooses the best implementations only until their load threshold
is not exceeded (see (8) of the per-flow problem); at that point, it distributes
the requests among a subset of (possibly all) the available concrete services. This
behavior is evident in Fig. 3(a), where the response time increases from around
6 to 7 sec at the concrete services’ load threshold. The stable behavior of the
per-flow approach is counterbalanced by an amount of dropped SLA contracts;
the rejection percentage ranges from 7% (for 12 req/sec) to 59% (for 30 req/sec).

To improve the performance of the per-request approach, we activate the QoS
Monitor, so that after a SLA violation the agreed values of the concrete services’
parameters are updated in the system model with the measured values and
the triggered Optimization Engine calculates a new solution of the per-request
problem. The SLA violation is detected when the data monitored during one time
window exceed by 20% the SLA agreed by MOSES with the service providers.
We can see in Fig. 3(b) that the monitoring activity and the subsequent reaction
improve the per-request behavior: when the best implementation for a given task

becomes overloaded, the requests are shifted towards another concrete service
determined by the new adaptation policy. However, the improvement is achieved
at a cost of having a very reactive system, characterized by a quite frequent mon-
itoring activity because the monitored data are analyzed either to 2 or even 0.7
sec, denoted by perReq withQoSM 2s and perReq withQoSM 0.7s in Fig. 3(b).

Let us now consider how in the first scenario the SLA is satisfied: Fig 3(c)
shows the percentage of violations for the response time agreed with the users.
While under the per-flow approach only few requests suffer from a SLA violation,
the percentage dramatically increases for the per-request service selection, even
with a frequent monitoring activity.

In the second scenario we consider a mixed workload in which MOSES offers
simultaneously the composite service to all the service classes in Table 1(right).
We assume exponential distributions of parameters λk and 1/dk for the con-
tract inter-arrival time and duration and a Gaussian distribution of parameters
(µk, σk) for the request inter-arrival L

k
u. Each user u generates its requests to the

composite service according to an exponential distribution with parameter Lk
u.

The values of the workload model parameters are dk = 100 and (µk, σk) = (3, 1)
∀k; λk, dk, and µk values have been set so that for Little’s formula Lk = λkµkdk
and therefore on average L = (Lk) = (1.5, 1, 3, 1). For space reason, we analyze

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 30 60 90 120 150 180 210 240 270 300

R
es

po
ns

e
tim

e
(s

ec
)

Time (min)

perFlow

(a) Per-flow approach

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 30 60 90 120 150 180 210 240 270 300

R
es

po
ns

e
tim

e
(s

ec
)

Time (min)

perReq_with-QoSM_2s

(b) Per-request approach with
QoS Monitor every 2s

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 30 60 90 120 150 180 210 240 270 300

R
es

po
ns

e
tim

e
(s

ec
)

Time (min)

perReq_with-QoSM_0.7s

(c) Per-request approach with
QoS Monitor every 0.7s

Fig. 4. Scenario 2: response time of the composite service over time for class 1

only how the response time of the composite service varies over time for the
most demanding class 1, as shown in Figs. 4(a)-4(c) (the horizontal line is the
agreed response time, as reported in Tab. 1). Although in the second scenario
the system is only subject to a moderate workload intensity (the average over-
all request rate is 6,37 req/sec, being 20,4 req/sec the peak and 4,29 req/sec
the standard deviation), we find that the response time level achieved by the
per-flow approach has a much more stable trend and does not suffer from the
SLA violations of the per-request service selection. The percentage of dropped
contracts by the per-flow approach is 12%.

5 Conclusions

In this paper, we have compared the per-flow and per-request approaches to
address the service selection issue for a service broker which offers a compos-
ite service with different QoS levels. Our results show that in a lightly loaded
system, it is effective to tailor the service selection to each single request, inde-
pendently of other concurrent requests, to customize the system with respect to
that single request. On the other hand, in a system subject to a quite sustained
flow of requests, performing a per-request selection could incur in stability prob-
lems, since the “local” decisions could conflict with the decisions independently
determined for other concurrent requests. Furthermore, the solution of the per-
request problem at a frequent rate could cause an excessive computational load
due to its MILP formulation. In the latter scenario, the per-flow approach is
likely to be more effective, even if it loses the potentially finer customization
features of the per-request approach and can drop SLA contracts when there are
not enough system resources. We plan to extend the performance comparison to
other representative proposals for service selection and to address the lack of a
“global” system view that currently affects the per-request approach.

References

1. Alrifai, M., Risse, T.: Combining global optimization with local selection for effi-
cient qos-aware service composition. In: Proc. WWW ’09. pp. 881–890 (2009)

2. Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE
Trans. Softw. Eng. 33(6), 369–384 (2007)

3. Ardagna, D., Mirandola, R.: Per-flow optimal service selection for web services
based processes. J. Syst. Softw. 83(8) (2010)

4. Bellucci, A., Cardellini, V., Di Valerio, V., Iannucci, S.: A scalable and highly
available brokering service for SLA-based composite services. In: Proc. ICSOC ’10.
LNCS, vol. 6470, pp. 527–541. Springer (Dec 2010)

5. Canfora, G., Di Penta, M., Esposito, R., Villani, M.: A framework for QoS-aware
binding and re-binding of composite web services. J. Syst. Softw. 81(10) (2008)

6. Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F., Mirandola, R.: Flow-based
service selection for web service composition supporting multiple qos classes. In:
Proc. IEEE ICWS ’07. pp. 743–750 (2007)

7. Hassine, A.B., Matsubara, S., Ishida, T.: A constraint-based approach to horizontal
web. In: Proc. ISWC ’06. pp. 130–143 (2006)

8. Liang, Q., Wu, X., Lau, H.C.: Optimizing service systems based on application-
level QoS. IEEE Trans. Serv. Comput. 2, 108–121 (2009)

9. Menascé, D.A., Casalicchio, E., Dubey, V.: On optimal service selection in service
oriented architectures. Perform. Eval. 67, 659–675 (Aug 2010)

10. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst. 4(2), 1–42 (2009)

11. Yu, T., Zhang, Y., Lin, K.J.: Efficient algorithms for web services selection with
end-to-end qos constraints. ACM Trans. Web 1(1), 1–26 (2007)

12. Zeng, L., Benatallah, B., Dumas, M., Kalagnamam, J., Chang, H.: QoS-aware
middleware for web services composition. IEEE Trans. Softw. Eng. 30(5) (2004)

