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Abstract—Today the cloud-desktop service, or Desktop-
as-a-Service (DaaS), is massively replacing Virtual Desktop
Infrastructures (VDI), as confirmed by the importance of
players entering the DaaS market. In this paper we study
the workload of a DaaS provider, analyzing three months
of real traffic and resource usage. What emerges from the
study, the first on the subject at the best of our knowledge,
is that the workload on CPU and disk usage are long-tail
distributed (lognormal, weibull and pareto) and that the length
of working sessions is exponentially distributed. These results
are extremely important for: the selection of the appropriate
performance model to be used in capacity planning or run-time
resource provisioning; the setup of workload generators; and
the definition of heuristic policies for resource provisioning.
The paper provides an accurate distribution fitting for all the
workload features considered and discusses the implications of
results on performance analysis.

Keywords-cloud computing; workload characterization; per-
formance evaluation; cloud desktop; desktop-as-a-service; ca-
pacity planning; monitoring

I. INTRODUCTION

Resource management is a key issue in cloud comput-

ing and is central to guarantee elasticity, high availability

and performance. Moreover, an optimal management of

resources allows to maximize the provider revenue and

to guarantee SLAs. Offline capacity planning and runtime

resource provisioning (autonomic resource provisioning) are

two approaches typically used for the optimal management

of resources in computer systems (and cloud computing) and

both methods require a deep understanding of the system

workload characteristics [1], [2].

Cloud workload characterization is an open challenge as

stressed in [3]. State of the art research results can be

summarized as follows: cloud workload exposes an high

variability [4]; the Markovian Arrival Processes (MAP)

and related MAP/MAP/1 model is a candidate tool for

performance prediction of servers deployed in the cloud [5];

and that Hidden Markov Modeling and regression methods

are useful techniques to characterize the temporal correlation

and therefore to predict future workload [6], [7].

What lacks in literature is a statistical characterization of

cloud workload features, mainly because strictly dependent

on the type of cloud service.

In this paper we focus our attention on the workload

characterization of cloud desktops services that, today, are

massively replacing Virtual Desktop Infrastructures (VDI)

as confirmed by the importance of some players entering

the DaaS market (e.g. Amazon with AWS Workspace, Dell

with Workspace-as-a-Service and VMware with Desktone).

Three distinguishing features characterize DaaS from a

performance perspective. First, although DaaS is offered to

the Consumers market and to the Enterprises market, the

latter segment of customers is the larger. Offering the service

to enterprises implies that pools of infrastructure resources

are dedicated to a set of users (employees/members of

the same organization) sharing goals, data, information and

applications. Second, users typically consume resources over

long persistent sessions (e.g. 8h) and over this time period

the DaaS provider must guarantee continuous high perfor-

mances. Even if the DaaS provider offer is characterized

by bundles there is often the possibility to install on the

desktop different kinds of applications or to integrate the

desktop with other kinds of services, e.g. web applications,

mail services, storage services. Therefore, users of the same

organization can work with different applications on their

desktop generating heterogeneous workloads (compared to

other members of the same organization). One more inter-

esting reason to study DaaS workload is that, often, cloud

desktops are deployed as private clouds. In this context the

proper provisioning of resources has an higher impact on

costs and performances, and workload knowledge is very

important.

Today there are very few studies on DaaS performances.

In [8] the authors proposed a synthetic benchmark that, how-

ever, is not based on real workload observation or statistical

properties. In [9] the authors characterize a VDI system

accessing only web mail application. In [1] is presented a

detailed study of desktop and workstation workload running

on single nodes (pc or servers). Finally, VMware [10]

proposed a capacity planning methodology for VMware VDI

that is based on synthetic workload.

Our contribution to the literature is a detailed characteri-

zation study of the DaaS workload. We monitored a DaaS

provider [11], offering services to SMEs, for three months,

from Mar. 23 to Jun. 22, 2014. From the analysis of data
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we extract important informations on:

• the characteristics of users behavior;

• the statistical properties of the CPU load of Virtual

desktop; and

• the statistical properties of the read/write rate interest-

ing the infrastructure storage systems.

We concentrate our attention on the CPU load of the VMs

running virtual desktops and on the storage systems because

these are the more critical and more stressed components

of the infrastructure. Servers memory usage and network

usage are not considered in this study for two reasons.

First, real system observations show that memory usage is

almost constant or shows slight variability. Second, despite

the virtual desktop is a network sensible application, real

system observations highlight that bandwidth consumption

is not a critical factor for desktop running office automation

applications. Therefore we decided to not consider network

traffic characterization.

The main results of our characterization are that the CPU

load and read/write rate are long-tail distributed and fit with

a lognormal distribution. Parameters were accurately esti-

mated for all the considered cases. Moreover, we observed

also that the CPU load distribution is invariant to the number

of concurrent desktop activated by the client. Indeed, the

number of concurrent working sessions influences only the

scale parameter of the distribution but not the distribution

type.

The paper is organized as follow. Related works are

described in Section II. The system architecture is presented

in Section III. Section IV describes the workload model

and Section V presents the workload analysis. Concluding

remarks are in Section VI.

II. RELATED WORKS

In literature there are few works focused on the character-

ization of cloud workloads [4]–[7], [12], [13] and very few

characterizing DaaS or VDI workloads [8]–[10].

Cloud workloads, as illustrated in [4], are more variable

and difficult to characterize and to predict than traditional

workloads. To highlight the differences in terms of workload

between modern cloud systems and Grid/HPC systems,

in [4] is proposed a study of the workload of a production

data center at Google. Comparing Grid and HPC systems,

the authors found that Google jobs are usually shorter and

are submitted at higher frequency, leading to a finer resource

allocation granularity. Therefore, hosts load in cloud data

centers has an higher variance than in Grids. The charac-

terization of cloud workload using Google traces has been

done also in [12], where a reusable workload generation

model based on real operational data extracted from a 30

day tracelog from Google Cloud has been proposed. The

model considers the workload composed by two principal

elements: tasks (defined as the basic units of computation

performed in the cloud) and users (i.e., the actors responsible

for creating and configuring the volume of tasks to be

computed). In [5] MAP and the MAP/MAP/1 queueing

model are used as tools for performance prediction of servers

deployed in the cloud. In the paper a maximum likelihood

method for fitting a MAP to the web traffic measurement

collected in HTTP web server traces is presented. More-

over, a methodology that supports the handling of short

traces during the modeling and simulation activities, and the

different request types in HTTP workloads is presented to

parametrize the MAP/MAP/1 model for web server perfor-

mance prediction. The authors of [6] present a method to

characterize and predict workload in a cloud environment.

This method searches for repeatable workload patterns by

exploring cross-VM workload correlations resulting from the

dependencies among applications running on different VMs

that belong to a cloud customer. A co-clustering technique is

developed to identify groups of VMs that frequently exhibit

correlated workload patterns. This method allows to predict

individual VM’s workload based on the groups identified

in the clustering phase. In [7] workload characterization

is performed using the information available at the virtual

machine monitor (VMM) level. After identifying a set of

canonical workloads (i.e., CPU, memory, disk read, disk

write, network receive and network transmit), regression

algorithms are used to express a target workload as a linear

combination of the activity of the canonical workload set.

For each workload in the canonical set, low-level data

available at the VMM level are collected and processed to

produce a set of features that are provided as input to the

regression algorithms. A qualitative model of the workload

behavior is obtained as output using multiple linear least-

square regression.

The authors of [13] use statistical models to predict

resource requirements for data intensive applications in the

cloud. The execution time of MapeReduce jobs is described

and evaluated using Kernel Canonical Correlation Analysis

(KCCA), that allows to simultaneously predict multiple

performance metrics using a single model. MapReduce

optimization is evaluated using a statistics driven workload

generator synthesizing realistic workloads using the models

developed in the KCCA framework.

Except the results presented in [5], [13], none of the above

works gives a statistical characterization of the workload that

can be used in capacity planning. However Pacheco-Sanchez

et al. tested their methodology only on web server load and

Ganapathi et al. consider only MapReduce workloads.

Concerning the characterization of Cloud desktop work-

loads, in [10] VMware use two synthetic workloads (heavy

and light) to test a methodology to determine the server

capacity needed for a VDI deployment. Nevertheless, this

study is specific for the virtual desktop solution proposed by

VMware and does not provide any statistical characterization

of the VDI workload.

Another study focused on remote desktop systems is
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conducted in [9]. The authors model a remote desktop

system through the case study of an office application:

email. The proposed workload model, based on discrete

time Markov chain, although allowing to improve resource

management, is limited to a single application and cannot be

used on VDI or DaaS systems running different concurrent

applications. Focused on DaaS is the work presented in

[8] where the authors present a human-centric reference

architecture for modeling and assessment of objective user

Quality of Experience within virtual desktop clouds. The

authors propose a VDI benchmark that is not parameterized

using statistical properties of real VDI workloads.

III. REFERENCE ARCHITECTURE

The cloud desktop computing platform we consider is

composed by a number of Microsoft Hyper-V Failover

clusters which replicate each other through the Replica

Broker Hyper-V functionality. Since each cluster has the

same internal architecture, without loss of generality in the

remaining of this section we will focus on a single Hyper-V

cluster.

A. Physical architecture

A single cluster in the DaaS computing platform is

composed by a number of physical servers, usually no more

than ten in order to keep it simple to manage and to isolate

potential threats or bottlenecks.

Figure 1 illustrates the components of the cluster. The core

nodes are the N servers, which are connected to an internal
and to an external network. The external network is used for

internet connectivity and it is where provided services are

exposed, while the internal network is used for inter-server

communications and disk access. We make use of a fully

redundant network topology in order to tollerate both single

NIC server failures and a complete switch failure.
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Figure 1. Architecture of a single failover cluster in the cloud-desktop
computing platform

On the top of the physical architecture we have built

a network virtualization layer to isolate different kinds of

network traffic.

B. Storage, distributed filesystem and virtual machines

The compute infrastructure is based on Microsoft Win-

dows Server 2012R2 and VMs run using Microsoft Hyper-

V technology. Though the DaaS infrastructure is based on

Microsoft Windows, it can host VMs that run any Hyper-

V supported operating system. We currently run Microsoft

Windows, Linux and FreeBSD VMs; however, most of the

VMs we run provide the Virtual Desktop service, i.e. they

are Microsoft Windows Servers that host multiple desktop

sessions.

Each customer, or client hereafter, run a set of cloud

desktops on one or more VMs. In the default setting each

Client is associated to and isolated into a VMs (see Fig. 1).

However, large clients (e.g. with more than 50 dektops) are

partitioned on two or more VMs.

Another core component of a failover cluster is the cluster

storage, implemented by two high-available Storage Area

Network (SAN) configured with two RAID-6 arrays. The

two SANs store the disks of the VMs that cannot reside on

servers local storage, otherwise a server failure could affect

the execution of all the VMs it stores. The SANs are also

used to host the storage space dedicated to the cloud storage

service (see Sec.IV).

C. Monitoring system

We monitor the entire system using the opensource prod-

uct Zabbix [14], [15]. This software is composed by three

modules: Server, Agent and Proxy. The first one is the

daemon that collects monitoring data that are sent by the

agents installed on the machines we want to monitor. Since

we have a complex network architecture with many isolated

subnets, we also use the Zabbix Proxy. This component

has a twofold role: it acts as a server collecting data from

clients, but it also behave as a client sending back all the

collected data to the real server. Usually we deploy the

Zabbix proxy on the virtual firewalls associated with every

customer. Zabbix is able to monitor thousands of metrics

for both physical and virtual machines, as well as network

appliances supporting SNMP.

IV. WORKLOAD MODEL

The global system load of the provider under study is

produced by different applications: cloud desktops, cloud

storage, e-mail, web servers, web applications, office man-

agement tools, helpdesk tools, and maintenance tasks. Con-

sidering that all the bundles of the DaaS service include the

cloud desktop and cloud storage services, the two workload

considered as the more rapresentatives are:

• the cloud desktop service workload (W1), is the core

service of the provider. The service consists of virtual

68



desktops running on the cloud infrastructure and host-

ing office automation applications

• The cloud storage service workload (W2), is a classical

cloud storage service allowing file sharing inside and

outside the client private network. Storage service is

accessible using WebDav clients or HTTP clients.

As previusly introduced, the DaaS customers are referred

as clients. Clients generate the system workload and each

client Ci aggregates a set of user, Ci = {ui,1, . . . ui,pi
},

sharing the same objectives, consuming the same set of

resources and generating the same workload(s). In our

analysis we propose the following characterization of DaaS

clients:

• The size Si, that is the maximum number of cloud

desktops that can be activated concurrently by client

Ci and it coincides with the number of cloud desktops

purchased.

• The workload set Wi, that is the set of workloads

generated by client Ci.

• The working time Ti, is the time interval Client i is

active and it depends on the working location of the

users and on their working habits. Ti is defined by the

tuple (T start
i ,ΔTi), where T start

i is the hour of the

day the working time starts and ΔTi is the number of

working hours per day. For example Ti = (9am, 8)
means that Client’s users are active from 9am to 5pm.

Considering the pay-per-use nature of the DaaS service,

the features Si and Wi can change over time. In this work

we consider six clients anonymised as Client 1 - Client
6 characterized by: Wi = {W1,W2}; Ti = (9am, 9) i.e.

client i is active from 9am to 6pm; and different sizes

{S1, . . . , S6} = {16, 13, 4, 5, 10, 6} (measured at Mar. 22,

2014).

A. Cloud desktop service session model
The access pattern of client C1 is reported in Figure 2.

We chose this client as example because the larger, but we

observe that all the clients show the same behavior. Each

Client generates a number of concurrent working sessions,

or active sessions, bounded by Si. As defined above, in our

case study, the client activity is concentrated from 9am to

6pm, even if a marginal number of working sessions are

observed during the night, at early morning and during the

weekend. While early morning sessions bring with them real

workload, the sessions left open during the nights and the

weekends are inactive. Figure 2b shows the details, over one

week, of the timeseries of the daily access profile measured

in number of active sessions.
A working session is characterized by three phases (see

Figure 3):

1) Start - in this phase a Windows desktop is started, and

a working session begins;

2) Use - in this phase office automation applications are

executed;

(a) Mar. 23, 2014 – June 22, 2014

(b) Daily access profile

Figure 2. Access pattern for Client 1

User j  
of Client i 	

�������	
�	
�	
	��
	
��������		

Virtual desktop for  
User j of Client i 

�#	

��#	

��$	

��#	�$	 ��#	

phase 2 
Use 

phase 1 
Start 

Start of an 
application 

Interaction with an 
application Server load 

Working section length 

phase 3 
Shutdown 

Figure 3. DaaS workload model: anatomy of a working session

3) Shutdown - in this phase a desktop session is closed.

Working sessions have a variable length depending on the

duration of Phase 2 - Use. Start and Shutdown phases can be

considered of constant length and their duration is assumed

negligible respect to the length of Phase 2.

The average length L̄i of a working session can be

modeled as described in the following. Let us define:

• ai,j the j-th sample of the number of concurrent active

sessions, e.g. the cloud desktops currently active, for

client i-th.

• Δt, the sample period length (usually measured in

seconds);

• NTi
, the number of samples, of ai, in the working time

period Ti. NTi = ΔTi ×Δt.

The cumulative length of all the cloud desktop sessions in

Ti is given by

Li =

NTi∑

j=1

ai,j ×Δt
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Therefore, the average session lenght L̄i is given by

L̄i = Li/Si

Since a client can decide to add or remove desktops as

it needs, the size of the client changes over time and

this behaviour has a non negligeable impact on L̄i. To

consider this workload feature we introduce two different,

and alternative, metrics for the client size:

• Si,j the size of client i measured at observation j; and

• Si,max = maxj∈[1,NTi
]{Si,j} the maximum value of

the client size over the observation period.

Depending on the metric used we have two new expressions

for the average session lenght:

L̄i =

NTi∑

j=1

ai,j ×Δt

Si,j

or

L̄i,max = Li/Si,max,

V. WORKLOAD CHARACTERIZATION

In this workload characterization study we are interested

in the following metrics:

• Session length;

• CPU load;

• Disk read and write (r/w) rate;

The session length model and metrics have been intro-

duced in the previous section. We remark that a careful

characterization of the session length is core for the design

of workload generators and to define system performance

models.

The CPU load is measured as the average number of

active jobs in the system in the last minute. CPU load is

measured for each client i and is defined as: CPULoadi =
Njobsi
ΔtCPU

where Njobsi is the numebr of jobs submitted by

client i and ΔtCPU is the sampling period for the CPU

Load. This metric is useful to understand whether or not

there is a correct sizing of the number of virtual CPU

(vCPU ) assigned to a VM running cloud desktops. In the

actual setting a VM is allocated to each client, therefore,

if CPULoadi ≤ vCPUi, where vCPUi is the number of

vCPUs assigned to client Ci, we have an over-provisioned

system because every time a process starts it finds a free

processor. On the contrary, processes could get queued

before execution and the client will experiment a perfor-

mance degradation. The case of underprovisioning must be

carefully studied analazying the cumulative distribution of

CPULoadi. An example is provided in Section V-B.

Finally, the disk read/write (r/w) rate is measured in

Bytes/sec and represents the workload submitted to the SAN

hosting the virtual disk of the VM. This metric, can be

measured for each VM (i.e. each Client) or aggregated for all

the VMs mapped on a storage system (e.g. SAN1). The disk
r/w rate is important to plan both the input-output operations
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Figure 4. CDF of the average session length L̄i,max and L̄i for Client 1

per second (iops) of the storage system that can be sustained

and to characterise the rate of r/w requests toward the storage

system.

A. Session length analysis

To show an example of the average session length distri-

bution, and the impact of the session length model adopted,

we report (see Fig. 4) the CDF of L̄i and L̄i,max for client

C1. The results obtained using L̄i are more realistic than

the results obtained with L̄i,max. In the first case we have

working sessions longer than 5 hours in the 25% of the

observations and 50% of the sessions are shorter than 2.5

hours. The L̄i,max metric obviously sets a lower bound for

the average session length. Indeed, considering this metric

only the 12% of the sessions are longer than 5 hours and

about 50% of the sessions are shorter than 1 hour.

From a capacity planning perspective is important to

know the probability distribution of the session length. Using

the Maximum Likelihood Estimator (MLE) method [1] we

determine, here and hereafter, what type of distribution

best fits the observations. (Table I reports the probability

distribution functions used in the fitting).

Figure 5 shows the fitting of the empirical distribution of

L̄i with the Exponential and Weibull distributions. The fit-

ting is almost the same but the MLE selects the Exponential

with parameter μ = 3.076.

B. CPU Load Analysis

First, we analyze the CPU load for Clients 1 - 6. Figure 6

shows the log-log plot of the frequency observed for the

CPU load during working hours The client size Si has direct

impact on the intensity of the workload, that spans over three

order of magnitude. Client 1 and Client 2 have a tail of the

CPU load distribution ranging from 10 to 40 active jobs. The

other clients (3-6) have a tail of the distribution ranging from

0.1 to 10 jobs.
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Figure 5. LLCD plot of session length L̄i

Figure 7 shows the LLCD plot of the empirical distri-

bution for the observed data. The plot clearly shows that

Client 4 - 6 have a CPU load less than 1 in more than the

99% of observations. CPULoad3 ≤ 2 in the 99% of the

observations, and CPULoad3 ≤ 1 in the 90%. For Client

1 and 2 CPU load can reach, with a probability less than

10−4, the value of 40 and 25 respectivelly. However for this

two clients we observe that CPULoad1 ≤ 4 in the 95%

of observations and that CPULoad2 ≤ 2 in the 99% of

observations.

Considering that in the actual sizing each VM uses 4

vCPUs, a first result of the CPULoad characterization

is a resizing of the VMs obtaining an optimal setting.

For example, using 4 vCPUs for client C1 allows to keep

the CPU Load below 1 job per vCPU in the 95% of the

observations. For clients C2 and C3 2 vCPU are enough to

obtain good performances, but for clients C4 −C6 1 vCPU

is adequate.

The workload characteristics pointed out in Fig. 7 is well

known as the long tail nature of a probability distribution.

This feature can be discovered with a simple visual inspec-

tion of the curves [1]. Hoverver, to be more precise and to

provide a useful modeling tool to the research community,

in what follows we assess the probability distributions that

best model the CPULoad for clients C1 and C2. As above

demonstrated, although the CPULoad for clients C3 − C6

shows a long tail nature, these clients are of small size and

generate a negligible load.

Figure 8 shows the LLCD plot for the empirical distribu-

tion of the CPU load and for the candidate Weibull and Log-

normal distributions. Both clients C1 and C2 CPULoads

fit best with a Lognormal distribution, as confirmed by the

values of the Log-Likelihood estimator reported in Table II.

Table I
FITTING DISTRIBUTIONS PARAMETERS FOR CPU LOAD

Distribution Pdf Params

Exponential f(x) = μ−1e−x/μ μ

Lognormal f(x) = 1

xσ
√

2 pi
e
− (ln x−μ)2

2σ2 μ, σ

Weibull f(x) = α
β

(
x
β

)α−1
e−(x/β)α α > 0, β > 0

θ < x if k > 0 or

Generalized f(x) = 1
σ

(
1 + k x−θ

σ

)−1− 1
k θ < x < θ − σ/k

Pareto when k < 0

C. Storage system read/write rate analysis

The storage system is the most important component of

the cloud platform: it stores all the VM images, user profiles

and user data. Considering a Cloud desktop working session,

the storage system is accessed during the first phase to load

the user profile needed to activate the desktop. During Phase

2 the storage system is continuously accessed by the appli-

cations and by the OS (for management tasks). Finally, in

Phase 3 changes to the user session profile/configurations are

written back along with the content of the memory/buffers.

During the night hours and during the weekend the storage

system is backed-up and other management operations are

carried on.

From a detailed analysis of the clients behavior it emerges

that, even if all the bundles includes both cloud desktop and

cloud storage services, the users heavily use the local storage

space (i.e., the storage associated to the cloud desktop)

and not the cloud storage space (W2), mainly used only

to temporarily share documents between users. This means

that the storage system workload is primarily generated by

W1 and only marginally by W2.

As previously introduced, the analysis of the storage

system workload aims at identifying:

• the statistical properties of the aggregated disk
read/write rate measured directly at SAN1 and SAN2

storage systems; and

• the statistical properties of the disk read/write rate

Table II
FITTING DISTRIBUTIONS PARAMETERS FOR CPU LOAD

Client Distribution Params Max. Log Likelihood

estimator

Client 1 Weibull α = 0.427 -12205.6

β = 0.585

Client 1 Lognormal μ = −1.703 -8122.42
σ = 1.657

Client 2 Weibull α = 0.145 23996.1

β = 0.714

Client 2 Lognormal μ = −2.594 28989.5
σ = 1.258
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Figure 6. Log-Log plot of the Frequency of the CPU Load (1 min. avg) for working hours (9am - 6pm)
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Figure 7. LLCD plot of the CPU Load for working hours (9 am - 6pm).
The shape of the survivor function show that this workload attribute is
long-tail distributed

component of workload W1.

The log-log plot of the frequency for SAN1 and SAN2

disk read/write rate is reported in Figure 9. This graph

gives important hints: first, there are few differences in the

rate over the 24h and during the working hours. That is,

the backup and management operations marginally influence

the scale of the distribution but not its shape. Second, the

disk read rate is more intense than the disk write rate and

confirms the 70/30 r/w ratio, typical of enterprise workload.

Third, the workload is almost balanced between SAN1 and

SAN2. Finally, the distribution of the disk read and write
rate is long-tail.

Since in normal working conditions SAN1 and SAN2

workload are balanced, in what follows we will analyze

the distribution fitting taking as reference SAN1. Figure 10

shows the LLCD plot of byte read and write versus three
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Figure 8. LLCD plot of the CPU Load for clients C1 and C2.

distributions: Lognormal, Weibull and Generalized Pareto

(see Tab. I). The plot shows that the Lognormal distribution

(selected as the best fitting based on the Log Likelihood

estimator - see Table III) best fits the body of the distribution

(for both read and write). For disk read rate the Weibull best

fits the tail of the distribution, while for disk write rate the

Pareto and Lognormal fit is almost the same for the tail of

the distribution.

For what concern the load generated by client C1, also in

this case the read/write activities during the 24h and during

the working hours are similar. For the single client too there

is a difference in scale but not in term of shape of the

distribution, as shown by the log-log plot of the frequency

(see Figure 11).

The fitting of the empirical distribution confirms that also

the single client workload attribute byte red/write rate is

long-tail distributed. Indeed, Figure 12 shows that the log-
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Figure 9. Log-log plot of the frequency of disk read/write rate for the storage systems SAN1 and SAN2.

Table III
FITTING DISTRIBUTIONS PARAMETERS FOR SAN1 DISK R/W RATE

Byte read per second
Distribution Params Max. Log Likelihood

estimator

Weibull α = 3.19587e+ 06 -1.42371e+06

β = 0.679

Lognormal μ = 14.209 -1.41819e+06
σ = 1.533

Generalized σ = 1.68518e+ 06 -1.42026e+06

Pareto θ = 10, k = 0.741

Byte write per second
Distribution Params Max. Log Likelihood

estimator

Weibull α = 2.38074e+ 06 -1.3744e+06

β = 1.236

Lognormal μ = 14.3042 -1.35976e+06
σ = 0.719

Generalized σ = 2.16243e+ 06 -1.37769e+06

Pareto θ = 1 + e4, k = 0.011

normal distribution is the candidate for optimal fitting. Also

if the maximum likelihood estimator selects the lognormal as

the optimal fit, a visual analysis of the plot puts in evidence

that, while the lognormal best fits the body, the Weibull best

fits the tail. Table IV shows the distribution parameters.

VI. CONCLUDING REMARKS

Summarizing, this study on cloud desktop workload al-

lows to find out important features useful for capacity

planning and for the design of heuristic algorithms for

dynamic resource provisioning.

First, the session length, that is central to design workload

generators and performance models, can be modelled with

an exponential distribution.

Second, the CPU Load generated by the cloud desktop

workload (W1) is long-tail distributed, as well as the Disk

load (r/w rate). This information drives the selection of

the right queue model, e.g. the M/G/1, G/G/1 or GI/G/1.

Moreover, the analysis of the CPU load enables us to

empirically set the proper size of VMs for the running

infrastructure and to instrument autonomic reconfiguration

thresholds. It is important to remark that from the workload

study emerges that peaks in CPU Load or disk read/write
rate will exceed the average value by two (or more) order of
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Figure 10. Fitting of SAN1 disk r/w rate versus Weibull, Pareto and
Lognormal distributions (LLCD plot)
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Figure 11. Log-log plot of the frequency for client C1 read (left) and write (right) rate.
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Figure 12. Fitting of client C1 empirical distribution versus the Lognormal
and Weibull distributions (LLCD plot)

Table IV
FITTING DISTRIBUTIONS PARAMETERS FOR CLIENT C1 DISK R/W RATE

Byte read per second
Distribution Params Max. Log Likelihood

estimator

Weibull α = 26112.5 -310712

β = 0.223

Lognormal μ = 7.914 -307221
σ = 4.308

Byte write per second
Distribution Params Max. Log Likelihood

estimator

Weibull α = 8168.61 -280671

β = 0.272

Lognormal μ = 7.117 -277578
σ = 3.621

magnitude. Therefore forecasting mechanism and proactive

provisioning techniques must be implemented.

Finally, the detailed analysis of the disk load allow to

discover that workload W2 is marginal and that the cloud

storage service is not used by the users. This information

activated a more detailed analysis to asses the end-user

satisfaction level, the usability of the service and the cus-

tomer requirements. Probably a re-definition of the bundles

is needed.
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