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Abstract—Intrusion Response Systems (IRSs) have been a
major research topic in the last decade. At the core of an IRS is
the response selection algorithm, which selects the best response
action to counter the currently detected attack. Most of the IRSs
proposed so far, statically or dynamically evaluate the mapping
between response actions and specific attacks, ignoring the actual
system state, thus providing only short-term decisions. In this
paper we propose a controller based on Markov Decision Process
(MDP) for an autonomic IRS. The proposed controller is able
to compose atomic response actions to create optimal long-term
response policies to protect a system. Experimental results show
that long-term policies are always more effective than short-term
policies and that they can reduce the threat resolution time up
to 56% in the considered scenario.

I. INTRODUCTION

The frequency of the attacks directed to computer systems
and their complexity is increasing day by day. According to
the Akamai’s state of the Internet 2015 Q2 Report [1], the
number of recorded attacks is more than doubled compared
with a year ago. The complexity of the systems and the
number of alerts raised by Intrusion Detection Systems (IDSs)
makes it infeasible for a human being to timely address all the
threats, therefore increasing the probability of attack success
and the consequent damage to the system [7]. The need of
automatic responses to the attacks motivated the research and
development of Intrusion Response Systems (IRSs). The core
of an IRS is its response selection algorithm which, according
to the currently ongoing attack and a set of available response
actions, selects the best one as a countermeasure.

Since early 2000s, researchers assisted to the development
of mainly two kinds of IRSs: one based on a static mapping
between the detected attack and its best countermeasure (e.g.,
[23]), the other based on a dynamic evaluation of all the
response actions, according to the detected attack and to a
list of evaluation criteria (e.g., [5], [22], [20], [6], [11], [18],
[10]. The former immediately exhibited all the limit of a static
approach, mainly due to scalability problems: a static mapping
requires the system administrator to periodically update the
set of known attacks and to associate them to the proper
response. Given the limits of the static IRSs, the dynamic
ones have been the main subject of study during the last years.
Several approaches have been proposed to select the optimal
response action, usually based on countermeasure ranking

like in [20], [22], [5] or on a multi-objective optimization
problem as in [10]. Even if more scalable than the static
response selection approach, the dynamic one also exposes an
evident scalability problem, as the administrator must identify
a score (or the attributes scores) for all the considered response
actions with respect to all the considered attacks. None of
the considered works, with the exception of [18], take into
consideration the system state, which connects the attack with
the response actions. With a model composed by attack-related
events, system states and response actions, the administrator’s
focus shifts from the static attack-response mapping to the
appropriate attack response description based on the effects
on the system state. As a result, it is possible to identify
a set of target system states and the manual mapping done
by the system administrator can be replaced by an automatic
IRS, able to compose a set of atomic response actions into a
complex response policy or plan. The latter drives the system
towards the set of desired target states [3]. Response actions
composition also means response actions re-use: instead of
developing a single monolitic action for each attack typology,
different combinations of the same atomic actions can be
exploited to deal with different attacks, effectively, including
unknown attacks.

In this paper we introduce a Markov Decision Process
(MDP) based controller able to compose response policies
using atomic response actions. Such a controller is the core of
the proposed autonomic IRS.

A. System Overview

Generally, an autonomic system is composed of two dif-
ferent subsystems [24]: a controller that implements the self-
management algorithms and a controlled subsystem concerned
with the domain functionality. In the proposed IRS, the con-
troller subsystem is designed according to the MAPE-K loop
for autonomic systems [14], as shown in Figure 1. Specifically,
the Monitor phase relies on a set of Network IDSs which
analyze the network traffic of the controlled subsystem and
on Host IDSs properly deployed on the controlled systems
that analyze host attributes such as system loads and system
loggers. The event generated by the IDSs are then collected
and analyzed by the IDS Event Manager component, which
implements the Analyze phase of the MAPE-K loop. Its task is
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Fig. 1. High-Level System Architecture

to correlate and merge the data flows coming from the IDSs
in order to produce a single, added value data flow to feed
to the Plan phase. This is implemented by a controller based
on a MDP. Given the inputs of the IDS Event Manager and
the current system state, its task is to compute the Response
Policy needed to drive the managed system towards the target
state. Specific actuators on the controlled system named Policy
Executors are in charge of applying the computed response
policy, implementing the Execute phase of the MAPE-K loop.
Finally, the Knowledge phase is contained into the MDP-
based Controller. The latter, in fact, starts its execution with an
initial parametrization provided by a domain expert, but then
it continuously improves its behaviour by learning from the
results of response actions applied on the managed system.

B. Contributions and Organization

In this paper we focus on the design, realization and evalu-
ation of the MDP-based controller introduced in Section I-A.
Its main characteristic is the ability to compose a sequence of
atomic response actions to form an optimal response policy
able to drive the system to the target state. Specifically, we
provide the complete model and methodology needed to build
MDP-based controllers for security planning. We show that,
when a small degradation of the reward is allowed, such
approach can be applied to large systems. Furthermore, we
experimentally show that the adoption of long-term response
policies can be more effective than the adoption of single
response actions: in the best execution scenario we were able
to reduce the threat resolution time by 56%, while in the
worst case the threat resolution time was the same. All the
experiments have been carried out using real-world attacks to
exploit real vulnerabilities (more details on Section V-A). Note
that the design and realization of the IDS Event Manager and
the system learning behaviour of the controller are out of the
scope of the present work.

The paper is structured as follows: in Section II we describe
several related works. The complete model design and method-
ology of the MDP-based controller is described in Section III;
in Section IV we compare the performances of an optimal
and a sub-optimal MDP solvers; in Section V we describe the
realized testbed and we provide detailed experimental results.
Finally, in Section VI we draw the conclusions.

II. RELATED WORKS

In this section we describe relevant works in the field
of dynamic IRS. Specifically, we are interested in response

selection methodologies. All the considered works try to make
a balance between the positive and negative effects that a
response could have on a running system and most of them
try to model the system not by considering its internal status,
but only considering the services it delivers and the inter-
dependencies among them.

In [23] the authors represent a computer system by model-
ing: (i) the executed services; (ii) the system users; (iii) the
network topology; (iv) the firewall rules. The model is used
to find, given a dependency tree between the entities, the best
firewall rule to apply in case of a detected attack. The best
response is selected considering that very often the application
of an additional firewall rule may interfere with the normal
system operativeness. Therefore the response which provides
the lowest penalty to the normal operativeness is applied.

In [20] the authors extend [23] by evaluating benefits and
risks of a reaction, but also potential damages caused by the
attack in case of no reaction. Penalty costs are modeled as
Service Level Agreement costs related to the importance of
a provided service. The response selection strategy proposed
by REASSESS [20] considers both the positive and negative
effects that the execution of an action could have on a running
system. Such effects are included in a global index that is used
to evaluate all the response actions, possibly using historical
effectiveness data. Once all the actions are evaluated, an
ordered list of response actions is produced and the most
effective response action is selected to be applied to the
system. However, the proposed approach neither consider the
current system state, nor the explicit evaluation of different
criteria with subsequent specific optimization.

In [19] the authors propose to compute a response policy
rather than just a single response action to face an ongoing
attack. The proposed model accounts for statically defined
sequences of response actions which are statically mapped to
the managed attacks. A dynamic behavior of the IRS controller
is introduced in the run-time evaluation of the policies: while
executing a given policy, the controller uses a threshold in
order to decide whether to execute the next action in the policy
or to stop its execution.

In [22] the authors map the attack detected by the IDS to
an Attack Graph (AG), which is used to model multi-stage
attacks. Based on the AG, defense points are assigned to each
node and their negative impact is calculated independently of
other responses. Finally, a Pareto-set is generated based on the
response positive effect and negative impact values.

The work presented in [18] is the most similar to ours.
The authors use a Bayesian Direct Acyclic Graph (DAG)
to model a probabilistic attacker behavior. The DAG nodes
describe system assets and system asset dependencies, while
edges represent possible exploitation paths. System assets are
described by the means of binary attributes, that characterize
them as active or disabled. From the defense point of view, the
authors propose binary response actions, that is, actions that
are able to deactivate or activate a certain service or asset. The
actions are evaluated according to the Confidentiality Integrity
Availability (CIA) triad, but since all the considered actions
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deal with services or machines deactivation, their evaluation
always increase confidentiality and integrity and always pe-
nalize the overall system availability. The response selection
problem is formulated by building a Partially Observable
MDP (POMDP) from the DAG and by selecting the optimal
single response action according to an evaluation with infinite
look-ahead, aimed at minimizing the overall execution cost.
The entire work is built on the assumption that a partial
shutdown is preferred to a scenario in which the attacker has
partial control of the system. Even if this is a big step ahead
towards dynamically building response policies to protect
computer systems, we believe that an IRS should also be able
to produce non-disruptive actions on the controlled system.
Non disruptive behavior can be achieved either by developing
specific and monolithic responses for every considered attack
or by cleverly composing and reusing a set of fine-grained
response actions.

III. SYSTEM MODEL

The system model is based on a MDP. A MDP is a
controlled stochastic process satisfying the Markov property
with rewards assigned to state transitions. A solution to a
MDP is a policy, mapping states to actions, that (perhaps
stochastically) determines state transitions to maximize the
reward according to a set of evaluation criteria [16].

Let S be the finite set of states; let A be the finite set of
actions available to the MDP agent.

Let Pa(s, s′) = P[St+1 = s′|St = s, At = a] be the
probability that the response action a ∈ A in state s ∈ S
at time t will lead to state s′ ∈ S at time t + 1.

Let Stgt ⊆ S be the set of target states. Formally, f ∈ Stgt

is a state where the controller does not take any action, i.e.,
P[At = a|St = f ] = 0 ∀a ∈ A, ∀f ∈ Stgt. We assume here
that there always exists a sequence of actions that can take the
system from any non-target state to a target state.

Let R be the reward function R : S × A → R. Rewards
are computed using the Simple Additive Weighting (SAW)
technique [12], that is: R(s, a) =

∑
c ws,ces,a,c, where es,a,c

is the normalized evaluation of response action a under
criterion c in state s and ws,c is the weight of criterion c
in state s.

Let γ be the discount factor, 0 ≤ γ < 1 and let Gt =∑K

k=0
γkRt+k be the discounted reward from time t + 1 to

time t + K . If K →∞, Gt is the unbounded reward, that is,
the reward with infinite look-ahead.

M = 〈S, A, Pa, R, γ〉 is the MDP underlying the controller
of the IRS. The aim of the MDP is to find an optimal policy π,
that is, a sequence of actions that optimally drives the system
from the current state to the set of the target states Stgt.

We use a Object Oriented MDP representation (OO-MDP)
[8], and each state is characterized by a number attributes.
Specifically, states are composed by joining 2 macro-attributes:
(i) the attack vector P and (ii) the system variables V . The
former contains as many variables as the number of attacks
detectable by the IDSs and each variable Pi represents the
probability value computed by the Event Manager that the

system is currently under attack i. The latter represent the
current system status.

A. States Characterization

The system model presented in Section III is general and
can be specialized in different ways according to the specific
system that has to be protected. We implemented it considering
7 different attacks and 11 system attributes. The attacks are
modeled by the attributes Pscan, Pvsftpd, Psmbd, Pphpcgi,
Pircd, Pdistccd, Prmi, which represent the probability as
computed by the Event Manager that the controlled system is
being attacked, respectively by: a portscan, an exploit on the
vsftpd daemon, an exploit on the smbd daemon, an exploit
on the execution of PHP as a CGI application, an exploit on
the ircd daemon, an exploit on the distccd daemon and
finally and exploit on the rmi Java daemon. More details
about the considered attacks are described in Section V-A.

Furthermore, we consider the following system attributes:

• firewall ∈ {true, false} represents whether the system
firewall is active.

• {blocked ips} represents the set of currently blocked
source IP addresses from the firewall of the considered
system.

• {flowlimit ips} represents the set of currently
throughput-limited source IP addresses.

• alert ∈ {true, false} represents whether the system
administrator has been alerted about the ongoing attack.

• {honeypot ips} represents the set of IP addresses whose
traffic is currently being redirected to an honeypot.

• logV erb ∈ {0, 1, 2, 3, 4, 5} represents the currently con-
figured logging verbosity of the applications installed on
the considered system.

• active ∈ {true, false} represents whether the consid-
ered system is currently active and serving requests or if
it has been shut down.

• quarantined ∈ {true, false} represents whether the
considered system is currently active and serving requests
or if it has been quarantined (i.e., it has been isolated from
the network).

• rebooted ∈ {true, false} represents whether the consid-
ered system has ever been rebooted during the execution
of the current policy.

• backup ∈ {true, false} represents whether the consid-
ered system has ever been backed up during the execution
of the current policy.

• updated ∈ {true, false} represents whether the soft-
ware installed on the controlled system is updated.

B. Reward Function

We define the reward function as a penalty score on the
considered actions. The reward function evaluates the response
actions according to the following criteria:

• Response Time R(x) ∈ R. This criteria represents the
time needed to apply the response x.

• Cost C(x) ∈ R. This criteria represents the economic
cost of applying the response x.
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• Impact index I(x) ∈ [0, 1]. This criteria represents the
impact index of the response x on the normal system
operativeness. The lower its value is, the lower is the
impact on the system.

We define the following reward function:

R = −wr

R(x)

Rmax

− wc

C(x)

Cmax

− wiI(x) (1)

where wr, wc, wi ∈ [0, 1] are custom weights used to balance
the importance of the criteria in the multicriteria optimization
problem.Rmax and Cmax represent respectively the maximum
response and the maximum cost over all the considered
response actions and are used to normalize their values.

C. Response Actions

In order to avoid activating potentially disruptive response
actions when the system is not under severe attack, we
introduce two thresholds on the attack probability attributes,
namely T1 and T2. Thus, given an attack probability p, it can
belong to one of the following 4 stages:

• p < T1. At this stage the IDSs have detected an insignif-
icant anomaly that should be considered as noise and no
response actions should be triggered;

• T1 ≤ p < T2. At this stage the IDSs have detected
a significant anomaly, which cannot be classified as an
attack. However, the system can start planning some
response action in order to prevent possible attacks;

• T2 ≤ p < 1. At this stage the anomaly detected by the
IDSs is considered to be an unidentified attack (p < 1),
therefore the response plan generated by the IRS can only
contain generic responses;

• p = 1. The attack has been identified and a specific
response plan can be computed.

In the following we describe, for space reasons, only some
of the response actions that our IRS prototype is able to apply
on the controlled system. For each of them, we will provide
a description of its behavior and of the response time R, cost
C and impact I attributes, needed to compute the expected
reward when planning the optimal policy. These attributes are
configurable by the system administrator to reflect the actual
defended system. Each response will also be characterized by
pre-conditions and post-conditions. The former are conditions
that identify a subset of the states in which the actions can be
executed; the latter are used instead to compute the state in
which the system will be after the execution of the considered
action. Eventual dependencies between response actions are
not directly modelled: indeed, using pre-conditions, we are
able to model the eventual dependency of a response action on
a given subset of states, which in turn could imply that some
dependent actions have been executed prior to the execution
of the current action. Table I summarizes response time, cost
and impact attributes for all of the considered actions.

a) Firewall Activation: The response aim is to start the
system’s firewall in case it was not started previously. Its
characteristics are:

• Reward Attributes: R = 2, C = 1, I = 0

• Pre-Conditions: (Pscan ≥ T1 ∨ Pvsftpd ≥ T1 ∨ Psmbd ≥ T1 ∨
Pphpcgid ≥ T1 ∨ Pdistccd ≥ T1 ∨ Prmi ≥ T1 ∨ Pircd ≥ T1) ∧
¬firewall ∧ ¬quarantined ∧ active ∧ logV erb > 0

• Post-Conditions: Prob = 1, firewall = 1

This action can be executed when at least one entry of the
attack probability vector P is greater than T1, the firewall
itself has not been activated yet, the system is active and it
has not been quarantined and the log verbosity is at least equal
to 1. The resulting state after the execution of the action is
identical to the current state, but with the firewall attribute
set to 1. The reason why a firewall could be inactive is that, as
described in Section V, we are modeling an HPC system. In
such systems usually the personal firewall is disabled to avoid
any possible overhead.

b) Block Source IP badIP: This response configures
the system’s personal firewall in order to drop IP packets
originated by the IP badIP. Its characteristics are:

• Reward Attributes: R = 1, C = 3, I = 0.3
• Pre-Conditions: Pscan ≥ T2∧firewall∧¬quarantined∧active∧

badIP �∈ blocked ips ∧ alert ∧ logV erb > 1
• Post-Conditions: Prob = 1, blocked ips = blocked ips ∪

{badIP}, Pscan = 0

This action can be executed when the probability of having
detected a port-scan attack is greater than or equal to T2 and
the firewall has been previously activated. Furthermore, it is
required that the system is active and that it has not been
quarantined and that its log verbosity is at least equal to 2.
Finally, the system administrator must have been previously
alerted and the IP address of the attacker must not yet belong
to the blocked IPs set. The resulting state after the execution
of the action is identical to the current state, but with the
badIP included into the set of the blocked IPs and with Pscan

attribute set to 0. Setting the probability of an attack to zero for
the next state means that the expected result in executing the
given action is to certainly stop the attack. We set the impact
to 0.3 because we consider that the observed source IP could
be a router executing a source NAT. Therefore, blocking the
IP would result in blocking the attacker as well as potentially
non-malicious clients masqueraded by the source NAT.

c) Flow Rate Limit badIP: This response configures the
system’s personal firewall in order to limit the traffic rate of
IP packets originated by the IP badIP. Its characteristics are:

• Reward Attributes: R = 3, C = 1, I = 0.2
• Pre-Conditions: Pscan ≥ T1∧firewall∧badIp �∈ flowlimit ips∧

¬quarantined ∧ active ∧ logV erb > 0
• Post-Conditions:

8><
>:

Prob = 0.5, limited ips = limited ips ∪ {badIP},

Pscan = 0

Prob = 0.5, limited ips = limited ips ∪ {badIP}

This action can be executed when the probability of having
identified a port-scan attack is greater than or equal to T1 and
the firewall has been previously activated. Furthermore, it is
required that the system is active and that it has not been
quarantined and that its log verbosity is at least equal to 1.
Finally, the IP address of the prospective attacker must not
belong to the set of the flow rate limited IPs. This action
can drive the system to two different resulting states, with
probability 0.5 each: in one case the action is able to stop the
prospective attacker and therefore we have Pscan = 0 together

160



with the attacker IP address included in the set of flow rate
limited IPs. In the other case the action is unable to stop the
attacker and therefore we only obtain to limit the flow rate of
the attacker’s IP by adding it to the set of the flow rate limited
IPs.

d) Close Network Connection: This response closes an
unauthorized TCP connection or UDP flow between any pair
(lhost:lport, rhost:rport). Its characteristics are:

• Reward Attributes: R = 1, C = 1, I = 0.2
• Pre-Conditions: ((Pvsftpd = 1 ∨ Psmbd = 1 ∨ Pphpcgid = 1 ∨

Pdistccd = 1 ∨ Prmi = 1 ∨ Pircd = 1) ∨ rebooted ∧ (Pvsftpd ≥
T2 ∨ Psmbd ≥ T2 ∨ Pphpcgid ≥ T2 ∨ Pircd ≥ T2 ∨ Pdistccd ≥
T2 ∨ Prmi ≥ T2)) ∧ ¬quarantined ∧ active ∧ alert ∧ rhost �∈
blocked ips ∧ rhost �∈ honeypotted ips ∧ logV erb > 2

• Post-Conditions:8><
>:

Prob = 0.1, Pvsftpd = 0, Psmbd = 0, Pphpcgid = 0,

Pircd = 0, Pdistccd = 0, Prmi = 0

Prob = 0.9, no changes

This action can be executed immediately when at least one
of the vulnerability has been exploited or it can be executed
after a system reboot when at least one of the vulnerability has
a probability greater than T2 of being exploited. The system
is required to be active and the remote host must not belong
neither to the set of the blocked IPs nor to the set of the
honeypotted IPs. Finally, the administrator must be alerted and
the log verbosity must be greater than 2.

The Close Network Connection response action is very
greedy for the MDP model because it is characterized by very
low response time, cost and impact attributes, yet without pro-
viding good chances of successfully dealing with the ongoing
attack. Therefore it could happen that in finding an optimal
response policy the Close Network Connection response action
could be selected tens of times, without having a positive
effect on the system. For this reason, we generally introduce a
dynamic reward computation based on an exponential increase
of the penalty score of the considered response action every
time that the action is actually executed. This dynamic reward
computation is optional and can be activated on selected
response actions. In our case it has been activated only on
Close Network Connection.

D. Termination Function

We identify the set Stgt of target states by defining a
termination function T : S → {true, false}. We allow the
policy plan to terminate when the system has reached either
a state of controlled anomaly or a state of fully clean system.
We define a controlled anomaly state Sano as:
Sano = {s ∈ S|(Pscan < T2∧Pvsftpd < T2∧Psmbd < T2∧Pphpcgi <

T2∧Pirc < T2∧Pdistcc < T2∧Prmi < T2)∧(Pscan ≥ T1∨Pvsftpd ≥

T1 ∨ Psmbd ≥ T1 ∨ Pphpcgi ≥ T1 ∨ Pirc ≥ T1 ∨ Pdistcc ≥

T1 ∨ Prmi ≥ T1) ∧ (firewall ∧ blocked ips = ∅ ∧ flowlimited ips �=

∅∧honeypot ips = ∅ ∧ logV erb > 0∧ active∧¬quarantined)}. We
consider a system to be in a controlled anomaly state when
the threshold T2 is never hit by any of the considered attack
probabilities and there is at least one attack probability greater
than or equal to the threshold T1. The anomaly is controlled
because we impose as a requirement that there must be at least
one entry in the set of the flow limited IPs.

Action Name Response Time (sec) Cost Impact

Generate Alert 1 1 0
Firewall Activation 2 1 0
Block Source IP 1 3 0.3

Unblock Source IP 1 3 0
Flow Rate Limit 3 1 0.2
Unlimit Flow Rate 3 1 0

Redirect to Honeypot 3 3 0.1
Un-honeypot 3 3 0

Increase Log Verbosity 2 1 0.05
Decrease Log Verbosity 1 1 0

Quarantine Host 5 5 1
Manual Resolution 3600 200 0
System Reboot 60 6 0.7

System Shutdown 30 6 1
Backup Host 3600 10 0.1

Close Network Connection 1 1 0.2
Software Update 600 300 0.1

TABLE I
ACTION PARAMETER SUMMARY

We define a fully clean system state Sclean as:
Sclean = {s ∈ S|Pscan < T1∧Pvsftpd < T1∧Psmbd < T1∧Pphpcgi <

T1 ∧ Pirc < T1 ∧ Pdistcc < T1 ∧ Prmi < T1 ∧ blocked ips =

∅ ∧ flowlimited ips = ∅ ∧ honeypot ips = ∅ ∧ logV erb = 0 ∧

active ∧ ¬quarantined}. A clean system state is represented
by an attack probability vector whose values are all under the
T1 threshold and there are no firewall limitation configured.
We have therefore: Stgt = Sano ∪ Sclean. We propose this
specific termination function to provide an example of the
entire lifecycle of the IRS, including both defense actions
(e.g., Block Source IP, Software Update) and release actions
(e.g., Unblock Source IP, Decrease Log Verbosity): in a real
environment constraints such as no firewall rules configured
are unlikely to appear.

IV. PERFORMANCE EVALUATION

The typical methods used to find the optimal policy π
that maximizes the total reward of an MDP require the
manipulation of a value function. A value function represents
the expected objective value obtained following policy π from
an initial state s ∈ S. One of the most used algorithm
to compute the value function is the Value Iteration (VI)
[4], which produces successive approximations of the optimal
value function until the expected objective value is stable for
all the MDP states. Unfortunately, even if each iteration can
be performed in O(|A||S|2) steps [13], the number of states
composing the MDP grows exponentially with the number of
the defined attributes, thus limiting the applicability of the
approach only to small systems. For this reason, in order
to show the applicability of our model to large systems,
we compare the performances (planning time and obtained
reward) of the VI algorithm with the performances of the
sub-optimal rollout-based Monte-Carlo algorithm named UCT
introduced in [15]. The comparison will show that, for systems
where a small reward degradation is acceptable, the planning
time can be improved by more than 3 orders of magnitude.

The algorithms were applied in order to find a policy for a
system composed by up to 1000 boolean state attributes and up
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Fig. 2. Planning Time Comparison

Fig. 3. Rewards comparison

to 1000 response actions. Each action is bound to one attribute
and it changes its boolean value when executed, in order
to generate the full state space. The termination condition
is based on an additional termination attribute that can be
set to true by any action with probability 1/10. The reward
function assigns the reward −1 to the actions with an even
index and −2 to the actions with an odd index. All the tests
have been executed on a single compute node of the Shadow
supercomputer at Mississippi State University, characterized
by 20 cores and 512 GB of RAM. Anyway, the number of
cores does not affect the overall planning time because both
the algorithms have a single-thread implementation.

Figure 2 compares the planning time of the VI algorithm
configured with γ = 0.9 with the UCT algorithm configured
to perform 10, 20 or 30 rollouts and with a look-ahead of 10.
Results highlight that VI’s planning time quickly becomes high
even for systems with only 50 state attributes and 50 response
actions. By contrast, the UCT with 10 rollouts algorithm is
able to plan a policy in less than 2 seconds for a system with
1000 state attributes and 1000 response actions.

Figure 3 compares the obtained rewards. As expected, the
average reward obtained by VI is close to −10, specifically
−10.07 because it always choose the best response actions.
By contrast, the UCT algorithm with 30 rollouts produces an
average reward of −10.86.

V. EXPERIMENTAL RESULTS

In this section we describe the experiments we carried out
to validate the effectiveness of the proposed approach. We set
up a system composed by: an HPC cluster based on Rocks
[2], a Snort Intrusion Detection System (IDS) [21] and the

Fig. 4. Testbed Architecture

IRS controller described in Section III. The output of Snort
is therefore considered as if it was the output of the Event
Manager component described in Section I-A.

Figure 4 represents the architecture of the testbed, which
is composed by a single physical machine which hosts two
separate virtual networks, namely: (i) Cluster Internal Virtual
Network and (ii) IRS Virtual Network. The former is attached
to all the compute nodes of the Rocks cluster, while the latter
is attached to Snort and to the IRS. The two networks are
constituted by two different layer-2 segments and, while the
first is also bridged to physical WAN interface eth0, the IRS
Virtual Network is instead completely isolated.

We run on the physical host two instances of the tool
daemonlogger, which is used to mirror the traffic from the
Cluster Internal Virtual Network and from eth0 to the IRS
Virtual Network. Traffic mirroring is accomplished at layer 2
and it is one-way, that is, frames captured on eth0 or on
the Cluster Internal Virtual Network are forwarded to the IRS
Virtual Network but not vice-versa.

We simulate a scenario in which an attacker already
compromised one compute node in the cluster and he is
trying to exploit vulnerabilities exposed by another com-
pute node. To this end, we set up 5 compute nodes:
compute-0-0-1 to compute-0-0-3 are healthy VMs;
compute-0-0-0 is the VM compromised by the attacker
and finally metasploitable is a vulnerable, but not yet
compromised compute node. The compromised compute node
is a VM in which we installed the Metasploit software [17]. We
use this VM to scan the internal network and to launch attacks
towards the vulnerable VM metasploitable. The latter is
a publicly downloadable VM that exposes 6 vulnerabilities, as
described in Section V-A.

A. Vulnerabilities

In this section we describe the six vulnerabilities that we
consider in the experiments. We chose these vulnerabilities
among the others because the software exposing them is
freely available and ready to be exploited by downloading the
metasploitable VM from the Metasploit web site 1.

1) OSVBD-73753. vsftpd on vsftpd.beasts.org Trojaned
Distribution. The backdoor payload is constituted by a

1https://information.rapid7.com/metasploitable-download.html
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”:)” smiley face in the FTP username and the result is
a TCP callback shell.

2) CVE-2007-2447. There is a command execution vulera-
bility in Samba versions 3.0.20 through 3.0.25rc3 when
using the non-default ”username map script” config-
uration option. By specifying a username containing
shell meta characters, attackers can execute arbitrary
commands.

3) CVE-2012-1823.When run as a CGI, PHP up to version
5.3.12 and 5.4.2 is vulnerable to an argument injection
vulnerability: in case an unescaped ’=’ is passed in the
HTTP query string, the string is split on ’+’ (encoded
space) characters, urldecoded, passed to a function that
escapes shell metacharacters (the ”encoded in a system-
defined manner” from the RFC) and then passes them
to the CGI binary.

4) CVE-2010-2075. UnrealIRCd 3.2.8.1, as distributed on
certain mirror sites from November 2009 through June
2010, contains an externally introduced modification
(Trojan Horse) in the DEBUG3 DOLOG SYSTEM
macro, which allows remote attackers to execute arbi-
trary commands.

5) CVE-2004-2687. distcc 2.x, when not configured to
restrict access to the server port, allows remote attackers
to execute arbitrary commands via compilation jobs,
which are executed by the server without authorization
checks.

6) CVE-2011-3556. The vulnerability is due to the default
configuration of the RMI Registry and RMI Activation
services allowing the loading of classes from a remote
URL. A remote unauthenticated attacker can leverage
this vulnerability by sending a crafted RMI message to a
target server. In an attack scenario where code execution
is successful the injected code will be executed within
the security context of the target service.

All these vulnerabilities can be exploited by using already
developed exploits available in the Metasploit DB.

B. Snort Configuration

Given the architecture of the testbed, Snort will work as an
asynchronous IDS. That is, it will be able to detect malicious
traffic, but not to stop it. Snort provides three rules sets, named
respectively: Community Rules, Registered Rules, Subscribed
Rules. Community rules are publicly available; registered rules
are freely available upon registration; subscribed rules are
instead available buying a specific Cisco subscription plan.
We configured it to use both the Community and Registered
rules and it was able to detect out-of-the-box only one of
the six exploits that we launched from compute-0-0-0
to metasploitable, specifically CVE-2012-2335. In order
to create new Snort rules to handle unidentified attacks, we
analyzed with the tool Wireshark the network traffic between
compute-0-0-0 and metasploitable during the at-
tacks to find characteristic signatures. For space reasons, in
the following we describe only one representative rule among
the five rules added to Snort.

• OSVBD-73753 Exploit Analysis. As described in OS-
VDB, the exploit tries to log into the FTP server by
using a username ending with the string ”:)”. We therefore
added the following rule in the Snort DB:
alert tcp any any -> any 21 (msg:"vsFTPd

backdoor detected"; sid:80000000;rev:1;

classtype:suspicious-login; content:"|3a 29|";)

This rule generates an alert when the payload of TCP
segments coming from any source IP and any source
port and directed to any destination IP and port 21
contain the hexadecimal string: ”3a 29”, corresponding
to the ASCII characters: ”:)”.

Please note that the added rules are not intended to be used
in a production environment: specifically, the presented rule
would trigger a suspicious login alert every time a ”:)” string
is found in the payload of any analysed packet, thus generating
a lot of false positives.

C. Simulation of the Controller Behavior

We ran three different sets of simulations: the first set was
carried out in order to show how the controller is able to
compute optimal policies to respond to a portscan attack; in
the second set the system is subject to a vulnerability exploit;
finally, in the third set, we show the controller behavior when
used to face multiple concurrent attacks. All the simulations
have been repeated 10000 times, with the controller configured
to use the VI algorithm and the reward function configured to
optimize the response policy exclusively either on response
time, or cost or impact. For each experiment we report the
overall average resolution time, cost and impact attributes,
each one computed, respectively, as average sum of the
response times, costs and impacts of the actions included in the
response policy. Since the produced policies are probabilistic,
we also provide the confidence intervals of each attribute. It
is important to note that, given the probabilistic nature of the
planned policies, they represent different possible evolutions
of the system. For space reason, we limit our discussion only
to the most likely system evolution scenarios and we will
show results only for the resolution time metric, but the same
considerations apply for the other cases. Furthermore, we show
how the γ discount factor, which dictates the short- or long-
term nature of the policy, impacts the obtained results.

1) Portscan Attack: a portscan attack is usually one of
the first steps an attacker carries out in order to discover
the vulnerabilities of a system. It is a really common attack
and it does not necessarily imply that the system has been
compromised. Rather it must be considered as a first alarm in
order to prepare the system to a prospective future attack. For
this reason, the model has been designed so that not all the
response actions are available to counter the portscan attacks:
disruptive actions such as System Reboot, Quarantine Host
and so on are only applied when there is the evidence of an
exploited vulnerability, as specified in the action preconditions
described in Section III-C.

Figure 5 compares the average resolution times obtained
with the different optimization methods. The lowest resolution
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Fig. 5. Average Portscan Resolution Time

time has been achieved when the controller was set to optimize
on response time and with γ = 0.9. Generally speaking,
the results obtained with γ = 0.9 are always better than
the results obtained with γ = 0. This means that when
the controller is configured to produce long-term policies, it
always provides better results. Specifically, when the controller
was set to optimize on response time and γ = 0.9, it
produced 6 equivalent policies, and the most likely was:
generateAlert, increaseLogVerb, activateFirewall, increaseLogVerb,
blockSrcIP, unblockSrcip, decreaseLogVerb, decreaseLogVerb. We
can split such a policy in three blocks: (i) preparation, (ii)
response and (iii) conclusion. The preparation phase regarded
the alert generation, the increase of the verbosity of the logging
system and the firewall activation. The core response action
is blockSrcIp, which configures the firewall to drop incoming
packets from the IP that is generating the malicious traffic.
Finally, conclusion actions are carried out to restore the system
to normal conditions by unblocking the source IP address and
by decreasing the log verbosity. The action increaseLogVerb,
as well as the action decreaseLogVerb, have been added twice
to the response policy because the action blockSrcIp needs a
log verbosity at least equal to 2. The other 5 generated policies
in this case only differ in the order of the actions planned for
the preparation and conclusion phases.

When the controller was configured to optimize on response
time, but with γ = 0, it produced 20 different policies.
Even if the most likely was the same that was computed
in the γ = 0.9 case, in this case a lot of locally optimal,
but globally sub-optimal policies have been planned. In fact,
setting γ = 0 results in a greedy approach, which is not
necessarily optimal in a long-term perspective. Indeed, besides
the most likely policy, the controller planned a lot of policies
similar to: generateAlert, increaseLogVerb, increaseLogVerb, in-
creaseLogVerb, increaseLogVerb, increaseLogVerb, activateFirewall,
blockSrcIP, unblockSrcip, decreaseLogVerb, decreaseLogVerb, de-
creaseLogVerb, decreaseLogVerb, decreaseLogVerb. As described
in Table I, the Firewall Activation and Increase Log Verbosity
actions have both the same response time. Therefore, after
having selected the fastest action (Generate Alert), since in
the resulting state the action Block Source IP is unavailable
because it first needs the firewall to be activated, the greedy
approach is not able to distinguish between the Firewall
Activation and Increase Log Verbosity because they both have
a response time equal to 2. The choice between them is
therefore probabilistic with 1/2 probability each and it might

Fig. 6. Average Vulnerability Exploit Resolution Time

happen that the controller chooses five times in sequence to
increase the log verbosity, even if a log verbosity equal to 2
is sufficient for the execution of the main action blockSrcIP.

2) Vulnerability Exploit: a vulnerability exploit happens
when an attacker successfully manages to breach a system by
exploiting an exposed vulnerability. Contrarily to the portscan
attack, most of times it implies that the system has been
compromised. In this case we try to respond to the attack
with all the set of actions. However, the Block Source IP,
Flow Rate Limit and Redirect to Honeypot are not able to
solve the problem because the exploitation of the considered
vulnerabilities opens a reverse shell in which the compromised
host directly connects, as a client, to the machine of the
attacker. Since most firewalls are stateful, we modeled such
actions so that they are not able to solve the problem because
in the real system they would not affect already established
connections. However, it is possible to tailor the controller
behavior by just modifying the pre-conditions and the post-
conditions of the aforementioned actions in the model.

Figure 6 compares the average resolution times and con-
fidence intervals obtained with the different optimization
methods. The lowest resolution time, along with the smallest
confidence interval, has been achieved with the controller set
to optimize on response time and with γ = 0.9. Specifically,
when the controller was set to optimize on response time
with γ = 0.9, the most likely policy was: increaseLogVerb,
generateAlert, activateFirewall, increaseLogVerb, increaseLogVerb,
increaseLogVerb, increaseLogVerb, systemReboot, backup, software-
Update, decreaseLogVerb, decreaseLogVerb, decreaseLogVerb, de-
creaseLogVerb, decreaseLogVerb. We can split such a policy in
five blocks: (i) first preparation; (ii) first response attempt; (iii)
second preparation; (iv) second response attempt; (v) conclu-
sion. It is worth noting how the failure in solving the problem
with the first attempt leaded to a countermeasure escalation
for the second attempt. Specifically, the first preparation phase
increased the log verbosity to the maximum level (required to
issue a system reboot) and activated the firewall. The first
response attempt is the system reboot which, according to
the model, has a 0.3 probability of successfully countering
the currently ongoing attack. In this case the system reboot
was not able to successfully face the attack and therefore
the controller planned a software update in order to remove
the vulnerability at its roots. The second preparation phase is
therefore the execution of a backup before the software update.
Finally the software update solved the problem and conclusion
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Fig. 7. Average Combined Attack Resolution Time

actions have been selected to complete the policy.
When the controller was set to optimize on response time,

but with γ = 0, the most likely policy was: generateAlert, in-
creaseLogVerb, activateFirewall, increaseLogVerb, increaseLogVerb,
increaseLogVerb, increaseLogVerb, systemReboot, quarantineSystem,
backup, manualResolution, decreaseLogVerb, decreaseLogVerb, de-
creaseLogVerb, decreaseLogVerb, decreaseLogVerb. The first steps
are the same as in the case with γ = 0.9. Even if from the
first selected response actions it could seem that the controller
is doing a good job, this merely is a coincidence: the first
preparation actions are the same only because those are the
actions with the lowest possible response time. After the sys-
tem reboot, following the greedy approach, the action with the
lowest response time has been selected (quarantineSystem).
This action has not been taken before because it first requires
a system reboot. After the system has been quarantined, the
only available choices were Backup or manualResolution, both
of them with the same response time. The former was wrongly
selected (it does not actually solve the problem and it is only a
prerequisite for the softwareUpdate action) and only as a last
resort the manualResolution action has been chosen.

3) Combined Vulnerability and Portscan Attack: in this
section we will describe the policies planned by the controller
when the controlled system was subject to a combined flow of
portscan and vulnerability attacks. In this test all the response
actions have been used to counter the ongoing attack.

Figure 7 compares the average resolution times and con-
fidence intervals obtained with the different optimization
methods. The lowest resolution time, along with the smallest
confidence interval, has been registered when the controller
was set to optimize on response time and with γ = 0.9. Specif-
ically, when the controller was set to optimize on response
time, with γ = 0.9, the most likely policy was: generateAl-
ert, increaseLogVerb, activateFirewall, increaseLogVerb, blockSrcIP,
increaseLogVerb, increaseLogVerb, increaseLogVerb, systemReboot,
backup, softwareUpdate, unblockSrcip, decreaseLogVerb, decreaseL-
ogVerb, decreaseLogVerb, decreaseLogVerb, decreaseLogVerb. We
can split such a policy in seven blocks: (i) first preparation;
(ii) first response attempt; (iii) second preparation; (iv) second
response attempt; (v) third preparation; (vi) third response
attempt; (vii) conclusion. It is worth noting how this time the
countermeasure escalation occurred twice. In fact, this policy
contains three response attempts for the ongoing attacks. In
detail, the first preparation phase activated the firewall and
increased the log verbosity to the minimum level required to

block the source IP address. The first response attempt is the
configuration of the firewall to block the IP address originating
the malicious traffic. Even if this response, according to the
model, is able to effectively protect the system from the
portscan attack, it does not address the ongoing vulnerability
exploit. The second defence attempt begins by increasing the
log verbosity to its maximum level, required for the system
reboot. Unfortunately, as in the previous case, the system
reboot has a low probability of successfully countering the
vulnerability exploit attack, therefore a third response attempt,
consisting in a software update preceded by a system backup,
has been planned by the controller. This last response attempt
was actually able to face the ongoing attack and, finally, the
controller selected the response actions needed to restore its
standard functionality level.

When the controller was set to optimize on response
time, but with γ = 0, the most likely policy was: gener-
ateAlert, increaseLogVerb, activateFirewall, increaseLogVerb, block-
SrcIP, increaseLogVerb, increaseLogVerb, increaseLogVerb, system-
Reboot, quarantineSystem, backup, manualResolution, unblockSrcip,
decreaseLogVerb, decreaseLogVerb, decreaseLogVerb, decreaseL-
ogVerb, decreaseLogVerb. Comparing this policy to the most
computed one in the γ = 0.9 case, it is easy to note the
greedy behavior: the first four blocks of the policy are exactly
the same because the globally optimal path matches with
the greedy path. However, after the system reboot, instead
of executing the most time consuming backup and then the
less time consuming software update, the policy preferred to
take immediately the less time consuming action, that is, to
quarantine the system. Unfortunately, at that point, the only
further action that it could take was the manual resolution.

VI. CONCLUSIONS AND FUTURE WORKS

During the last decade a number of IRSs have been
proposed in order to face the ever growing frequency and
complexity of attacks directed to computer systems. All the
proposed approaches, however, only considered either a static
mapping of the best response action to the currently detected
attack or the dynamic evaluation of the available response
actions according to a set of pre-defined attributes. As a con-
sequence, they were only able to produce optimal short-term
response policies composed by a single response action. Since
this single action had to be resolutive for the ongoing attack,
all the response actions had to be designed and developed
as monolithic applications or functions, therefore becoming
hardly reusable to counter attacks different from the one they
have been designed for.

In this paper we introduced a MDP-based controller for an
autonomic IRS. Its novelty resides in the planning of long-term
response policies by composing atomic response actions. This
long-term planning exploits the concept of system state, which
decouples the attacks from the responses. This decouplement
makes it possible for the system administrator to focus on the
description of the attacks and of the responses as effects on the
system state, rather than on the attack-response bindings. As
a consequence, there is no more need for monolithic response
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actions expressly thought to face specific attacks, but the
already existing atomic actions can be composed in order to
face known and, possibly, unknown attacks.

We provided a complete overview of the model and of
the methodology of the proposed controller, together with a
detailed description of the testbed used to test its features. We
showed that, when a small reward degradation is acceptable,
the proposed approach can be applied to large systems. We
experimentally proved its effectiveness using real-world attack
scenarios. Specifically, experimental results show that long-
term planned policies always provide better results than the
short-term ones and the threat resolution time can be reduced
up to 56% in the considered scenario.

The main limitation about the applicability of the proposed
approach in practice still remains the initial work that has to
be carried out by the system administrator in (i) capturing
the minimal set of system attributes required, (ii) describing
the effects of the attacks on the system attributes and (iii)
describe the effects of the responses on the system attributes.
Even if the amount of work is reduced in comparison to
the attack-response mapping (it is O(|Att| + |A|) instead of
O(|Att| × |A|), where |Att| is the number of considered
attacks), it probably requires a more skilled system admin-
istrator. For this reason, as a future work, we plan to realize a
meta-model in which we will define standard components and
connections that could be used by the system administrators
to visually design the model of their system. Having such a
meta-model will enable the development of standard attacks
and response libraries that, integrated with the personalized
system model, will allow the IRS to provide response policies
tailored for the specific system.

At this time the optimal response policies are computed
by maximizing a reward function based on a weighted sum
of normalized criteria. However, we plan to introduce a
constraint-based optimization problem, useful to model for
instance thresholds on the maximum resolution time or on
the maximum allowed cost. Furthermore, since the produced
policies are based on a probabilistic evolution of the system,
it is important to establish a feedback loop between the
controller and the managed system, in order to check whether
the current system state corresponds to the planned one and
eventually to update the action’s post-condition probabilities
according to the real system evolution. The current work is
aimed at producing reactive policies, that is, policies that
defend the system after the attack has been detected. We
plan to introduce proactive response policies using Multi-
Agent competitive MDPs modeling an attacker-IRS game to
predict the future attacker’s behavior. Moreover, we plan to
consider non-deterministic MDPs [9] in order to produce a
set of near-optimal decision policies from which the system
administrator could pick the best one according to his/her
personal knowledge.
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