
A Comparison of Graph-Based Synthetic Data
Generators for Benchmarking Next-Generation

Intrusion Detection Systems

Stefano Iannucci, Hisham A. Kholidy,
Amrita Dhakal Ghimire, Rui Jia, Sherif Abdelwahed

Distributed Analytics and Security Institute

Mississippi State University

Ioana Banicescu
Department of Computer Science and Engineering

Mississippi State University

Abstract—Property-graphs are becoming popular for Intrusion
Detection Systems (IDSs) because they allow to leverage dis-
tributed graph processing platforms in order to identify malicious
network traffic patterns. However, a benchmark for studying
their performance when operating on big data has not yet
been reported. In general, benchmarking a system involves the
execution of workloads on datasets, where both of them must
be representative of the application of interest. However, few
datasets containing real network traffic are openly available due
to privacy concerns, which in turn could limit the scope and
results of the benchmark. In this work, we build two synthetic
data generators for benchmarking next generation IDSs by
introducing the support for property-graphs in two well-known
graph generation algorithms: Barabási-Albert and Kronecker.
We run an extensive experimental evaluation using a publicly
available dataset as seed for the data generation, and we show
that the proposed approach is able to generate synthetic datasets
with high veracity, while also exhibiting linear performance
scalability.

I. INTRODUCTION

Network intrusion detection has been an active area of

research for the past two decades due to the significant impact

on social and economic activities, as almost every aspect of

modern day life is now dependent on networked systems.

Presently, several publicly available network Intrusion De-

tection Systems (IDSs) (e.g., Bro [1], Snort [2], ACARM-

ng [3], AIDE [4], etc.), are either unable to detect coordinated

attacks, or provide false positives at a rate that might not be

acceptable [5]. To overcome these limitations, the graph-based

approaches initially proposed in [5], [6], [7], [8], [9], [10] are

now becoming popular for intrusion detection, as they can be

used to model either the network traffic, the attacker behavior

or the defended system. Furthermore, graph-based approaches

allow to leverage distributed graph processing platforms for the

identification of malicious network traffic patterns. However,

especially when graphs are used to model network traces, they

can reach sizes that make them difficult, and even impossible

to be analyzed with a single host. Thus, the intrusion detection

problem quickly becomes a big data problem.

Several big data processing tools are currently available

(e.g., Apache Hadoop [11], Apache Spark [12], Apache

Hive [13] and Shark [14] among the others [15]), and their

performance can be measured with big data benchmarks (e.g.,

[16], [17]). A big data benchmarking system evaluates a big

data environment based on four properties: volume, velocity,

variety, and veracity. The Volume measures the amount of

data a big data system can handle. The Velocity measures

the maximum rate at which the data can be analyzed in a

streaming system, or the maximum update rate of the datasets

in case of non-streaming systems. The Variety measures the

flexibility of tools and platforms in handling heterogeneous

data. The Veracity reflects the closeness of the synthetic data

compared to its counterpart, which is usually represented by

either real-world data, or by the seed data used for generating

the synthetic data. Each benchmark contains specific datasets

and workloads for specific application domains (e.g., web

search, e-commerce), and the results obtained with a certain

benchmark cannot be generalized to other application domains

because of the datasets, workloads and performance metrics of

interest used. In general, benchmarking a system involves the

execution of workloads on datasets, where both of them must

be representative of the application of interest. However, due to

privacy concerns, few datasets containing real network traffic

are openly available, and that could limit the scope and results

of the benchmark. To be representative from the workload

perspective, the benchmark must include typical operations

executed in the cyber-security domain, such as queries on

nodes, edges, paths, and sub-graphs.

On one hand, in order to limit the damage produced by

the attacker to the target system [18], having a clear idea of

the performance, in terms of threat detection time, and of

the scalability of a graph-based IDS is paramount. On the

other hand, in spite of their practical applications success,

it is difficult to make deployment decisions among the large

variety of big data processing platforms because of the lack

of comprehensive understanding of their performance in a

cyber-security setting. In other words, a specific cyber-security

application benchmark is necessary before system designers,

programmers, and researchers within the domain of cyber-

security can optimize the performance, resilience, and energy

efficiency of these systems.

The main contribution of this paper aims to address the

2017 IEEE International Conference on Cluster Computing

2168-9253/17 $31.00 © 2017 IEEE

DOI 10.1109/CLUSTER.2017.54

278

lack of openly available data sources by introducing two novel

synthetic data generation models that are able to capture all the

features of a network trace (e.g., duration of the connections,

amount of transferred data, amount of transferred packets). To

this end, we extend two well-known graph generation models,

based on the Barabási-Albert (BA) [19] and Kronecker [20]

algorithms, to support property-graphs [21] for the represen-

tation of Netflow [22] data. Both models work by growing an

existing seed graph to a graph of arbitrary size, where the seed

can be any network trace provided in the PCAP format [23].

Even though several graph databases supporting property-

graphs exist (e.g., Neo4J [24], Titan [25], DEX [26]), they

are usually suited for applications requiring low-latency and

high-throughput data analysis [27], such as recommendation

systems. Therefore, they are focusing on the parallelization of

queries streams, rather than on the parallelization of a single

query execution. For this reason, as a second contribution,

we implement two data generation algorithms on the only

distributed graph processing platform available at this time

that supports property graphs: Apache Spark with the GraphX

library [28]. The latter provides a Map-Reduce programming

framework [29] that can be leveraged to parallelize the exe-

cution of the data generation by taking advantage of a cluster

of compute nodes.

The third contribution of the paper is an extensive experi-

mental evaluation of the proposed models, in order to show

that the synthetically generated data exhibits high veracity, that

is, a high degree of similarity in terms of degree distributions

and PageRank [30] distributions with respect to the seed data.

Furthermore, we show that our approach is able to generate big

datasets containing billions of edges in less than a hour when

distributing the load on 60 compute nodes. Finally, we empir-

ically prove that the proposed algorithms have a linear scala-

bility and that the execution platform scales linearly according

to the number of compute nodes used for the generation. As a

last contribution, and in order to ease the reproducibility of the

experiments, we release with the open-source GPLv3 license

the source code of the application, and make it available on

GitHub at: https://github.com/msstate-dasi/csb

The paper is organized as follows. In Section II we introduce

related work in graph generation models. In Section III,

we provide an in-depth description of the extension to the

Kronecker and BA algorithms. In Section IV, we present an

anomaly detection approach based on property-graphs. The

experimental evaluation is described in Section V, where we

discuss in detail the performance and veracity aspects of the

data generation. Finally, in Section VI, we draw conclusions

and discuss future work.

II. BACKGROUND AND RELATED WORK

Complex systems and their properties are sustained in nature

and are object of research in many areas of science, society and

technology. These systems consist of a large or extremely large

number of components that interact via networks. Example

of such systems are: social networks [31], [32], biological

networks [33], the Internet [34], and others. Historically,

complex systems and networks have often been modeled as

random graphs for the purpose of studying their behaviors.

The interconnectivity in networks is fundamental to the

behavior of complex systems. In recent years tools and data be-

came available to probe their topology, and that was essential

for the understanding of the role and impact of the underlying

connectivity on system’s behavior. It has been concluded that,

without exploiting the network topology of a complex system,

its behavior cannot be understood or predicted [35].

Over the years, a number of real world systems and net-

works have been modeled and analyzed using random graph

models. In complex systems using random graph models,

relevant properties, such as degree distributions and clustering

coefficients, can be incorporated. Degree distribution is one of

the most prominent features of these networks. Models such as

Erdős-Rényi (ER) [36], [37], stochastic block model (SBM)

[38], Barabási-Albert (BA) [19], exponential random graph

[39], [40], recursive matrix [41], stochastic Kronecker (SKG)

[42], [20], have been developed to capture the diversity of

the degree distributions. In their development, each of these

models consider some aspects of the networks.

Over half a century ago, the Erdős-Rényi (ER) model [36]

was introduced, drawing attention to interconnected systems.

The model, which after being introduced was widely used in

biology, sociology and computer science, assumed that com-

plex systems are wired randomly together. Almost two decades

ago, Watts-Strogatz (WS) model [43] was proposed, in which

vertices form a one-dimensional lattice where each vertex is

connected to its two nearest and next-nearest neighbors. This

process of generating long-range connections determined a

decrease in the distance between vertices leading to a small-

world phenomenon. However, it has been found that a common

feature which both ER and WS models exhibit is that the

probability of finding a highly connected vertex (with a high

degree value) decreases exponentially with the degree value

of the vertex (resulting in a small or zero number of highly

connected vertices). This research result was found to be

completely opposed to the phenomena observed in network

studies, where highly connected vertices have large chance of

occurring. To study the community structures found in many

real-world systems, the stochastic block model (SBM) was

proposed [38].

Barabási and Albert [19] point out two generic aspects of

real networks that have been missed being incorporated in

the ER and WS models above. The two generic aspects have

been shown to be in contradiction with properties observed in

large networks [19]. The first generic aspect emphasizes that

both models consider starting with a fixed number of vertices

that are randomly connected (ER model), or reconnected (WS

model), without changing the number of vertices. In reality,

most networks are open, and grow continuously by adding

new vertices to the system. In this way, the number of vertices

increases continuously throughout the lifetime of the network.

The second generic aspect shows that in both models, the

probability of two vertices being connected is random and

uniform. However, in reality, most networks exhibit preferen-

279

tial connectivity (preferential attachment), indicating that the

probability with which a new vertex connects to the existing

vertices is not uniform. It has been shown that there is a

higher probability that a new vertex will be connected to a

vertex that already has a large number of connections. The

authors show that a common property exhibited by many

large networks is that the vertex connectivity follows a scale-

free power law distribution. Specifically, they show that large

networks self-organize into a scale-free state following a power

law distribution independently of the system and the identity

of its constituents. The essence of the Barabási-Albert (BA)

model [35] is that the probability P (k) that a vertex in the

network interacts with k other vertices decays as a power law,

following p(x) ∝ L(x)x−α, where α > 1 is the power-law

exponent and L(x) is a slowly varying function, that is, it

respects limx→∞
L(tx)
L(x) = 1 with constant t.

In recent years, it became obvious that no networks seen

in nature, science, economics, or technology are completely

random. Their evolution is shaped by mechanisms beyond

randomness. However, the models mentioned above generate

graphs with a specific type of degree distribution. It has been

shown that various phenomena can be studied and predictions

can be inferred by the use of the universality of topological

characteristics, such as degree distributions, degree correla-

tions, communities, and others [35].

During the last decade, new models have been developed.

The Chung-Lu (CL) model [44], [45] can generate a random

graph with a given sequence of expected degrees, and is

capable of generating networks from almost any real-world

desired degree distribution. The block two-level Erdős-Rényi

(BTER) model [46], [47] has recently been developed for

the study of the community structure by capturing the degree

distribution and clustering coefficients.

The continuous need to better understand the behavior of

complex systems and networks drives the requirement of

generating larger and larger networks, which in turn requires

the efficient generation of massive random networks or graphs.

It has been shown that analyzing a large complex system or

network by generating it using a small model of it, doesn’t

produce accurate results. The small network may not exhibit

the same complex collective behavior that is exhibited by the

large network, even if both networks have been generated

using the same model [48]. Recently, a Degree Grouping (DG)

method for developing time and space efficient sequential and

distributed-memory parallel algorithms that generate random

graphs for the CL, SBM and BTER models has been proposed,

and its effectiveness has been demonstrated [49]. Moreover,

distributed-memory parallel implementations for the SKG and

the BA models have also been reported in the literature ([50],

[51], [20]).

There are many examples of Next-Generation IDSs based

on graphs (e.g., [52], [53], [54], [55], [56], [57]), and sev-

eral attempts were made to use the NetFlow protocol ([58],

[59], [60], [61]) to detect DoS attacks such as Smurf, and

worms such as W32.Blaster Worm and Red Worm. However,

none of them are able to leverage the modeling of Netflow-

based data using property-graphs. Leveraging property-graphs

capabilities to efficiently analyze network data is a recent

trend that has been initially proposed by SANS [62] and

recently extended by Oracle [63]. On one hand, from a cyber-

security perspective, it is important for an IDS to guarantee a

timely identification of potential threats, in order to limit the

negative impact that they could have on the system [18]. On

the other hand, none of the existing works aim at evaluating the

performance, in terms of execution time and memory usage, of

next-generation IDSs based on graphs. This work tries to fill

this gap by introducing a vital component of a benchmark

for property-graph based IDSs: a scale-free synthetic data

generator of property-graphs representing real network traffic.

III. DATA GENERATORS

In this section, we describe the sequence of steps under-

taken for the generation of the synthetic datasets representing

network traffic based on directed property-graphs. A property-

graph is formalized as G = (V,E,Dv, De), where V is the

set of vertices, E is the multi-set of edges, Dv is the set of

data associated with each vertex and De is the set of data

associated with each edge. The property-graphs (i) allow for

the existence of multiple edges between any couple of nodes,

and (ii) support the association of data structures containing

multiple attributes with vertices and edges. In our work, we

use property-graphs to model Netflow network data. Among

other formats, we consider Netflow because we aim at building

the data generator component for a benchmark for future

generation IDSs, and we want to use a data format that can be

used as an evidence in the court [64]. Specifically, we represent

Netflow data in a property-graph format as follows: we map

on V the sets of the hosts, and on E the TCP connections or

UDP streams between any couple of hosts. We only consider a

single attribute for Dv , that is, ID, which univocally identifies

the vertices in the graph. Instead, we consider the following

Netflow attributes for De:

• PROTOCOL. Represents the transport protocol of the data

stream. Currently supported protocols are TCP and UDP.

• SRC PORT. Represents the source port of the data

stream.

• DEST PORT. Represents the destination port of the data

stream.

• DURATION. Represents the duration of the data stream,

expressed in milliseconds.

• OUT BYTES. Represents the amount of data transferred

(in bytes) from source to destination.

• IN BYTES. Represents the amount of data transferred (in

bytes) from destination to source.

• OUT PKTS. Represents the amount of packets transmit-

ted from source to destination.

• IN PKTS. Represents the amount of packets transmitted

from destination to source.

• STATE. This attribute is used only in the case the edge

represents a TCP connection and contains its state.

We introduce the support for property-graphs in two well

known data generation algorithms, namely Barabási-Albert

280

Fig. 1. Preliminary Steps

(BA) [65] and Kronecker [20]. Both of these algorithms

work by expanding a seed graph while trying to maintain

its structural properties and attributes’ properties in a scale-

free fashion. In this work, we focus on the in-degree, out-
degree [66] and PageRank [67] structural properties because

they can be obtained even for relatively large graphs [68].

However, the modular architecture of our software prototype

and the framework on top of which is built can easily support

additional generation methods that can take into account

more properties, such as the betweenness centrality [69] and

connected components [70].

The creation of the seed graph is accomplished according

to the steps shown in Figure 1: the process starts with some

source data in PCAP format and its Netflow representation

is obtained by analyzing it with Bro IDS [71]. Netflow data

is then mapped to a property-graph and finally, an analysis

of the structural and attributes’ properties is carried out. The

last step is aimed at analyzing the structural characteristics

and the properties of the seed graph. Specifically, we compute

the in- and out-degree probability distributions that will be

used later, in the data generation phase, to tune the power-

law distribution, in order to ensure that the original struc-

tural characteristics are maintained in the synthetic graph.

Furthermore, we also compute the probability distributions

of all the seed graph’s properties. To this end, and in order

to generate meaningful Netflow attributes, we first compute

p(IN BY TES), that is, the unconditional probability distri-

bution of the IN BY TES attribute; then, for all the other

Netflow attributes a, we compute p(a|IN BY TES).

A. Data Generator based on Barabási-Albert

The BA model is extensively discussed in [65]. Since most

of the real complex networks have a degree distribution that

follows the power law, the authors leverage the concept of

preferential attachment, such that the likelihood of connecting

to a node depends on the node’s degree. The BA graph gener-

ation algorithm is iterative and each iteration is composed of

two steps: growth and preferential attachment. During the first

step, a new vertex v is added to the existing graph composed

of m0 vertices, and m ≤ m0 edges are created with v as

the source and no destination. The second step involves the

selection of edges’ destinations, which are chosen according

to the following probability distribution: π(i) = ki∑
j kj

, where

i is the index of the destination vertex and ki is its in-degree.

One of the main limitations of this algorithm resides in its

scalability, because π(i) must be updated at every iteration and

because only a single vertex is added at every iteration. A more

Input: Graph G = (V,E,Dv, De)
Input: long desired size
Input: doublefraction
Input: Distribution outDegree
Input: Distribution inDegree
Input: Distribution[] properties
Output: Graph G′ = (V ′, E′, Dv′, De′)

1: G′ = (V ′, E′, Dv′, De′)← G
2: while (|E′| < desired size) do
3: Edge[] sampledEdges← sample(E′, fraction)
4: V ertex[] newV ertices←

createEmptyV ertices(|sampledEdges|)
5: V ′ ← V ′ ∪ newV ertices
6: for (i = 0 to |sampledEdges|) do
7: V ertex destV ertex← random(sampledEdges[i])
8: long inDegree← sample(inDegree)
9: long outDegree← sample(outDegree)

10: Edge[] outEdges←
createOutEdges(outEdges, newV ertices[i], destV ertex)

11: Edge[]inEdges←
createInEdges(inEdges, destV ertex, newV ertices[i])

12: E′ ← E′ ∪ outEdges ∪ inEdges
13: end for
14: end while
15: SetDe′ ← ∅
16: for Edge e ∈ E′ do
17: for Distribution d ∈ properties do
18: De′ ← De′ ∪ addProperty(e, sample(d))
19: end for
20: end for
21: return Graph G′ = (V ′, E′, Dv′, De′)

Fig. 2. Extended Barabási-Albert Algorithm

recent work [50] discusses a parallel extension of BA, where

an edge list data structure is exploited in order to avoid the

re-computation of π(i), and a constant number of vertices is

added at each iteration. The preferential attachment is realized

as a two-stages process, by sampling an edge from the edge list

with a uniform probability distribution, and then by randomly

selecting one of the connected vertices. The rationale is that

the number of occurrences of a certain vertex in an edge list

is equal to its degree, and this approach is able to add an edge

in constant time.

We propose a variant of [50], hereafter referred to as

Property-Graph Parallel Barabási-Albert (PGPBA), which in-

troduces the support for property-graphs, as detailed in Fig-

ure 2. Differently from the former algorithm, which adds a

constant number of vertices at each iteration, we support a

fixed granularity level by keeping constant the ratio between

the amount of newly added vertices and the amount of edges

in the graph, defined as fraction = newV ertices
|E′| .

The inputs of PGPBA are: the seed graph G, the desired

size of the synthetic graph measured in edges, the fraction of

nodes to add with respect to the current size of the synthetic

graph, the pre-computed in- and out-degree distributions, and

the distributions of the edges’ properties. The main algorithm

is enclosed in the while loop (lines 2-14), which iterates

until the output graph has the required number of edges. Line 3

implements the first stage of the preferential attachment, where

281

the edges list is sampled to retrieve fraction∗E′ edges. A new

vertex is created (line 4), added to the synthetic graph (line

5), and then associated to one of the vertices contained in the

sampled edges (line 7). On lines 8 and 9, we sample the out-

and in-degree distributions. The sampled values will establish,

respectively, how many edges must connect the new vertex to

its associated one, and vice-versa. The actual edges are created

on line 10 and 11, and added to the synthetic graph on line 12.

All these steps are executed in O(|E′|). Finally, we generate

De′ by sampling the pre-computed Netflow attributes’ distribu-

tions (line 15-20) in O(|E′|× |properties|), and the synthetic

graph G′ is returned on line 21. The overall complexity of

the presented algorithm is therefore O(|E′| × |properties|).
In a Spark Map-Reduce perspective, PGPBA is implemented

by using the RDD.sample() function on the edges’ RDD

(Resilient Distributed Dataset) to extract a subset of the edges

of the current graph. The latter is then equally partitioned

among the available compute nodes and, for every edge, a

new vertex is created and attached as its source. The edges’

destination vertex instead remains the same to simulate the

attachment to existing vertices.

B. Data Generator based on Kronecker

The Kronecker model for synthetic graphs generation is

extensively discussed in [20]. The authors propose two ver-

sions of the data generation algorithm. The first version, often

referred to as the deterministic Kronecker, is based on the

concept of Kronecker matrix multiplication, which is used to

iteratively multiply a deterministic adjacency matrix by itself

until the number of generated vertices V is greater or equal

to the desired size of the synthetic graph. The complexity of

the deterministic Kronecker is O(|V |2). The second version of

the algorithm, often referred to as the stochastic Kronecker,

is instead based on stochastic adjacency matrices. Each entry

θi,j of a stochastic adjacency matrix represents the probability

value that an edge can appear between vertex i and vertex

j, and
∑

θi,j = |E|, where |E| is the expected number

of edges given by the realization of the matrix. Instead of

directly executing the Kronecker multiplication, which has

(O|V |2) complexity, the idea behind the stochastic Kronecker

is to simulate the behavior of the deterministic version by

randomly generating an amount of edges equal to the number

of edges expected for the k− th iteration of the deterministic

multiplication, that is, |E|k. The whole algorithm is divided

into two main steps: (i) the generation of the initiator matrix

using the Kronfit [42] fitting procedure, and (ii) the generation

of the synthetic data by placing |E|k = |E′| edges by

directly simulating the Kronecker product. The complexity of

stochastic Kronecker is O(|E′|).
We propose a variant of the stochastic Kronecker, here-

after referred to as the Property-Graph Stochastic Kronecker

(PGSK), which adds to it the features needed to support

property-graphs. The PGSK algorithm is illustrated in Fig-

ure 3. Its inputs are a seed property-graph G, the desired size

of the synthetic graph, the pre-computed out-degree distribu-

tion, and the distributions of the edges’ properties. The graph

Input: Graph G = (V,E,Dv, De)
Input: long desired size
Input: Distribution outDegree
Input: Distribution[] properties
Output: Graph G′ = (V ′, E′, Dv′, De′)

1: SetEp ← ∅
2: for Edgee ∈ E do
3: Ep ← Ep ∪ e
4: end for
5: Graph Gp ← (V,Ep)
6: Graph Gr ← Kronfit(Gp)
7: Graph Gk = (V ′, Ek)← Kronecker(Gr, desired size)
8: SetE′ ← ∅
9: for Edgee ∈ Ek do

10: long n← sample(outDegree)
11: E′ ← E′ ∪ createEdge(e.src, e.dst, n)
12: end for
13: SetDe′ ← ∅
14: for Edge e ∈ E′ do
15: for Distribution d ∈ properties do
16: De′ ← De′ ∪ addProperty(e, sample(d))
17: end for
18: end for
19: return Graph G′ = (V ′, E′, Dv′, De′)

Fig. 3. Property-Graph Stochastic Kronecker (PGSK) Algorithm

G is used as a seed, that is, as a template providing structural

properties and attributes that must be reflected in the generated

synthetic graph. Lines 1-5 are used to obtain a standard graph

representation Gp of the input property-graph G, where only

a single edge is kept between any couple of vertices, if at least

one edge was present between the same two vertices in G and

all the vertices and edges attributes are removed. This can be

effectively accomplished in O(|E|) by converting the multi-set

E in the set Ep using a hashed data structure. Although this

step seems to be memory inefficient at first sight, we note that

|Ep| ≤ |E|, therefore the peak memory needed to perform it

is at most O(2×|E|), which is order of magnitudes lower than

the memory required for the synthetic graph. The graph Gp

has a format compatible with that of the stochastic Kronecker.

Lines 6-7 in Figure 3 are used to execute respectively Kronfit

and the Kronecker expansion in O(|E′|). The latter is a

Map-Reduce parallel implementation of the recursive descent

described in [20], where an initially empty RDD of edges, with

size equal to the number of edges to generate, is partitioned

among the available compute nodes. These compute nodes

independently generate edges that might conflict because of

the probabilistic descent, therefore, at the end of the genera-

tion, a RDD.distinct() function is invoked on the graph’s

edges RDD to ensure that only distinct edges are kept. The

parallel implementation of the recursive descent is called until

the number of generated edges is equal to or greater to the

number of expected edges given by the probabilistic initiator

matrix. Subsequently, we duplicate every edge of the resulting

graph Gk according to the distribution of the outgoing edges

(lines 9-12) in O(|E′|), and we generate De′ by sampling

the pre-computed Netflow attributes’ distributions (line 13-18)

in O(|E′| × |properties|). Finally, the synthetic graph G′ is

282

returned on line 19. The overall complexity of the presented

algorithm is O(|E′| × |properties|).
IV. A NETFLOW BASED ANOMALY DETECTION

APPROACH

In this section, we introduce a first attempt to use the

Netflow-based graphs data for intrusion detection purposes.

Some attacks have traffic patterns that cannot be characterized

by only one flow, and instead require an aggregation of

the related flows’ information. Property-graphs can improve

the performance in the processing of aggregated packet data

because they provide a powerful data structure that can be

leveraged to efficiently aggregate different connection’s in-

formation. The performance comparison between currently

existing IDSs and property-graph based IDSs is out of the

scope of this paper and it will be addressed in a future work,

as described in Section VI.

The proposed detection approach extends some works

in [72] and [73], and it is mainly based on the examination

of the parameters of traffic patterns to discover traffic used in

attacks through any changes in the payload or port numbers.

Using this approach, we can detect several attacks based

on network traffic such as flooding and scanning attacks,

including Denial of Service (DoS) and Distributed Denial of

Service (DDoS) described in the next paragraph. As shown

in Figure 4, we leverage the graph-based data structure to

aggregate the network traffic by either the same destination or

the source IP. We generate two classes of traffic pattern data,

namely, the destination based traffic pattern data that has the

same destination IP, and the source based traffic pattern data

that has the same source IP. The parameters that we use in

the model are given in Table I. The threshold values can be

adjusted using a neural network or an optimization algorithm

such as Particle Swarm Optimization (PSO) [74].

The proposed Netflow-based anomaly detection approach

described in Figure 4 checks whether the flow size of an

individual flow is small, the number of packets-per-flow is

small, and whether or not a large number of flows appears.

In such case, if a small number of source IP traffic is

generated and the number of destination ports is high, then

that traffic is assumed to be a host scanning. If the fraction

of N(ACK)/N(SY N) is small and the traffic pattern data

reports a small number of destination ports, this fact implies

that the system encounters a TCP SYN flood attack traffic.

A further checking is executed, where the source-based traffic

pattern data is examined to investigate the traffic sent from

a specific host. The detector checks whether the N(flow) is

large, the Avg(flowSize) is small, and the Avg(nPacket) is

small in a manner similar to destination-based traffic pattern

data. The detection approach checks if the data reports a large

number of destination IPs and a small number of destination

ports. If so, that traffic is suspected to be a flooding attack.

Any traffic sent or received from a certain machine is also

investigated regardless of the source and destination of traffic

pattern data because the system may use network resources

by sending or receiving too much traffic when it is used

as a flooding attack. Accordingly, the traffic is considered

a flooding attack if there is an high bandwidth usage and

an high amount of total packets in the traffic data analyzed.

Figure 4 shows a flow chart for the detection of the following

attacks [75]:

a) DOS and DDoS Attacks Detection: In DDoS attacks,

an attacker, obtains information on a target system through

scanning. By sending scanning packets to the target, it dis-

covers which systems are working and which services are

being offered. There are two types of DDoS, logic and flooding

attacks [76]. Our approach only detects the flooding attacks

which transmit many spurious packets to the target system,

thus wasting CPU, memory, and network resources. In the

case of TCP SYN flood [76], the victim receives packets

that exceed the buffer of the data structure limit, and cripples

its service. Also, the ICMP, TCP, and UDP flooding attacks

overwhelm bandwidth by sending useless traffic to the victim.

b) Host Scanning Attacks Detection: During scanning,

the attacker makes many connection attempts. Consequently,

many flows are generated, and the packet count in each flow

is small when a scanning occurs. In addition, the packet size

is mostly small (about 40 bytes), because the attacker sends

small packets and observes responses from these packets. If an

attacker attempts to check open ports in a host, then this host

scanning causes traffic with a specific destination IP address.

c) Network Scanning Attacks Detection: A network scan-

ning makes many destination IP addresses when searching for

service availability in many hosts of the network. However, the

total packet count and total bandwidth can be large or small

according to the number of connected hosts and ports. These

fields cannot be used to detect scanning.

d) The TCP SYN flood Attack Detection: The TCP SYN

flood induces a lot of flow activities, because it sends many

packets to a specific port of the victim. Also, the packet count

and total packet length in each flow are small, as this attack

sends small SYN packets. However, the total bandwidth and

total packet count vary according to the number of transmitted

packets. Examples for this category of attacks are the Ping-

Pong, Smurf, and Fraggle.

e) ICMP, UDP, TCP flooding attacks detection: In addi-

tion to the attacks described above, general ICMP, UDP, TCP

flooding attacks have dynamic traffic patterns depending on

how many packets and hosts are used for an attack. However,

most attacks create a large total bandwidth and high total

packet count. In addition, such traffic has a small deviation

in the packet and flow size of each flow.

However, the proposed Netflow-based anomaly detection

approach can only be used to detect particular types of attacks

that overload the network traffic. If an attack does not influence

the network traffic, it will be difficult to be detected by the

proposed approach. Furthermore, this approach uses network

driven values for the threshold parameters that are used in the

detection process. This makes this approach not applicable to

other networks and, therefore, training must be used to set

the threshold values based on the parameters of each target

network.

283

Parameter Description Thresholds Description

N(D IP)
Number of distinguished destination IP with same
source IP

dip− T
A threshold value represents the maximum normal
number of distinguished destination IPs with the
same source IP.

N(S IP)
Number of distinguished source IP with same desti-
nation IP

sip− T
A threshold value represents the minimum normal
number of distinguished source IPs with the same
destination IP.

N(D port)
Number of destination port with same detection IP
(destination or source IP)

dp − LT ,
dp−HT

Two thresholds represent the minim normal number
of destination ports with same detection IP and the
maximum one respectively.

N(flow)
Number of flows with same detection IP (destination
or source IP)

nf − T
A threshold value represents the maximum normal
number of flows with the same detection IP.

Sum(flowSize),
Avg(flowSize)

Summation and average of flow size with same
detection IP (destination or source IP)

fs − LT ,
fs−HT

Two thresholds represent the lowest normal flow
size with same detection IP and the highest one
respectively.

Sum(nPacket),
Avg(nPacket)

Summation and average of packet count with same
detection IP (destination or source IP)

np − LT ,
np−HT

Two thresholds represent the smallest normal number
of packets with same detection IP and the highest one
respectively.

N(SY N),
N(ACK)

The total number of SYN and ACK flags with the
same destination IP.

sa− T
A threshold value represents the minimum normal
number of SYN and ACK flags with the same
destination IP.

TABLE I
ANOMALY DETECTION PARAMETERS

Fig. 4. Flow Chart of the proposed Anomaly Detection Approach

V. CASE STUDY

In the previous sections, we have introduced two meth-

ods for the generation of synthetic property-graphs that can

capture all the features of a Netflow trace. However, since

the main purpose of the synthetic data is to serve as the

dataset for a Next-Generation IDS benchmark, we run two

sets of experiments to show that: (i) the synthetic dataset is

representative of the real data that has been used as the seed,

and (ii) the proposed data generation algorithms can produce

large amounts of data with reasonable execution time, while

also exhibiting a linear strong scalability [77]. Veracity and

performance of both PGPBA and PGSK are evaluated.

All the experiments have been executed using a data seed

built by the preliminary steps described in Figure 1 on

the network trace produced on 10/10/2011 by the Swedish

Department of Defense [78]. The size of the seed, measured

in terms of number of edges is 1.9 millions (1,940,814). As

for the experiment testbed, we used the Shadow II super-

computer [79] hosted by the High Performance Computing

Collaboratory (HPC2) at Mississippi State University (MSU).

It is composed of 110 compute nodes, and each one of them

has 512GB of RAM, 2 Intel Xeon E5-2680 v2 CPUs with 10

284

cores each and 54 Gbps InfiniBand network interconnection.

Apache Spark 2.1.0 is used as the general big data processing

framework for all the experiments.

Since PGPBA and PGSK are probabilistic algorithms, the

number of vertices and edges generated at each run of the

experiment can slightly vary. Furthermore, PGSK’s edge gen-

eration rate is exponential in the number of iterations, while

PGPBA’s edge generation rate is linear in the number of

iterations and proportional to the specified fraction parameter.

As a consequence, since we don’t have a fine grain control

on the size of the produced graphs, instead of focusing on a

point-based comparison of veracity and performance, we will

evaluate their trends while trying at the same time to generate

graphs of similar sizes.

A. Veracity Evaluation

The evaluation of the veracity of the synthetic datasets

is carried out by analyzing their degree and pagerank dis-

tributions. Specifically, in order to compare the seed and

the synthetic graphs in the same ranges of values, we use

the normalized degree and pagerank distributions. The latter

are computed by dividing each degree and pagerank value,

respectively, by the sum of the degrees and by the sum of the

pagerank values of all the vertices.

Fig. 5. Comparison of the degree distributions

Figure 5 compares the degree distribution exhibited by the

seed graph, which counts almost 2 millions of edges, with the

ones exhibited by the synthetic graphs generated with PGPBA

and PGSK, counting, respectively, 1.15 and 1.34 billions of

edges. All the three distributions have similar shapes, but

PGSK exhibits more spikes. This is due to the fact that PGSK

is based on Kronecker, and therefore it tends to replicate many

times the same exact graph structure, which contains a single

evident spike in the seed graph. It is also worth noting that the

seed distribution is not overlapping with the synthetic graphs’

distribution. This is due to the normalization: the synthetic

graphs are roughly 3 orders of magnitude larger than the

seed, therefore causing a shift to down-left of three orders

of magnitude in the degree distributions.

While the plot in Figure 5 can give a good indication

about the veracity of the generated data, we also want to

study how the veracity varies according to the size of the

generated graphs. To this end, we define the veracity score of a

synthetic dataset with respect to the seed dataset as the average

Euclidean distance of their normalized degree and PageRank

distributions. A smaller veracity score indicates higher simi-

larity with the seed dataset. In the following experiments, we

compare the veracity scores of PGPBA and PGSK according

to the size, measured in the number of edges of the generated

data.
Figure 6 shows the veracity scores of the degree distri-

butions. The degree and PageRank veracity scores obtained

by PGSK were in the range [5.26 × 10−10, 6.37 × 10−3]
and [5.08 × 10−25, 4.25 × 10−18], respectively. The degree

and PageRank veracity score ranges of PGPBA, with fraction

parameters 0.1, 0.3, 0.6 and 0.9, are listed below:

1) Fraction 0.1: [5.24 × 10−10, 2.21 × 10−7], [5.70 ×
10−25, 1.04× 10−22]

2) Fraction 0.3: [2.72 × 10−10, 1.73 × 10−7],[1.34 ×
10−25, 2.58× 10−23]

3) Fraction 0.6: [5.02 × 10−10, 3.25 × 10−7],[1.35 ×
10−25, 6.20× 10−23]

4) Fraction 0.9: [5.57 × 10−10, 2.49 × 10−7],[1.34 ×
10−25, 1.37× 10−23]

All five experiments exhibit a linear veracity score (vertical

axis) which decreases when the size of the graph (i.e., number

of edges in the horizontal axis) grows. Note that the minimum

veracity scores are obtained at the maximum number of edges.

When the synthetic graph is relatively small, it does not hold

enough information to reflect the original data distribution in

the seed graph. However, as the size of the synthetic graph

keeps growing, there is increasingly more capability to inherit

the properties of the seed graph. The same trend also applies to

the PageRank distribution in Figure 7. It is worth noting that,

for both the veracity scores in Figure 6 and 7, the PGPBA

curve starts with a number of edges equal to approximately 5

millions, while PGSK starts with as low as 100 edges. This is

due to the nature of PGSK. By using a 2× 2 initiator matrix

computed with the Kronfit procedure, the PGSK can generate

graphs which are smaller than the seed graph.

Fig. 6. Evaluation of Degree Veracity

In general, PGPBA and PGSK exhibit comparable degree

veracities, when the former is configured with a fraction

285

Fig. 7. Evaluation of PageRank Veracity

parameter equal to 0.1. Bigger fraction values allow PGPBA to

generate larger graphs with less iterations, but with some loss

of precision in rendering the degree distribution. Regarding

the PageRank degree distributions, PGPBA clearly performs

better in all the cases. However, we also note that the veracity

score obtained in both the experiments are in general very

low, meaning that the synthetic dataset properly mimics the

characteristics of the seed in all the configurations of the

PGPBA and PGSK.

B. Performance

In this section, we empirically demonstrate the linear

scalability of the proposed Map-Reduce implementations of

PGPBA and PGSK algorithms. For the purpose of our ex-

periments, we used up to 55% of Shadow II, that is, we ran

experiments with a number of compute nodes ranging between

10 and 60. Specifically, we carried out two sets of experiments,

aimed respectively at showing the scalability of the algorithms

and the scalability of the platform. For the former, we generate

graphs of increasing size with a fixed amount of computational

resources. For the latter, we generate graphs of fixed size with

a varying amount of computational resources. During all the

experiments we also collected the memory utilization of all

the compute nodes.

There are many configuration parameters and tuning pos-

sibilities for Spark. In order to make the experiments easily

reproducible, we only changed a few of them, namely:

• the number of executor cores

total-executor-cores, which specifies the

maximum number of physical cores usable by the

platform, and corresponds to the maximum number

of spawned threads. The threads are equally allocated

among the available compute nodes if Spark is configured

as a standalone cluster, as in our case;

• the amount of memory available to the worker nodes

--executor-memory;

• the amount of memory available to the cluster driver

--driver-memory;

• the number of partitions in which the data is divided. This

is an application-level parameter, that we introduced to

have a finer control on the performance. We found that,

in most cases, using a number of partitions equal to 2×
or 4× the number of executor cores leads to the best

performance.

The total-executor-cores parameter has been object

of a preliminary study aimed at finding its optimal setting.

Fig. 8. Single Node Throughput

Figure 8 shows that the maximum throughput for both

PGPBA and PGSK can be achieved with 12 active cores out

of the available 20. That is, there is no performance increase

in using the remaining cores.

For this reason, in the following experiments we always set

total-executor-cores to 12× the number of compute

nodes, and the number of partitions to 2× the number of

executor cores. The memory parameters are fixed to 450GB
for both the driver and the workers, so that a small portion of

memory can be left for the operating system.

Fig. 9. Edges Generation Time Comparison of PGPBA and PGSK

Figure 9 shows the comparison of the generation time of

PGPBA and PGSK. Since the Kronecker algorithm doubles

the size of the graph at each iteration, for a fair comparison

between PGPBA and PGSK, we set PGPBA’s fraction = 2.

We used 60 Shadow compute nodes and we generated graphs

of sizes ranging between 4 millions and 20 billions of edges.

It is clear that the generation time of both algorithms is

linear, according to the size of the generated graph. However,

PGPBA provides better performances, as also highlighted in

the throughput plot shown in Figure 10. The generation of

286

Fig. 10. Edges Generation Throughput Comparison of PGPBA and PGSK

the properties for vertices and edges introduces an average

overhead of 50% in the case of PGPBA, and of 30% for

PGSK. However, it is worth noting that the function for the

generation of the properties is the same in both synthesis

methods, thus the greater impact on PGPBA is only due to

its lower generation time.

Fig. 11. Memory Usage Comparison of PGPBA and PGSK

Figure 11 shows the comparison of the memory usage of the

worker nodes when executing PGPBA and PGSK to generate

graphs of varying size. We can divide the plot in two ranges:

[1× 106, 1× 108] and [1× 108, 1× 1011]. In the former, the

memory usage of the worker nodes is almost constant, barely

reaching 10GB/compute node. This is due to the overhead

introduced by the platform, which is not negligible for the

generation of small graphs. In the right side of the plot, instead,

it is possible to note a linear increase in the memory usage,

reaching up to almost 300GB/compute node for graphs with

20 billions of edges.

The strong scalability study of the platform is reported

in Figure 12, where we measure the speedup obtained by

generating graphs of fixed size with an increasing number of

compute nodes, ranging from 10 to 60. We generate graphs

with the largest size that is possible to handle with 10 compute

nodes of Shadow II, which is equal to 9.6 billions of edges

for PGPBA, and 6 billions of edges for PGSK, corresponding

to 12 iterations with fraction = 2 for the former, and

30 iterations for the latter. PGPBA exhibits a linear strong

scalability and it is very close to the ideal speedup. PGSK also

exhibits a linear scalability, but it is more distant from the ideal

speedup with respect to PGPBA, therefore confirming that, in

Fig. 12. Speedup comparison of PGPBA and PGSK

general, the latter provides the best performance.

VI. CONCLUSIONS AND FUTURE WORKS

Benchmarking graph-based databases and distributed graph

processing platforms is important to understand the perfor-

mance of next-generation graph-based applications. IDSs are

gradually adopting graph-based data structures and, so far, no

graph-based benchmarks have been made available to measure

their performance. A domain-specific dataset is one of the

main components of a benchmark. However, very few publicly

available datasets exist for cyber-security applications due to

privacy concerns.

In this paper, we address the problem of generating datasets

based on property-graphs and representing network traces. To

this end, we extend two well-known models for synthetic

graph generation, namely, Barabási-Albert and Kronecker.

The resulting novel approaches, named respectively Property-

Graph Parallel BA (PGPBA) and Property-Graph Stochastic

Kronecker (PGSK), guarantee high veracity or, in other words,

a high similarity degree between some network trace used as

seed and the generated synthetic data. Furthermore, we experi-

mentally show that PGPBA and PGSK scale linearly according

to the size of the synthetic graph and to the number of compute

nodes available for the execution of the algorithms. The data

generators presented are part of a benchmarking suite, which

we released with the GPLv3 open-source license and that is

available at the URL: https://github.com/msstate-dasi/csb.

The proposed approach can help researchers and system

administrators in modeling and evaluating the performance

of next-generation IDSs, therefore possibly allowing them to

precisely quantify the time-to-detection of network threats.

However, it cannot be currently used as a fully functional

IDS because it only implements the algorithms that can be

used to perform intrusion detection, rather than a full intrusion

detection process. As future work, we plan to extend the

platform to fully support off-line intrusion detection, followed

by on-line intrusion detection with streaming data.

ACKNOWLEDGMENT

Funding for this work was (partially) provided by the Pacific

Northwest National Laboratory, under U.S. Department of

Energy Contract DE-AC05-76RL01830.

287

REFERENCES

[1] “The bro network security monitor,” 2016. [Online]. Available:
https://www.bro.org

[2] “Snort - network intrusion detection,” 2017. [Online]. Available:
https://www.snort.org

[3] “Alert correlation, assessment and reaction module - next generation,”
2009. [Online]. Available: http://www.acarm.wcss.wroc.pl

[4] “Aide - advanced intrusion detection environment,” 2016. [Online].
Available: http://aide.sourceforge.net

[5] W. Wang, A graph oriented approach for network forensic analysis.
Iowa State University, 2010.

[6] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection,” Computers & Security, vol. 31, no. 3, 2012.

[7] E. Casey, “Investigating sophisticated security breaches,” Communica-
tions of the ACM, vol. 49, no. 2, pp. 48–55, 2006.

[8] B. Foo, Y.-S. Wu, Y.-C. Mao, S. Bagchi, and E. Spafford, “Adepts:
adaptive intrusion response using attack graphs in an e-commerce
environment,” in 2005 International Conference on Dependable Systems
and Networks (DSN’05). IEEE, 2005, pp. 508–517.

[9] N. Stakhanova, S. Basu, and J. Wong, “A cost-sensitive model for
preemptive intrusion response systems.” in AINA, vol. 7, 2007.

[10] T. Toth and C. Kruegel, “Evaluating the impact of automated intrusion
response mechanisms,” in Computer Security Applications Conference,
2002. Proceedings. 18th Annual. IEEE, 2002, pp. 301–310.

[11] “Open source implementation of mapreduce,” 2017. [Online]. Available:
http://hadoop.apache.org

[12] J. G. Shanahan and L. Dai, “Large scale distributed data science using
apache spark,” in Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2015,
pp. 2323–2324.

[13] Y. Huai, A. Chauhan, A. Gates, G. Hagleitner, E. N. Hanson,
O. O’Malley, J. Pandey, Y. Yuan, R. Lee, and X. Zhang, “Major
technical advancements in apache hive,” in Proceedings of the 2014
ACM SIGMOD international conference on Management of data. ACM,
2014, pp. 1235–1246.

[14] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica,
“Shark: Sql and rich analytics at scale,” in Proceedings of the 2013 ACM
SIGMOD International Conference on Management of data. ACM,
2013, pp. 13–24.

[15] R. Han, Z. Jia, W. Gao, X. Tian, and L. Wang, “Benchmarking
big data systems: State-of-the-art and future directions,” CoRR, vol.
abs/1506.01494, 2015.

[16] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H.-A.
Jacobsen, “Bigbench: towards an industry standard benchmark for big
data analytics,” in Proceedings of the 2013 ACM SIGMOD international
conference on Management of data. ACM, 2013, pp. 1197–1208.

[17] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia,
Y. Shi, S. Zhang et al., “Bigdatabench: A big data benchmark suite
from internet services,” in 2014 IEEE 20th International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 2014.

[18] F. Cohen, “Simulating cyber attacks, defences, and consequences,”
Computers & Security, vol. 18, no. 6, pp. 479–518, 1999.

[19] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” science, vol. 286, no. 5439, pp. 509–512, 1999.

[20] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahra-
mani, “Kronecker graphs: An approach to modeling networks,” Journal
of Machine Learning Research, vol. 11, no. Feb, pp. 985–1042, 2010.

[21] T. Frisendal, Graph Data Modeling for NoSQL and SQL: Visualize
Structure and Meaning. Technics Publications, LLC, 2016.

[22] B. Claise, “Cisco systems netflow services export version 9,” 2004.
[Online]. Available: https://tools.ietf.org/html/rfc3954

[23] “Libpcap,” 2017. [Online]. Available: https://sourceforge.net/projects/
libpcap/

[24] J. Webber, “A programmatic introduction to neo4j,” in Proceedings of
the 3rd annual conference on Systems, programming, and applications:
software for humanity. ACM, 2012, pp. 217–218.

[25] “Titan: distributed graph database,” 2017. [Online]. Available: https:
//github.com/thinkaurelius/titan

[26] N. Martı́nez-Bazan, V. Muntés-Mulero, S. Gómez-Villamor, J. Nin, M.-
A. Sánchez-Martı́nez, and J.-L. Larriba-Pey, “Dex: high-performance
exploration on large graphs for information retrieval,” in Proceedings

of the sixteenth ACM conference on Conference on information and
knowledge management. ACM, 2007, pp. 573–582.

[27] J. Webber, “Graph processing versus graph databases,”
2017. [Online]. Available: http://jimwebber.org/2011/08/
graph-processing-versus-graph-databases/

[28] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica, “Graphx: A
resilient distributed graph system on spark,” in First International Work-
shop on Graph Data Management Experiences and Systems. ACM,
2013, p. 2.

[29] S.-H. Lim, S. Lee, G. Ganesh, T. C. Brown, and S. R. Sukumar,
“Graph processing platforms at scale: Practices and experiences,” in
Performance Analysis of Systems and Software (ISPASS), 2015 IEEE
International Symposium on. IEEE, 2015, pp. 42–51.

[30] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.

[31] J. Leskovec and E. Horvitz, “Planetary-scale views on a large instant-
messaging network,” in Proceedings of the 17th international conference
on World Wide Web. ACM, 2008, pp. 915–924.

[32] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” Knowledge and Information Systems, vol. 42,
no. 1, pp. 181–213, 2015.

[33] M. Girvan and M. E. Newman, “Community structure in social and
biological networks,” Proceedings of the national academy of sciences,
vol. 99, no. 12, pp. 7821–7826, 2002.

[34] G. Siganos, M. Faloutsos, P. Faloutsos, and C. Faloutsos, “Power
laws and the as-level internet topology,” IEEE/ACM Transactions on
Networking (TON), vol. 11, no. 4, pp. 514–524, 2003.

[35] A.-L. Barabási, “Scale-free networks: a decade and beyond,” science,
vol. 325, no. 5939, pp. 412–413, 2009.

[36] P. Erdos and A. Rényi, “On the evolution of random graphs,” Publ.
Math. Inst. Hung. Acad. Sci, vol. 5, no. 1, pp. 17–60, 1960.

[37] B. Bollobás, “Random graphs,” in Modern Graph Theory. Springer,
1998, pp. 215–252.

[38] P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic blockmodels:
First steps,” Social networks, vol. 5, no. 2, pp. 109–137, 1983.

[39] O. Frank and D. Strauss, “Markov graphs,” Journal of the american
Statistical association, vol. 81, no. 395, pp. 832–842, 1986.

[40] G. Robins, P. Pattison, Y. Kalish, and D. Lusher, “An introduction
to exponential random graph (p*) models for social networks,” Social
networks, vol. 29, no. 2, pp. 173–191, 2007.

[41] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model
for graph mining,” in Proceedings of the 2004 SIAM International
Conference on Data Mining. SIAM, 2004, pp. 442–446.

[42] J. Leskovec and C. Faloutsos, “Scalable modeling of real graphs using
kronecker multiplication,” in Proceedings of the 24th international
conference on Machine learning. ACM, 2007, pp. 497–504.

[43] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-
worldnetworks,” nature, vol. 393, no. 6684, pp. 440–442, 1998.

[44] F. Chung and L. Lu, “Connected components in random graphs with
given expected degree sequences,” Annals of combinatorics, vol. 6, no. 2,
pp. 125–145, 2002.

[45] F. Chung and L. Lu, “The average distance in a random graph with
given expected degrees,” Internet Mathematics, vol. 1, no. 1, 2004.

[46] C. Seshadhri, T. G. Kolda, and A. Pinar, “Community structure and
scale-free collections of erdős-rényi graphs,” Physical Review E, vol. 85,
no. 5, p. 056109, 2012.

[47] T. G. Kolda, A. Pinar, T. Plantenga, and C. Seshadhri, “A scalable
generative graph model with community structure,” SIAM Journal on
Scientific Computing, vol. 36, no. 5, pp. C424–C452, 2014.

[48] J. Leskovec, Dynamics of large networks. Carnegie Mellon University,
2008.

[49] M. Alam, M. Khan, A. Vullikanti, and M. Marathe, “An efficient and
scalable algorithmic method for generating large–scale random graphs,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE Press, 2016, p. 32.

[50] A. Yoo and K. Henderson, “Parallel generation of massive scale-free
graphs,” arXiv preprint arXiv:1003.3684, 2010.

[51] “Graph 500,” 2016. [Online]. Available: http://graph500.org

[52] L. Wang, C. Yao, A. Singhal, and S. Jajodia, “Implementing interactive
analysis of attack graphs using relational databases,” Journal of Com-
puter Security, vol. 16, no. 4, pp. 419–437, 2008.

[53] S. Jajodia, S. Noel, P. Kalapa, M. Albanese, and J. Williams, “Cauldron
mission-centric cyber situational awareness with defense in depth,” in

288

Military Communications Conference, 2011-MILCOM 2011. IEEE,
2011, pp. 1339–1344.

[54] E. Bou-Harb and M. Scanlon, “Behavioral service graphs: A formal data-
driven approach for prompt investigation of enterprise and internet-wide
infections,” Digital Investigation, vol. 20, pp. S47–S55, 2017.

[55] C. C. Noble and D. J. Cook, “Graph-based anomaly detection,” in
Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2003, pp. 631–636.

[56] P.-Y. Chen and A. O. Hero, “Assessing and safeguarding network
resilience to nodal attacks,” IEEE Communications Magazine, vol. 52,
no. 11, pp. 138–143, 2014.

[57] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detection and
description: a survey,” Data Mining and Knowledge Discovery, vol. 29,
no. 3, pp. 626–688, 2015.

[58] J. McGlone, A. Marshall, and R. Woods, “An attack-resilent sampling
mechanism for integrated ip flow monitors,” in Distributed Computing
Systems Workshops, 2009. ICDCS Workshops’ 09. 29th IEEE Interna-
tional Conference on. IEEE, 2009, pp. 233–238.

[59] W. Yang, J. Gong, W. Ding, and X. Wu, “Network traffic emulation for
ids evaluation,” in Network and Parallel Computing Workshops, 2007.
NPC Workshops. IFIP International Conference on. IEEE, 2007.

[60] Cisco, “Cisco router firewall security: Dos protection,” 2004. [Online].
Available: https://goo.gl/Aqf8AM

[61] M. Fullmer and S. Romig, “The osu flowtools package and cisco netflow
logs,” in Proceedings of the 2000 USENIX LISA Conference, 2000.

[62] SANS, “Intrusion detection through relationship analysis,” 2016.
[Online]. Available: https://goo.gl/WNKrcH

[63] Oracle, “Using property graphs in a big data environment,” 2017.
[Online]. Available: https://goo.gl/G6F3Qe

[64] F. C. Smith and E. E. Kenneally, “Electronic evidence and digital
forensics testimony in court,” in Handbook of Digital and Multimedia
Forensic Evidence. Springer, 2008, pp. 103–132.

[65] R. Albert and A.-L. Barabási, “Statistical mechanics of complex net-
works,” Reviews of modern physics, vol. 74, no. 1, p. 47, 2002.

[66] M. van Steen, Graph Theory and Complex Networks: An Introduction.
On Demand Publishing, LLC-Create Space, 2010.

[67] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” Computer networks and ISDN systems, vol. 30, no. 1,
pp. 107–117, 1998.

[68] A. M. Z. Bidoki and N. Yazdani, “Distancerank: An intelligent ranking
algorithm for web pages,” Information Processing & Management,
vol. 44, no. 2, pp. 877–892, 2008.

[69] M. Barthelemy, “Betweenness centrality in large complex networks,”
The European Physical Journal B-Condensed Matter and Complex
Systems, vol. 38, no. 2, pp. 163–168, 2004.

[70] D. S. Hirschberg, A. K. Chandra, and D. V. Sarwate, “Computing
connected components on parallel computers,” Communications of the
ACM, vol. 22, no. 8, pp. 461–464, 1979.

[71] V. Paxson, “Bro: a system for detecting network intruders in real-time,”
Computer networks, vol. 31, no. 23, pp. 2435–2463, 1999.

[72] A. A. Galtsev and A. M. Sukhov, “Network attack detection at flow
level,” in Smart Spaces and Next Generation Wired/Wireless Networking.
Springer, 2011, pp. 326–334.

[73] M.-S. Kim, H.-J. Kong, S.-C. Hong, S.-H. Chung, and J. W. Hong, “A
flow-based method for abnormal network traffic detection,” in Network
operations and management symposium, 2004. NOMS 2004. IEEE/IFIP,
vol. 1. IEEE, 2004, pp. 599–612.

[74] H. Wang, H. Sun, C. Li, S. Rahnamayan, and J.-S. Pan, “Diversity
enhanced particle swarm optimization with neighborhood search,” In-
formation Sciences, vol. 223, pp. 119–135, 2013.

[75] H. A. Kholidy, F. Baiardi, S. Hariri, E. Elhariri, A. Yousof, and
S. Shehata, “A hierarchical cloud intrusion detection system: Design
and evaluation,” International Journal on Cloud Computing: Services
and Architecture (IJCCSA), vol. 2, no. 6, 2012.

[76] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage,
“Inferring internet denial-of-service activity,” ACM Transactions on
Computer Systems (TOCS), vol. 24, no. 2, pp. 115–139, 2006.

[77] D. M. Pressel, “Scalability vs. performance,” DTIC Document, Tech.
Rep., 2001.

[78] “Swedish department of defense dataset,” 2011. [Online]. Available:
ftp://download.iwlab.foi.se/dataset/smia2011/Network traffic/

[79] MSU, “Hpc: High performance computing laboratory,” 2016. [Online].
Available: https://www.hpc.msstate.edu/computing/hpc.php

289

