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Abstract—Architecting software systems according to the service-oriented paradigm and designing runtime self-adaptable systems

are two relevant research areas in today’s software engineering. In this paper, we address issues that lie at the intersection of these

two important fields. First, we present a characterization of the problem space of self-adaptation for service-oriented systems, thus

providing a frame of reference where our and other approaches can be classified. Then, we present MOSES, a methodology and a

software tool implementing it to support QoS-driven adaptation of a service-oriented system. It works in a specific region of the

identified problem space, corresponding to the scenario where a service-oriented system architected as a composite service needs to

sustain a traffic of requests generated by several users. MOSES integrates within a unified framework different adaptation

mechanisms. In this way it achieves greater flexibility in facing various operating environments and the possibly conflicting QoS

requirements of several concurrent users. Experimental results obtained with a prototype implementation of MOSES show the

effectiveness of the proposed approach.

Index Terms—Service-oriented architecture, runtime adaptation, quality of service
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1 INTRODUCTION

1.1 Motivation

TWO of the major current trends in software engineering
are: the increasingly central role of the service-oriented

architecture (SOA) paradigm in the development of software
systems, and the emphasis given to the need of introducing
self-adaptation features within software systems.

The SOA paradigm encourages the realization of new
software systems by composing network-accessible loosely
coupled services. It has its roots in the existence of a widely
deployed internetworking infrastructure, and in the general
shift that has occurred in the way enterprises operate, where
fully integrated enterprises are being replaced by more agile
networks of enterprises, offering each other specialized
services. According to the SOA paradigm, the development
focus shifts from activities concerning the in-house custom
design and implementation of the system components to
activities concerning the identification, selection, and com-
position of services offered by third parties.

The goal of self-adaptation is to alleviate the manage-
ment problem of complex software systems that operate in
highly changing and evolving environments. Such systems
should be able to dynamically adapt themselves to their

environment with little or no human intervention in order
to meet both functional requirements concerning the
overall logic to be implemented and nonfunctional require-
ments concerning the quality of service (QoS) levels that
should be guaranteed.

The two fields outlined above are quite strictly inter-
twined. On one hand, SOA-based systems represent a
typical domain where self-adaptation can give significant
gains. Indeed, the open and dynamic world of services is
characterized by a continuous evolution: Providers may
modify the exported services, new services may become
available, existing services may be discontinued by their
providers, usage profiles may change over time due to the
open market in which they are situated [6]. On the other
hand, the loose coupling, dynamic selection, and binding
features of SOA systems make them particularly amenable
to the introduction of runtime adaptation policies. In
particular, the use of self-adaptation to fulfill nonfunctional
QoS requirements such as performance, reliability, and cost
plays a central role in the SOA domain. Indeed, in the
envisaged service marketplace (e.g., [44], [48], [51]), several
competing services may coexist, implementing the same
functionality with different QoS and cost. Thus, a prospec-
tive user could choose the services that best suit his/her
QoS requirements. Hence, being able to effectively deliver
and guarantee the QoS level required by a given class of
users may bring a competitive advantage to a service
provider over the others.

1.2 Contribution

The approach proposed in this paper spans the two fields
summarized above. Our goal is to address issues concern-
ing the design and implementation of a self-adaptive SOA
system aimed at maintaining some specified QoS and cost
requirements.
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General discussions concerning the issues and the state
of the art in the design and implementation of self-adaptive
software systems have been presented, e.g., in [29], [55],
[17], [3], [36], [10], [50]. These papers evidence the number
and the several facets of the problems to be tackled. As a
consequence, it is unlikely that a single methodology,
design or implementation approach could be able to
encompass effectively all of them.

In this respect, as a first contribution of this paper, we
outline a characterization of the problem space of QoS-
driven self-adaptation for the SOA domain, providing a
frame of reference for existing literature. Moreover, this
characterization can help in the identification of interesting
problems arising in different regions of this space and
promising ways to tackle them.

Then, as a second contribution (that constitutes the most
relevant part of this paper), we present MOdel-based SElf-
adaptation of SOA systems (MOSES), a methodology and a
software tool that implements it, for QoS-driven runtime
adaptation of SOA systems. MOSES is tailored for a
significant region of the overall problem space, correspond-
ing to the scenario where a SOA system architected as a
composite service needs to sustain a traffic of requests
generated by several classes of services. Within this scenario,
MOSES determines the most suitable configuration of this
system for a given operating environment by solving an
optimization problem (that is an LP problem) derived from a
model of the composite service and of its environment. The
adopted model allows MOSES to integrate in a unified
framework both the selection of the set of concrete services to
be used in the composition and (possibly) the selection of the
coordination pattern for multiple functionally equivalent
services, where the latter allows it to achieve QoS levels that
could not be achieved by using single services. In this
respect, MOSES is a step forward with respect to most
existing approaches for runtime SOA systems adaptation
that limit the range of their actions to the selection of single
services to be used in the composition. We assess the
effectiveness of MOSES through an extensive set of experi-
ments performed using the software tool that implements it.

This paper integrates and extends the basic elements of
the MOSES methodology and prototype presented in [14]
and [7]. Specifically, with respect to those works, the new
contributions of this paper can be summarized as follows:

1. We have defined a characterization of the problem
space of QoS-based self-adaptation for the SOA
domain;

2. We have included the management of stateful
services;

3. We have implemented an improved version of the
MOSES prototype;

4. We have run a thorough set of experiments to
validate the whole MOSES methodology and com-
pared the computational cost of MOSES with that of
other state-of-the-art approaches.

1.3 Organization

The remainder of the paper is organized as follows: In
Section 2, we examine the problem of self-adaptation from
the perspective of the SOA domain, and identify different

dimensions that can be used to characterize the problem
space. Based on this characterization, we specify in the same
section the problem addressed by MOSES. In Section 3, we
present an overview of the MOSES framework, and also
outline its architecture and the main tasks of its compo-
nents. Sections 4, 5, and 6 describe specific aspects of
MOSES. In particular, in Section 4 we present the adaptation
policy model and the QoS model used by MOSES to
calculate the overall QoS of a service composition. Based on
these models, in Section 5 we present the formulation of an
optimization problem that is solved within the MOSES
framework to determine a suitable adaptation policy. Then,
in Section 6 we describe the MOSES prototype that
implements the overall methodology and present a broad
set of experiments to assess the effectiveness of the
approach and to illustrate the kind of adaptation directives
issued by MOSES. In Section 7, we discuss related works.
Finally, in Section 8 we summarize some lessons learned
with the development of the MOSES methodology, and
present directions for future work.

2 PROBLEM SPACE CHARACTERIZATION

A sensible way to characterize the problem space for self-
adaptive software systems is to organize it along several
dimensions, where each dimension captures one or more
related facets of the problem. Papers addressing this issue
have provided somewhat different characterizations [29],
[55], [17], [3], [36], [10], [50], mainly because of some
difference in the adopted perspective. Overall, they can be
considered as possible answers to some basic questions [55]:

. why should adaptation be performed (which are its
goals);

. when should adaptation actions be applied;

. where should the adaptation occur (in which part of
the system) and what elements should be changed;

. how should adaptation be implemented (by means of
which actions);

. who should be involved in the adaptation process.

The answers provided by the papers cited above aim at
addressing the whole software systems domain. In this
section, we adopt a narrower viewpoint, and outline
possible answers to these questions based on the specific
features of the SOA domain, with special emphasis on QoS
aspects. We remark that our main goal is to show some of
the key issues to be tackled rather than presenting an
exhaustive analysis of the literature for the SOA domain.

Fig. 1 summarizes the main concepts of this character-
ization. For the sake of clarity, the class diagram in Fig. 2
illustrates some elements of the SOA domain we use in this
characterization. A more detailed taxonomy of these
elements can be found, for example, in [9], [19].

2.1 Dimensions of Self-Adaptation for SOA
Systems

Why. The basic goal of adaptation is to make the system
able to fulfill its functional and/or nonfunctional require-
ments, despite variations in its operating environment,
which are very likely to occur in the SOA domain. As
pointed out in the introduction, our focus in this paper is on
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nonfunctional requirements concerning the delivered QoS
and cost. In the SOA domain, these requirements are
usually the result of a negotiation process engaged between
the service provider and user, which culminates in the
definition of a Service Level Agreement (SLA) concerning
their respective obligations and expectations [39]. In a
stochastic setting, a SLA specifies guarantees about the
average value of quality attributes, or more tough guarantees
about the higher moments or percentiles of these attributes.

With regard to functional requirements, we just mention
that, in the SOA domain, adaptation may play a relevant role
in tackling runtime interoperability issues among dynami-
cally discovered and selected services (e.g., [18], [43]).

When. Broadly speaking, adaptation can be performed at
different stages of the system lifetime [36]: development
time, compile/link time, load time, runtime. In the SOA
domain, the emphasis is on building systems by late
composition of running services. Hence, the focus of
adaptation in this domain is on the runtime stage. This
narrower viewpoint of the “when” dimension is also
adopted in [55] for the broader field of self-adaptive
software. Within this stage, we may further distinguish
reactive and proactive adaptation. In the reactive mode, the
system adapts itself after a change has been detected. In the
proactive mode, the system anticipates the adaptation based
on a prediction of possible future changes.

Where-what. The SOA paradigm emphasizes a composi-
tional approach to software systems development where
the units of composition are services. A service can be
considered as a black-box component deployed on some
platform, operated by an independent authority, and made
accessible through some networking infrastructure using
standard protocols. Hence, the composition of services can
be considered as the basic locus for adaptation in the SOA
domain. Looking at service composition, we may distin-
guish an abstract composition, where only the required
functionalities (tasks) and their composition logic are
specified, and a concrete composition, where the tasks of an
abstract composition are bound to actual implementations,
based on the use of operations offered by network accessible
concrete services. Based on this distinction, adaptation in the
SOA domain may take place at two different levels:

. Services only: The adaptation only involves the con-
crete composition, acting on the implementation each

task is bound to, leaving unchanged the composition
logic (i.e., the overall abstract composition).

. Services and workflow: The adaptation involves both
the concrete and abstract composition; in particular,
the composition logic can be altered.

We may also look at the where-what question from the
perspective of the adaptation scope. In this perspective, we
may take two different viewpoints: the number of SOA
systems operating in the same environment that are directly
involved in the adaptation process, and the granularity level
at which adaptation is performed, considering the flow of
requests addressed to a SOA system by the same or
different users.

We first discuss this issue from the “granularity level”
viewpoint in the “scope” dimension:

. Single request: The adaptation concerns a single
service request, and aims at making the system able
to fulfill the requirements of that request, irrespec-
tive of whether it belongs to some flow generated by
one or more users.

. Flow of requests: The adaptation concerns an overall
flow of requests, and aims at fulfilling requirements
concerning the global properties of that flow.

Let us consider now the “number of SOA systems”
viewpoint:

. Single system: A single system is explicitly consid-
ered as the system to be adapted, while everything
else, including other competing SOA systems, is
considered part of its environment.

. Multiple systems: Several SOA systems, competing
for overlapping sets of services in the same
environment, are explicitly considered in the adap-
tation process.

How. Possible answers to this question depend on the
level of the composition where adaptation takes place, as
discussed above. For adaptations involving only the
services of the composition, adaptation actions could be
based on:

. Service tuning: The behavior and/or properties of the
operations of concrete services are changed, depend-
ing on the current operating conditions, exploiting
some management interface exposed by the concrete
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services themselves (e.g., based on WSDM MOWS
[34]). This kind of action does not change the current
binding between tasks and operations of concrete
services.

. Service selection: The goal of this action is to identify
and to bind to each task a corresponding single
operation offered by a concrete service, selecting it
from a set of candidates. This kind of action could
change the binding between tasks and operations if
the previous selection is no longer suitable for the
new operating conditions.

. Coordination pattern selection: Rather than binding
each task to a single operation, this action binds it to
a set of functionally equivalent operations offered by
different concrete services, coordinating them ac-
cording to some spatial or temporal redundancy
pattern. The coordination pattern is selected within a
set of implementable patterns (e.g., 1-out-of-n
parallel redundancy, alternate service) that could,
in general, guarantee different QoS and cost levels
for the same set of coordinated operations. Binding a
task to a set of equivalent operations allows us to
obtain QoS levels (concerning reliability and, in
some cases, performance) that could not be achiev-
able binding it to a single operation. Of course this
advantage should be weighted against the higher
cost caused by the use of multiple concrete services.

Who. This dimension concerns the “authorities” that
manage the adaptation process and it is related to the
“number of SOA systems” dimension discussed above. In the
case of a single system, we may assume that its adaptation is
under the control of a single authority (that must take into
account the fact that the constituent services of the managed
system could be operated by third parties). In the case of
multiple systems, their adaptation could still be under the
control of a single authority. Alternatively, it could be under
the control of multiple cooperating authorities that, for example,
agree on some common utility objective. Finally, it could be
under the control of multiple noncooperating authorities that
compete in a selfish way for some set of services.

2.2 The MOSES Approach to Adaptation

Devising an adaptation methodology strongly depends on
the assumptions made about the domain it will be applied
to. Different assumptions may lead to different formulations
of the problem to be solved, and corresponding solution
methodologies. Looking at the existing literature, we see that
a largely uncovered region of the problem space outlined in
Section 2.1 concerns the flow of requests granularity level.
Indeed, most of the proposed methodologies focus on the
single request case (e.g., [5], [11], [16], [25], [26], [59], [61], [62]).
However, a per-request approach hardly scales with work-
load increases, thus making this approach unsuitable for a
system subject to a quite sustained flow of requests. We
discuss this issue in Section 6.2.2.

With MOSES, we intend to address this part of the problem
space. Indeed, MOSES focuses on a scenario where several
classes of services address a relatively sustained traffic of
requests to a SOA system architected as a composite service.
Each class may have its own QoS requirements, and

negotiates a corresponding SLA with the system. In this
scenario, we assume that the QoS requirements stated in the
SLA concern the average value of QoS attributes calculated
over all the requests belonging to a flow generated by a given
user. These values are guaranteed to the user as long as the
rate of requests he/she addresses to the system does not
exceed a given threshold, established in the SLA itself.

With regard to the mechanisms used to perform the
adaptation, several papers have focused on service selection.
However, it may happen that, under a specific operating
condition, no selection exists of single operations offered by
concrete services allowing the fulfillment of the QoS
requirements. In this case, adaptation methodologies based
only on service selection fail to meet their objective, which
could cause a loss of income and/or reputation for a
service provider.

To overcome this problem, with MOSES we propose to
broaden the range of the considered adaptation mechanisms
by exploiting the availability in an SOA environment of
multiple independent implementations of the same func-
tionality. To this end, MOSES is able to select and implement
adaptation actions based on a combination of both the service
selection and coordination pattern selection mechanisms. In this
way, MOSES may fulfill QoS levels (concerning reliability
and performance) that could not be achieved otherwise, thus
increasing the flexibility of a provider in facing a broader
range of QoS requirements and operating conditions.

In summary, MOSES addresses the following region of
the problem space characterized in Section 2.1, as evidenced
by the shaded boxes in Fig. 1:

. why: fulfillment of SLAs about the average value of QoS
attributes, negotiated between the provider of a
composite service and multiple classes of services;
each class of services is characterized by its own SLA;

. when: runtime reactive adaptation;

. where-what:

- composition level: services only;
- scope (granularity): flows of requests addressed

to the system by different users;
- scope (number of systems): a single SOA system

architected as a composite service;
. how: service selection and coordination pattern

selection;
. who: single authority.

3 OVERVIEW OF THE MOSES FRAMEWORK

MOSES is intended to act as a service broker, which offers to
prospective users a composite service with a range of
different service classes exploiting for this purpose a set of
existing concrete services. Its main task is to drive the
adaptation of the composite service to fulfill the QoS goals
of the different service classes it offers when changes occur
in its operating environment.

To achieve this goal, MOSES manages a feedback control
loop [45]. Fig. 3 shows a high level view of the MOSES
architecture implementing this loop, organized according to
IBM’s Monitor, Analyze, Plan, Execute, and Knowledge
(MAPE-K) reference model of an autonomic system [31].
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The MOSES input consists of the description of the
composite service in some suitable workflow orchestration
language (e.g., BPEL [49]), and the set of candidate concrete
services that can be used to implement the required tasks
(including the parameters of their SLAs). MOSES uses this
input to build a model which is then used (and kept up to
date) at runtime to determine possible adaptation actions to
be performed. Each macrocomponent in Fig. 3 is actually
architected as a set of interacting components. We give
some details about these components and their functions in
Section 3.4. Before that, we present in Section 3.1 the class of
SOA systems managed by MOSES, in Section 3.2 the
adaptation actions it performs, and in Section 3.3 an SLA
model we use to state the QoS and cost requirements that
drive the MOSES actions.

3.1 Composite Service Model

The class of services managed by MOSES consists of all
those composite services whose orchestration logic (i.e.,
their abstract composition, according to the terminology of
Section 2.1) can be abstractly defined as an instance
generated by the following grammar:

C ::¼ SjseqðCþÞjloopðCÞjselðCþÞjpar andðCþÞ;
S ::¼ S1jS2j . . . jSm:

In this definition, C denotes a composite service,
S1; S2; . . . ; Sm denote tasks (i.e., functionalities needed to
compose a new added value service), and Cþ denotes a list of
one or more services. Hence, MOSES currently is able to
manage composite services consisting either of a single task,
or of the orchestration of other services according to the
composition rules: seq, loop, sel, par_and. Table 1 summarizes

the intended meaning of these rules and the corresponding
BPEL constructs. For the sake of clarity, in Table 2 we
summarize the notation used throughout the paper.

We point out that the above grammar is purposely
abstract, as it intends to succintly specify only the structure
of the considered composite services. Hence, we omit
details such as how to express the terminating condition
for a loop. A thorough approach to the modeling of service
orchestration is presented in [32], based on the Orc
language; Cook et al. [20] show how Orc can model the
workflow patterns listed in [1]. In this respect, we point out
that the grammar we define does not capture all the
possible structured orchestration patterns, but includes a
significant subset.1

Fig. 4 shows an example of an orchestration pattern
described as a UML2 activity diagram, and the correspond-
ing instance generated by the grammar. MOSES uses this
grammar to check whether the orchestration pattern of an
actual SOA system matches the kind of patterns it is able to
manage. In the positive case, it uses the grammar to support
the construction of a suitable runtime model to be used for
adaptation purposes.

3.2 Adaptation Actions

MOSES performs adaptation actions that take place at the
services only composition level. Their goal is to determine at
runtime the most suitable implementation to be bound to
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Fig. 3. The MOSES approach.

TABLE 1
Workflow Composition Rules

TABLE 2
Main Notation Adopted in the Paper

1. In particular, it can be easily realized that our grammar captures the
structure of workflow patterns 1, 2 + 3, 4, 10 (for structured cycles only), 13,
and 16 reported in [1].



each abstract task Si, selecting it from a set =i of available
implementations, built as follows.

We assume that a set CS ¼ fcslg of candidate concrete
services have been identified to build an overall implemen-
tation of the composite service. Different csl can be offered by
different providers with different QoS and cost attributes or
even by the same provider offering differentiated services.

Each csl implements a set OP ðcslÞ of operations. We
denote by OP ¼ [OP ðcslÞ the set of all the available
operations, and by OPi � OP the subset of functionally
equivalent operations that implement the task Si.

MOSES exploits the availability of multiple equivalent
operations to build implementations of each Si based on the
use of redundancy schemes to get QoS levels possibly higher
than those guaranteed by each single operation, at the
expense of a higher cost. According to these schemes, a
possible implementation of a task Si may consist of a set of
two or more equivalent operations belonging to OPi,
coordinated according to some coordination pattern.

At present, the MOSES framework includes two such
coordination patterns, denoted as alt and par_or, besides
the simple single pattern. Table 3 summarizes their
intended meaning. We have selected these two coordina-
tion patterns as they have complementary characteristics
with respect to their QoS and cost, as will be explicitly
discussed in Section 4.2.1.

Hence, the set =i of available implementations for each
task Si is given by the union of the following sets:

=i ¼ OPi [ OPalti [ OP
par
i ;

where:

. OPi has been already defined above; selecting an
element in this set models the selection of an
implementation of Si based on a single operation;

. OPalti is the set of all the ordered lists of at least two
elements belonging to OPi, with no repetitions;
selecting an element in this set models the selection
of an implementation of Si based on the alt pattern
applied to that list;

. OPpari is the set of all the subsets of at least two
elements belonging to OPi; selecting an element in
this set models the selection of an implementation of
Si based on the par_or pattern applied to that subset.

For a given abstract composition that models the
business logic of a SOA system, the selection for each Si
of different elements in the set =i corresponds to different

concrete configurations of the overall composite service,
each characterized by different values of their overall QoS
attributes. We call the runtime selection and implementa-
tion of one of these configurations adaptation policy, to best
match the QoS constraints and objectives in a given
operating environment. We detail in Sections 4 and 5 the
methodology adopted in MOSES to determine this policy.

3.2.1 Adaptation Actions for Stateless and Stateful

Services

In the discussion above about the MOSES adaptation
actions, we implicitly assume that tasks can be bound to
any concrete service implementing them. Actually, this
holds only for stateless tasks, i.e., tasks that do not require
sharing any state information with other tasks. In the
general case, composite services may include stateful tasks,
i.e., tasks that do need state information to be shared among
them; as a consequence, these tasks need to be implemented
by operations of the same concrete service. This very
requirement limits the possibility of exploiting redundancy
patterns to implement stateful tasks. Indeed, the function-
ally equivalent operations used within these patterns
generally belong to different concrete services. This makes
unlikely, or even impossible, the sharing of state informa-
tion among them unless we put constraints on the
implementations. To overcome this problem, MOSES
currently uses the alt or par_or patterns for the implementa-
tion of stateless tasks only, while the implementation of
stateful tasks is restricted to only the single pattern.

We model the presence of stateful tasks by considering a
partition S ¼ fS1; . . . ;Sfg of the set of tasks fS1; . . . ; Smg.
Tasks that need to share some state information belong to the
same subset Sh 2 S and need to be implemented by
operations of the same concrete service csl. A stateless task
Si is simply modeled by associating it with a singletonSh 2 S.

3.3 SLA Model

As stated in Section 2.2, MOSES considers SLAs stating
conditions that should hold globally for a flow of requests
generated by a user. In general, an SLA may include a large
set of parameters, referring to different kinds of functional
and nonfunctional attributes of the service, and different
ways of measuring them. MOSES presently considers the
average value of the following attributes:

. response time: the interval of time elapsed from the
service invocation to its completion;

. reliability: the probability that the service completes
its task when invoked;2

. cost: the price charged for the service invocation.
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TABLE 3
Coordination Patterns

2. This measure is called successful execution rate in [62].



Other attributes, like reputation or availability, could be
easily added.

Our general model for the SLA between the provider and
the user of a service thus consists of a tuple hR;C;D; Li,
where: R is the upper bound on the average service
response time, C is the service cost per invocation, D is
the lower bound on the service reliability. The provider
guarantees that thresholds R and D will hold on average
provided that the request rate generated by the user does
not exceed the load threshold L.

In our framework, MOSES performs a two-fold role of
service provider toward its users and of service user with
respect to the providers of the concrete services it uses to
implement the composite service it is managing. Hence, it is
involved in two types of SLAs, corresponding to these two
roles, that are both defined using the SLA template. In the
case of the SLAs between the composite service users and
MOSES (acting the provider role), we assume that MOSES
offers a set K of service classes. Hence, the SLA for user u of
service class k 2 K is defined as a tuple hRk

max; C
k;Dk

min; �
k
ui.

All these coexisting SLAs (for each u and k) define the QoS
objectives that MOSES must meet.

To meet these objectives, we assume that MOSES (acting
the user role) has already identified for each task Si a pool
of concrete services implementing it. The SLA contracted
between MOSES and the provider of the operation opij 2
OPi is defined as a tuple hrij; cij; dij; Liji. These SLAs define
the constraints within which MOSES should try to meet its
QoS objectives.

3.4 MOSES Components

Fig. 5 details the macrocomponents of the MOSES archi-
tecture in Fig. 3, showing the core components they consist
of—BPEL Engine, Composition Manager, Adaptation Manager,
Optimization Engine, QoS Monitor, Execution Path Analyzer,
WS Monitor, Service Manager, SLA Manager, and Data Access
Library—and their interactions. Information about their
implementation is given in Section 6.

The Execute macrocomponent comprises the Composition
Manager, BPEL Engine, and Adaptation Manager components.
The first component receives from the broker administrator
the description of the composite service in some suitable

workflow orchestration language (e.g., BPEL [49]), and
builds a behavioral model of the composite service. To
this end, the Composition Manager interacts with the
Service Manager for the identification of the operations
that implement the tasks required by the service
composition. Once created, the behavioral model is saved
in the Knowledge macrocomponent to make it accessible
to the other system components.

While the Composition Manager is rarely invoked during
the MOSES operativeness, the BPEL Engine and Adaptation
Manager are the core modules for the execution and runtime
adaptation of the composite service. The first is the software
platform that actually executes the business process (e.g., Sun
BPEL Service Engine (SE) or Apache ODE) and represents the
user front end for the composite service provisioning. It
interacts with the Adaptation Manager to allow the invoca-
tion of the component services. The Adaptation Manager is in
charge of carrying out at runtime the adaptation actions.
Indeed, for each operation invocation, it dynamically binds
the request to the real endpoint that represents the operation.
This endpoint is identified on the basis of the optimization
problem solution determined by the Optimization Engine.
We point out that the optimization problem solution takes
place not for each operation invocation, but only when some
component in the Analyze macrocomponent determines
the need of a new solution in order to react to some change
occurred in the MOSES environment. The BPEL Engine and
the Adaptation Manager also acquire raw data needed to
determine, respectively, the usage profile of the composite
service and the performance and reliability levels (specified
in the SLAs) actually perceived by the users and offered by
the concrete services. Together, the BPEL Engine and the
Adaptation Manager are responsible for managing the user
requests flow once the user has been admitted to the system
with an established SLA.

The Optimization Engine implements the Plan macro-
component of the autonomic loop. It solves the optimiza-
tion problem, which is based on the behavioral model
initially built by the Composition Manager and instantiated
with the parameters of the SLAs negotiated with both the
MOSES users and the providers of the concrete services.
The model is kept up to date by the monitoring activity
carried out by the MOSES Monitor and Analyze macro-
components. The solution of the optimization problem
determines the adaptation policy in a given operating
environment, which is passed to the Adaptation Manager
for its actual implementation.

The components in the Monitor and Analyze macrocom-
ponents capture changes in the MOSES environment and, if
they are relevant, modify at runtime the behavioral model
and trigger the Optimization Engine to make it calculate a
new adaptation policy.

Currently, tracked changes include

. the arrival/departure of a user with the associated
SLA (SLA Manager);

. observed variations in the SLA parameters of the
constituent operations (QoS Monitor);

. addition/removal of an operation implementing a
task of the abstract composition (Service Manager
and WS Monitor);
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. variations in the usage profile of the tasks in the
abstract composition (Execution Path Analyzer).

Finally, the Knowledge macrocomponent is accessed

through the Data Access Library, which allows us to access

the parameters describing the composite service and its

operating environment (they include the set of tasks in the

abstract composition, the corresponding candidate opera-

tions with their QoS attributes, and the current solution of

the optimization problem that drives the composite service

implementation).

4 ADAPTATION AND QoS MODEL

In this section, we present the adaptation policy model

adopted within MOSES and the QoS model it uses to

compute the QoS attributes of a composite service.

4.1 Adaptation Policy Model

The MOSES adaptation policy is based on a set of directives

used to select at runtime the “best” implementation of the

composite service in a given scenario. MOSES assumes a

flow-based service demand model with multiple concurrent

service classes, where for each task Si different requests in a

flow can be bound to different implementations. The

MOSES adaptation policy consists of determining, for each

service class k and each task Si:

. the coordination pattern(s) and the corresponding
list of operations to be used to build concrete
implementation(s) for Si (selected among the single,
alt and par_or patterns);

. the fraction of requests generated by class k requests
for Si that must be switched and bound to a specific
implementation of Si.

We model the MOSES adaptation policy by associating

with each class k a vector xxxxk ¼ ½xxxxk1; . . . ; xxxxkm�, where each entry

xxxxki ¼ ½xkiJ �, 0 � xkiJ � 1, J 2 =i,
P

J2=i x
k
iJ ¼ 1, i ¼ 1; . . . ;m,

denotes the adaptation policy for taskSi. Here,xkiJ denotes the

fraction of class k requests for Si to be bound to the

implementation denoted by J . We denote by xxxx ¼ ½xxxxk�k2K
the MOSES adaptation policy vector which encompasses the

adaptation policy of all the service classes.
The adaptation policy vector xxxx is used by the Adaptation

Manager to determine for each and every invocation of a task

Si the coordination pattern to be used and the actual

service(es) to implement it. Given a class k request for the

task Si, the Adaptation Manager chooses the implementation

denoted by J with probability xkiJ , thus giving rise to a

randomized partitioning among the implementations in=i of

the overall class k flow directed toSi. As an example, consider

the case OPi ¼ fopi1; opi2; opi3; opi4g for task Si and assume

that the adaptation policy xxxxki for a given class k specifies the

following values: xkifopi1g ¼ x
k
ifopi3g ¼ 0:3, xkifopi2;opi3g ¼ 0:4, and

xkiJ ¼ 0 otherwise. According to this policy, given a class k

request for task Si, the Adaptation Manager binds the

request: with probability 0.3 to operation opi1, with prob-

ability 0.3 to operation opi3, and with probability 0.4 to the

pair opi2; opi3 coordinated by the par_or pattern (see Fig. 6).

4.2 QoS Model

MOSES presently considers the following attributes for each
service class k 2 K:

. the expected response time Rk, which is the average
time needed to fulfill a class k request for the
composite service;

. the expected execution cost Ck, which is the average
price to be paid for a class k invocation of the
composite service;

. the expected reliability Dk, which is the probability
that the composite service completes its task for a
class k request. As in [62], when writing expressions,
we will work with the logarithm of the reliability
rather than the reliability itself, to obtain linear
expressions when composing the reliability of
different services.

For each service class, the overall QoS of a composite
service implementation depends on: the usage profile and
the composition logic of the composite service tasks; the
adopted adaptation policy; the QoS of the task implementa-
tion selected within that adaptation policy.

In Section 4.2.1 we derive the QoS attributes of a task as a
function of the selected implementation, while in Section 4.2.2
we show how MOSES takes into account task orchestration
and usage profile to compute the composite service QoS.

QoS attributes are calculated based on the following
assumptions:

. service invocation is synchronous;

. services fail according to the fail-stop model;

. service cost is charged on a per-invocation basis.

4.2.1 Task QoS Attributes

Let us first consider a task in isolation. For each class of
service, the QoS of a task depends on: 1) the QoS associated
with the different set of operations and the associated
coordination pattern that can be bound to the task to build
its concrete implementation, and 2) the probability that a
particular coordination pattern and set of operations is
bound to a given request.

Let ZkðSi;xxxxÞ, Z ¼ CjDjR, denote class k QoS attribute of
taskSi under the adaptation policyxxxx. Since implementationJ
is chosen with probability xkiJ , we readily have

CkðSi;xxxxÞ ¼
X
J2=i

xkiJCðSi; JÞ; ð1Þ

logDkðSi;xxxxÞ ¼
X
J2=i

xkiJ logDðSi; JÞ; ð2Þ
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RkðSi;xxxxÞ ¼
X
J2=i

xkiJRðSi; JÞ; ð3Þ

where RðSi; JÞ, CðSi; JÞ, and DðSi; JÞ denote the average
response time, cost, and reliability of Si when the
implementation of Si corresponds to a given J 2 =i.

We now determine the value of these QoS attributes
when Si is implemented according to the three different
coordination patterns currently considered within MOSES.

We distinguish among the three cases:

. J 2 OPi: Assuming J ¼ fopijg, the QoS attributes
coincide with those of the selected concrete opera-
tion opij:

CðSi; JÞ ¼ cij; DðSi; JÞ ¼ dij; RðSi; JÞ ¼ rij: ð4Þ

. J 2 OPalti : The concrete operations listed in J ¼
½opij1

; . . . ; opijl � are tried in sequence, starting from
the first in the list, until one of them successfully
completes. Hence, the reliability of this pattern is
derived from the probability that at least one opera-
tion completes, while the cost and time to completion
of all the elements of the list must be summed, each
weighted by the probability that the invocations of all
the preceding elements in the list have failed:

CðSi; JÞ ¼
Xl
h¼1

cijh
Yh�1

s¼1

ð1� dijsÞ;

DðSi; JÞ ¼ 1�
Yl
h¼1

ð1� dijhÞ;

RðSi; JÞ ¼ DðSi; JÞ�1
Xl
h¼1

rijhdijh
Yh�1

s¼1

ð1� dijsÞ:

ð5Þ

. J 2 OPpari : In this case, the costs of all the operations
in J ¼ fopij1

; . . . ; opijlg must be summed as they are
invoked in parallel, while the completion time is the
minimum of the completion times of those operations
that successfully complete; thusRðSi; JÞ is the sum of
the minimum completion time of all nonempty
subsets H � J weighted with the probability that
only the operations in H do complete successfully:

CðSi; JÞ ¼
Xl
h¼1

cijh ;

DðSi; JÞ ¼ 1�
Yl
s¼1

ð1� dijsÞ;

RðSi; JÞ ¼ DðSi; JÞ�1

X
H22Jnf�g

Y
js2H

dijs
Y

js2JnH
ð1� dijsÞ

0
@

1
A

�min
js2H
frijsg:

ð6Þ

We make the following remarks concerning the evaluation
of RðSi; JÞ:

. In both (5)-(6), RðSi; JÞ is calculated conditioned on
the event that at least one service in the considered

list terminates. The probability of this event is equal
to the service reliability DðSi; JÞ.

. The expression for RðSi; JÞ in (6) is actually an
approximation: The Jensen’s inequality [47] ensures
that the expectation of the minimum of random
variables is lower than or equal to the minimum of the
expectations, with the equality holding only in the
deterministic case. Nevertheless, the approximation
is accurate in case of small variances. In other cases a
more suitable expression should be used, which
would require the knowledge of the response time
distribution, but this is out of the scope of this paper.

From (5)-(6), we see that the implementations of Si
according to the alt or par_or patterns have the same
reliability when they use the same set of services. On the
other hand, it is not difficult to verify (with some algebra)
that alt has a lower cost than par_or but a higher response
time since the sequential invocation used by alt means that
on the average not all the selected services are invoked, but
the response time of those invoked must be summed.

4.2.2 QoS Attributes of the Composite Service

For each class k 2 K, MOSES builds and maintains a labeled
tree T ¼ ðV ;E;LÞ, where V , E, and L are the tree nodes,
edges, and labels, respectively. T is derived from the syntax
tree that describes the production rules used to generate the
composite service, by simply collapsing the S and C nodes.
The leaf nodes of T are thus associated with tasks, while its
internal nodes are associated with composition rules.
Hence, for each nonroot node v 2 V , its parent node fðvÞ
denotes the composition rule within which v occurs.

The set L of edges is defined as follows: Each edge
ðfðvÞ; vÞ 2 E is labeled with ‘kðfðvÞ; vÞ, the expected number
of times v is invoked within fðvÞ for a class k request:

. If fðvÞ is the seq or par and composition rule, then
‘kðfðvÞ; vÞ ¼ 1.

. If fðvÞ is the loop rule, ‘kðfðvÞ; vÞÞ is the average
number of times the loop body is executed.

. If fðvÞ is the sel rule, ‘kðfðvÞ; vÞ corresponds to the
probability that v is executed.

MOSES performs a monitoring activity to keep these
values up to date. Fig. 7 shows the tree T maintained by
MOSES for the composite service depicted in Fig. 4 (labels
equal to 1 are omitted). Based on this model, following well-
known QoS composition rules [15], we can derive the
overall composite service QoS attributes RkðxxxxÞ, CkðxxxxÞ, and
DkðxxxxÞ (defined at the beginning of Section 4.2), given
RkðSi;xxxxÞ, CkðSi;xxxxÞ, and DkðSi;xxxxÞ, 1 � i � m. Table 4 shows
these rules, where for each node v 2 V we denote by dðvÞ
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the (possibly empty) set of its children. These rules define a
visit algorithm of the labeled tree T , from which we obtain

ZkðxxxxÞ ¼ Zkðroot;xxxxÞ;

where Z ¼ Cj logDjR, where root denotes the root node of T .
From the rules of Table 4 we now derive closed form

expressions for the QoS attributes of the composite service
that will provide the basis for the optimization problem
formulation of the next section. In these expressions, for each
node v 2 V , we write v � u if node v is a descendant of nodeu.

Cost and reliability. For these attributes, from the
recursive rules of Table 4, it is easy to realize that

CkðxxxxÞ ¼
Xm
i¼1

Y
j	Si

‘kðfðjÞ; jÞ
 !

CkðSi;xxxxÞ ¼
Xm
i¼1

V k
i C

kðSi;xxxxÞ

ð7Þ

and

logDkðxxxxÞ ¼
Xm
i¼1

Y
j	Si

‘kðfðjÞ; jÞ
 !

logDkðSi;xxxxÞ

¼
Xm
i¼1

V k
i logDkðSi;xxxxÞ;

ð8Þ

where V k
i ¼

Q
l	Si ‘

kðfðlÞ; lÞ, Si 2 V , is the expected number
of times task Si is invoked by the composite service for a
service class k user.

Response time. For RkðxxxxÞ, we need to account for the
fact that the overall response time of the par and pattern is
the largest response time among its component tasks. As a
consequence, the response time is no longer additive and
we cannot derive an expression analogous to (7). In this
case, we obtain a recursive set of expressions for the
response time, whose number is linear in the number of
par and composition patterns in the process. To this end, we
first introduce the notion of direct descendant among nodes
in V . We say that a node v 2 V is a direct descendant of
u 2 V , denoted by v �dd u, if v � u and for any other node
w 2 V , v � w � u implies w 6¼ par and, i.e., if there is no
node labeled par and in the path from v to u. In other
words, a node v 2 V is said to be a direct descendant of u if
task/pattern v is nested within the composition pattern u,
but, within u, it is not nested within a par and pattern.

Let � 
 V denote the set of nodes corresponding to
par and activities. We have the following result for the
response time Rk (we omit the proof—which is a simple

application on the recursive formulas of Table 4—for space
reasons).

Theorem 1. For QoS class k 2 K, the response time Rk can be
computed recursively as follows:

RkðxxxxÞ ¼ Rkðroot;xxxxÞ; ð9Þ

Rkðv;xxxxÞ ¼

max
u2dðvÞ

Rkðu;xxxxÞ v 2 �

X
Si2V ;Si�ddv

V k
i

V k
v

RkðSi;xxxxÞ

þ
X

u2�;u�ddv

V k
u

V k
v

Rkðu;xxxxÞ v 62 �:

8>>>>>>><
>>>>>>>:

ð10Þ

Theorem 1 provides the response time RkðvÞ of each
composition pattern v 2 V and the composite service
response time Rk, k 2 K. Observe that if the par and pattern
is not present in the workflow, � ¼ ; and (10) reduces to
RkðxxxxÞ ¼

Pm
i¼1 V

k
i R

kðSi;xxxxÞ.

5 OPTIMAL ADAPTATION

In this section, we present the optimization problem solved
by MOSES to determine the optimal policy xxxx in a given
environment and analyze its computational complexity.

5.1 Optimization Problem

The basic goal of MOSES is to determine an adaptation
policy xxxx that allows it to meet its QoS objectives stated by
the hRk

max; C
k;Dk

min; �
k
ui SLAs, given the constraints deter-

mined by the hrij; cij; dij; Liji SLAs. Within the possibly
empty set of feasible xxxxs that satisfy these constraints,
MOSES wants to select the xxxx that optimizes a given utility
function. Depending on the utilization scenario of MOSES,
the utility function could be aimed at optimizing specific
QoS attributes for the different service classes
(e.g., minimizing their average response time) and/or it
could be aimed at optimizing the MOSES own utility, e.g.,
minimizing the overall cost to offer the composite service
(that would maximize the MOSES owner incomes). These
different optimization goals could be possibly conflicting,
thus leading to a multi-objective optimization problem. To
deal with it we transform it into a single objective problem,
using for this purpose the Simple Additive Weighting
(SAW) technique [30], which is the most widely used
scalarization method. According to SAW, we define the
MOSES utility function F ðxxxxÞ as the weighted sum of the
(normalized) QoS attributes of all users. More precisely, let

ZðxxxxÞ ¼
P

k2K L
kZkðxxxxÞP

k2K L
k

; ð11Þ

where Z ¼ Rj logDjC is the expected overall response time,
reliability, and cost, respectively, and Lk ¼

P
u �

k
u is the

aggregated flow of class k requests. We define the utility
function as follows:

F ðxxxxÞ ¼ wr
Rmax �RðxxxxÞ
Rmax �Rmin

þ wd
logDðxxxxÞ � logDmin

logDmax � logDmin

þ wc
Cmax � CðxxxxÞ
Cmax � Cmin

;

ð12Þ
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where wr; wd; wc � 0, wr þ wd þ wc ¼ 1, are weights for the
different QoS attributes. Rmax (Rmin), Dmax (Dmin), and Cmax

(Cmin) denote, respectively, the maximum (minimum) value
for the overall expected response time, cost, and reliability.
We will describe how to determine these values shortly.

With these definitions, the optimization problem can be
formulated as follows:

max F ðxxxxÞ
subject to : CkðxxxxÞ � Ck; k 2 K; ð13Þ

logDkðxxxxÞ � logDk
min; k 2 K; ð14Þ

Rkðroot;xxxxÞ þ Tovd � Rk
max; k 2 K; ð15Þ

Rkðu;xxxxÞ � Rkðv;xxxxÞ; u 2 dðvÞ; v 2 �; k 2 K; ð16Þ

Rkðv;xxxxÞ ¼
X
Si�ddv

V k
i

V k
v

X
J2=i

xkiJRðSi; JÞ þ

þ
X

u2�;u�ddv

V k
u

V k
v

Rkðu;xxxxÞ; v 62 �; k 2 K;
ð17Þ

X
k2K

X
J2=i;j2J

xkiJV
k
i L

k � Lij; opij 2 OP; ð18Þ

xkiJ � 0; J 2 =i;
X
J2=i

xkiJ ¼ 1; 1 � i � m; k 2 K; ð19Þ

xki1j1 ¼ x
k
i2j2

opi1j1
; opi2j2 2 OP ðcslÞ

Si1 ; Si2 2 Sl; jSlj > 1; k 2 K: ð20Þ

Equations (13)-(17) are the QoS constraints for each class
on the cost, reliability, and response time. The constraints
(15)-(17) for the response time are directly derived from
(10). The additional term Tovd accounts for the overhead
introduced by the broker itself in managing the system.
Equations (18) are constraints on the operations load and
ensure that the system managed by MOSES does not exceed
the volume of invocations agreed with the providers of
those operations. The LHS of (18) are the volume of
invocations of operation opij under adaptation policy xxxx. It
is the sum over all service classes of the per class number of
invocations per unit time of a given operation opij (the
second summation is over all the implementations J in
which j occurs). The RHS of (18) are the maximum load Lij
negotiated with the provider of the operation. Equations
(19) are the functional constraints. Finally, (20) are the
stateful constraints, which basically require that, for stateful
tasks, the fraction of requests that are bound to different
operations of the same concrete service must be the same.
Remember that if Si is stateful, we only use the service
selection adaptation technique; in this case J takes values
only in OPi.

The maximum and minimum values of the QoS
attributes in the objective function (12), used to get a
normalized value, are determined by replacing ZkðxÞ,
Z ¼ Rj logDjC, in (11) with the maximum and minimum
value that the QoS attributes can attain. Rmax, Cmax, and

Dmin are simply expressed, respectively, in terms of Rk
max,

Ck, and Dk
max. For example, the maximum cost is given by

Cmax ¼
P

k2K L
kCk

maxP
k2K L

k
:

Similar expressions hold for Rmax and Dmin. Rmin, Cmin, and
Dmax are similarly expressed in terms of the Rk

min, Ck
min,

and Dk
max, the minimum response time, minimum cost, and

maximal reliability that can be experienced by a class k

request. For instance,Ck
min ¼

Pm
i¼1 V

k
i C
�ðSiÞ, where C�ðSiÞ ¼

minJ2=iCðSi; JÞ is the minimum cost implementation of
task Si. Similar expressions hold for Rk

min and Dk
max.

We conclude by observing that the proposed optimiza-
tion problem is a Linear Programming (LP) problem which
can be efficiently solved via standard techniques.

5.2 Complexity Analysis

There are several algorithms to solve LP problems,
including the well-known simplex and interior points
algorithms [37]. Widely used software packages (CPLEX,
MATLAB) adopt variants of the well-known interior point
Mehrotra’s predictor-corrector primal-dual algorithm [38],
which has Oðn3

2 log n
�Þ worst-case iteration complexity and

Oðn3Þ iteration cost, where n is the number of variables of
the LP problem [54]. The complexity in our problem arises
from the potentially large value of n, corresponding to the
number of variables xkiJ , due to the fact that J ranges over
the potentially large set =i. In the general case, we have
n ¼ OðmjKjmaxij=ijÞ. This value can grow very quickly
with the number ni of candidate operations for each task Si.

In general, but for the simplest scenarios, we need to
restrict the possible implementations to a subset of =i. This
is typically the case of sets OPi of large cardinality where it
is neither convenient nor feasible to consider all possible
implementation patterns. To this end, we in general replace
=i with its subset =iða; pÞ ¼ OPi [ OPalti ðaÞ [ OP

par
i ðpÞ,

OPalti ðaÞ � OPalti , OPpari ðpÞ � OP
par
i , where a and p denote

the maximal number of operations that can be used to
implement an alt and par_or pattern, respectively. At one
extreme, we have single service selection only with =ið0; 0Þ
where we exclude any form of redundancy; in this case,
n ¼ OðmjKjmaxiniÞ, which grows linearly with respect to
ni. On the other extreme, we consider all the possible
redundancy coordination patterns, where the set of possible
Si implementations is =ða; pÞ ¼ =i. In this case, we have a
superexponential number of variables n ¼ OðmjKjmaxini!Þ
since the number of possible alt coordination patterns of an
Si implementation is proportional to the factorial of ni,
while the number of par_or coordination patterns is 2ni .
These values are clearly not feasible but for small values of
ni. In general, =ða; pÞ with bounded a and p, limits the
complexity to n ¼ OðmjKjðmaxiniÞmaxf1;a;pgÞ. We believe
that this restriction is not a significant limitation in practice,
given the diminishing marginal reliability increase we can
achieve with higher redundancy levels, largely offset by the
increasing cost of the redundant solutions (and in the case
of the alt pattern also by increasing execution times). This
theoretical analysis will be complemented by an experi-
mental analysis in Section 6.2.
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6 EXPERIMENTAL RESULTS

We first describe in Section 6.1 the prototype we have
developed to implement the MOSES methodology and then
present the results of experiments conducted to assess its
effectiveness. The purpose of this evaluation is twofold.
First, we analyze in Sections 6.2 and 6.3 the performance
impact of some overheads introduced by our adaptation
framework. Specifically, we study the computational cost of
the optimal adaptation policy carried out by the Plan
macrocomponent, and compare it with alternative ap-
proaches in literature. Furthermore, we analyze the over-
head for the runtime binding carried out by the Execute
macrocomponent. Then, we provide in Section 6.4 an
overall evaluation which involves all the MOSES macro-
components to illustrate the dynamic behavior of the
MOSES adaptation policy.

6.1 MOSES Prototype

The MOSES prototype has been designed following the
high-level architecture shown in Fig. 5. The capability of
sustaining a high traffic of requests being a MOSES goal, we
have paid attention to designing the prototype so as not to
prejudice the performance of the managed composite
services. In this section, we review the main features of
the prototype; its detailed description and some prelimin-
ary experiments with a scalability focus are in [7].

The MOSES prototype exploits the rich capabilities
offered by the Java Business Integration (JBI) implementa-
tion called OpenESB3 and the relational database MySQL,
which both provide interesting features to enhance the
scalability and reliability of complex systems. JBI defines a
messaging-based pluggable architecture and its major goal
is to provide an enabling framework that facilitates the
dynamic composition and deployment of loosely coupled
participating applications and service-oriented integration
components. The key components of the JBI environment are
the Service Engines, which enable pluggable business logic,
the Binding Components (BCs), which enable pluggable
external connectivity, and the Normalized Message Router
(NMR), which directs normalized messages from source to
destination components according to specified policies.
Fig. 8 illustrates the OpenESB-based architecture of MOSES.

Each MOSES component is executed by one Service
Engine, that can be either Sun BPEL Service Engine for the

business process logic or J2EE Engine for the logic of all the
other MOSES components. The resulting prototype has a
good deployment flexibility because each component can
be accessed either as standard web service or as EJB module
through the NMR. However, to increase the prototype
performance, we have exploited the NMR presence for all
the intermodule communications so that message ex-
changes are “in-process” and avoid passing through the
network protocol stack, as it would be for SOAP-based
communications. With regard to the MOSES storage layer,
we have relied on the relational database MySQL, which
provides transactional features through the InnoDB storage
engine and supports clustering and replication. However,
to free the MOSES future developers from knowing the
storage layer internals, we have developed a data access
library, named the MOSES Data Access Library (MDAL),
that completely hides the data back end. This library
currently implements a specific logic for MySQL, but its
interface can be enhanced with other logics.

6.1.1 MOSES Overheads

The runtime adaptation management introduces in MOSES
different types of overheads that may affect the response time
of the composite service and can be classified according to the
MOSES macrocomponents: 1) overhead due to the Plan
macrocomponent (i.e., the Optimization Engine); 2) overhead
of the Execution macrocomponent (i.e., the Adaptation
Manager) due to the runtime binding of the task endpoints
to concrete implementations; 3) overhead due to the Monitor
and Analyze macrocomponents.

For the first type of overhead, we observe that the
Optimization Engine calculates a new adaptation policy
asynchronously with respect to the service execution flow,
while incoming service requests are served by the Adapta-
tion Manager according to the previously calculated policy.
Only when the new adaptation policy is stored in the
database does the Adaptation Manager begin to use it.
Hence, the Optimization Engine only interferes with those
requests that are being served while the new solution of the
optimization problem has to be stored. However, the time
taken to calculate a new adaptation policy affects the MOSES
ability to promptly react to changes in the environmental
conditions. Therefore, in Section 6.2 we assess the policy
computational cost for increasing instances of the adaptation
model and demonstrate that the optimization problem
formulation as LP helps considerably in terms of load
scalability with respect to other approaches in literature.

The second kind of overhead affects each request to the
composite service as many times as the number of invoke
activities executed in the BPEL process. For every invoca-
tion of an abstract task, the Adaptation Manager, which is
stateless, retrieves the current adaptation policy kept in the
storage layer and, according to it, determines the coordina-
tion pattern to be used and the actual operation(s) to
implement the abstract task, as presented in Section 4.1. We
will measure in Section 6.2 the overhead introduced by the
Adaptation Manager to execute the runtime binding.

Finally, for the third kind of overhead, we should
distinguish between Monitor and Analyze macrocompo-
nents impact. We point out that only Monitor affects the
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Fig. 8. MOSES OpenESB-based architecture.

3. OpenESB is a stable open source JBI implementation, developed under
the direction of Sun Microsystems.



overall service time perceived by a user, while Analyze
does not affect it since this function is executed asynchro-
nously with respect to the business process. The most time
consuming and frequent monitoring activity is that per-
formed with respect to the SLA parameters offered by the
operations. In this case, the monitoring overhead is about
1 millisecond for each invoke activity, as it only involves
inserting the operation response time in a table of the
MOSES database: For each operation invocation, MOSES
gets the time stamp before and after the invocation itself,
and then stores the observed response time, together with a
flag reporting whether the operation execution failed. Such
values are asynchronously read by the QoS Monitor in the
Analyze macrocomponent that runs on a different machine
with respect to that assigned to the BPEL execution to not
interfere with the Execution macrocomponent. The QoS
Monitor is invoked at a fixed, configurable frequency and
its task is to analyze stored monitoring data in order to find
out whether some SLA has been violated. It performs two
steps: 1) For each invoked operation, it computes statistics
like average response time and standard deviation, 2) it
compares computed statistics with SLA parameters and, in
case of violation, it issues a call to the Optimization Engine.

6.1.2 Testing Environment

The testing environment consists of three Intel Xeon quad-
core servers (2 Ghz/core) with 8 GB RAM each (nodes 1, 2,
and 3), and 1 KVM virtual machine with 1 CPU and 1 GB
RAM (node 4); a Gb Ethernet connects all the machines. The
deployment schema of the MOSES prototype is as follows:
node 1 hosted all the MOSES modules in the Execute
macrocomponent, node 2 the data back end together with
the invoked operations, and node 3 the modules in the
Monitor+Analyze and Plan macrocomponents. Node 4
hosted the workload generator, which is different according
to the experiment goal.

6.2 Adaptation Policy Computational Cost

In this section, we experimentally evaluate the adaptation
policy computational cost and compare it with alternative
approaches in the literature.

6.2.1 Computational Cost

We implemented the optimization problem in MATLAB. To
assess the algorithm computational cost, we executed the
algorithm on 2.00 GHz Intel Xeon CPU E5504 quad-core
with 8 GB RAM on randomly generated problem instances

and measured the solution execution time. The results are
reported in Figs. 9 and 10 for different values of number of
composite service tasks m, number of service classes jKj,
number of operations implementing a task ni, and different
maximum degree of redundancy a, p. For the sake of
simplicity, and without loss of generality, in the following
we consider only the par_or pattern as the redundancy
pattern for the analysis of the computational complexity.

In Fig. 9, we plot the execution time versus the number of
service tasks m for different level of par_or redundancy:
p ¼ 0, no redundancy, i.e., service selection only, p ¼ 2, at
most two concrete services using the par_or pattern, and
p ¼ 3, at most three concrete services using the par_or
pattern and for different numbers of available operations
implementing a given task ni (ni ¼ 10, 20, and 50). In this
set of experiments, we consider only one class of service,
i.e., jKj ¼ 1. From the plots, we can observe that for fixed p
and ni, the execution time grows almost linearly with the
number of tasks m (about one order of magnitude increase
of the execution time for one order of magnitude increase in
the number of tasks). At closer inspection we verified this
holds true for execution times below 1 second; for larger
values the execution time is proportional to m3, which is
consistent with the fact that the problem size n grows
linearly with m (and jKj) and the per iteration cost of
interior points methods is Oðn3Þ. We will return to this later.

By comparing the different plots we note that, as
expected, the execution time is greatly affected by the
absence/presence of redundancy patterns and the number
of available implementations: Without redundancy
(Fig. 9a), the execution time is always below 1 second; if
we consider redundancy with the par_or pattern with at
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Fig. 9. Optimization problem execution time for different values of maximal redundancy: (a) no redundancy, (b) at most two concrete services using
the par_or pattern, and (c) at most three concrete services using the par_or pattern.

Fig. 10. Optimization problem execution time as a function of the
number of service classes.



most two services (Fig. 9b), the execution time increases up to
few seconds for the larger instances; by increasing the
maximum number of redundant operations to three
(Fig. 9c), the execution time grows significantly up to 5
minutes for large values of ni. This behavior can be
explained by observing that the use of the redundancy
patterns, coupled with a high number of concrete opera-
tions, yields a large number of possible implementations
and thus a large number of variables since n is proportional
to npi : In the range of values considered, while the smallest
problem instance has only 100 variables, the largest one
grows up to 2,087,500. This, of course, has a significant
impact on the problem execution time. Nevertheless, the
complexity increase caused by the exploitation of redun-
dancy patterns should be weighted against the significant
increase in reliability of the computed solution, as shown in
Section 6.4.

In Fig. 10, we vary the number of service classes jKj and
study the impact of jKj on execution time for different
values of ni and maximal redundancy level p. The number
of tasks is again fixed to m ¼ 50. Not surprisingly, the same
remarks above on the influence of m hold true for the
number of service classes: For fixed p and ni, the execution
time grows almost linearly with jKj for smaller instances
and proportionally to jKj3 otherwise. We observe that this
behavior is consistent with the Oðn3Þ iteration cost and
Oðn3

2 log n
�Þ worst-case iteration complexity of interior points

methods. Indeed, in our experiments we observed a
relatively low number of iterations for convergence, which
grew only slightly from about 10 to 100 (hence much less
than the Oðn3

2 log n
�Þ, the worst iteration cost for the Mehrotra

algorithm), which explains the Oðn3Þ overall cost.
We remark that since the optimization problem is solved

asynchronously with respect to MOSES operations, this
large value does not directly impact on the broker
responsiveness to user requests; it only affects the time it
takes to update the adaptation policy. In other words, it
only affects the interval of time during which, while a new
solution is being computed, the broker uses the old,
suboptimal policy for the ongoing requests.

6.2.2 Comparison with Other Approaches

In this section, we compare the computational complexity
of the MOSES optimization problem with the complexity of
other frameworks proposed in the literature for runtime
adaptation of SOA systems. We stress that the goal of this
comparison is to show that our approach takes comparable
or even less time to calculate an adaptation plan, and hence
is at least as scalable as other approaches. As such, the
following results should not be regarded as a comparison of
the relative quality and/or effectiveness of the different
approaches, which are not directly comparable because
they differ in terms of QoS metrics, QoS model, and
performance goals.

For comparison we rely on published performance data.
We refer to data recently published in [4] that, analogously
to our approach, proposes a per-flow runtime adaptation
framework for SOA systems. In [4], service selection takes
the form of a constrained nonlinear optimization problem,
where nonlinearities arise from: 1) the use of an explicit
expression of the response time of a concrete service as

function of the service load using a M/G/1 model; 2) the
use of reputation—defined as the probability of not
violating a threshold on the response time—as a QoS index
(see [4] for details). The solution of the nonlinear problem in
[4] is computed through SNOPT, a commercial solver for
nonlinear programming [23], which uses Sequential Quad-
ratic Programming (SPT) algorithm.

For comparison purposes, we considered the same set of
system parameters used in [4, Tables 5 and 6] and ran our
experiments using randomly generated problem instances
on an equivalent physical machine. Table 5 shows the
average execution time in seconds of the optimization
problems in the two approaches over randomly generated
problem instances. In all experiments, jKj ¼ 1. From the
table, we can observe that the MOSES Optimization Engine
is from one to two orders of magnitude faster over the large
set of parameters. This directly descends from the adoption
of a linear programming model as optimization problem,
while in [4] service selection takes the form of a constrained
nonlinear optimization problem.

A direct comparison with data concerning other ap-
proaches is more problematic, as they consider per-request
adaptation. Following [4], we compare our approach with
the per-request approaches presented in [5], [2] which are
among the most representative contributions in the litera-
ture. The data, also shown in Table 5, are taken from [4] and
have been obtained on an equivalent machine, according to
CINT and SpecCPU2006 benchmarks (lines ðm;niÞ ¼
ð100; 10Þ � ð10000; 10Þ report values from [5], while the rest
report values from [2]). The results show that MOSES
adaptation policy has execution times comparable to those
in [5] and about one order of magnitude larger than those in
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TABLE 5
Performance Comparison with the Per-Flow Approach of
Ardagna and Mirandola [4] and Per-Request Approaches

of Ardagna and Pernici [5], Alrifai and Risse [2]
(Time Measured in Seconds)



[2]. We can argue that in a lightly loaded and/or small scale
system, it may be effective to address the adaptation to each
single request, independently of other concurrent requests,
to customize the system with respect to that single request.
However, in a large scale system subject to a quite sustained
flow of requests, performing a per-request rather than a per-
flow adaptation could cause an excessive computational
load.4 In this kind of scenario, per-flow adaptation is likely
to be more effective, even if it loses the potentially finer
customization features of per-request adaptation. More-
over, per-request adaptation could also incur stability and
management problems since the “local” adaptation actions
could conflict with adaptation actions independently
determined for other concurrent requests.

6.3 Runtime Binding

We now move on to measure the overhead introduced by
the Adaptation Manager to perform the runtime binding.
We point out that this kind of overhead is present in every
system that provides runtime binding capabilities as
MOSES does, irrespective of the methodology used to
determine the adaptation policy.

We have performed a stress test of the MOSES prototype
under an open system model, where the requests to the
composite service have been generated at an increasing rate
through the httperf tool [28]. The overall experiment
consists of 120 runs, each one lasting 300 seconds, during
which httperf generates requests to the composite service
at a constant rate. The adaptation policy is determined at the
beginning of each run and is then used for the entire duration
of the run without being recalculated because the goal of this
experiment is to measure the additional overhead the
runtime binding adds to a plain BPEL engine. The main
performance metric we collected for each run is the mean
response time, i.e., the time spent on average for the entire
request-response cycle.

For increasing values of the request arrival rate to the
composite service, Fig. 11 compares the response time
achieved by MOSES, which executes the runtime binding
according to the adaptation directives, to that obtained by
the standard GlassFish ESB with Sun BPEL Engine, which
only provides the composite service execution with a static

binding to a given operation. As expected, MOSES is able to
sustain lower load levels than GlassFish ESB before reach-
ing the saturation point, because of the overhead intro-
duced by the Adaptation Manager for each abstract task.
Until the request arrival rate does not reach the MOSES
saturation point (around 80 req/sec), the MOSES response
time is, on average, 74 percent higher than that provided by
GlassFish ESB (the percentage increase ranges from a
minimum of 13 percent to a maximum of 127 percent).
Higher request rates can be tackled by MOSES in a scalable
way by replicating the system components [7]. We found
that by organizing the MOSES components into clusters
and replicating the clusters, we are able to minimize the
network overheads for intermodule communications and
storage access so that the distributed version of MOSES
obtains a nearly linear performance improvement accord-
ing to the number of installed GlassFish instances.

In the experiments presented above, the composite
service workflow corresponds to that shown in Fig. 4. In
general, we observe that the runtime binding overhead is
related to the size of the managed composite service. In case
of static binding, the binding execution complexity depends
only on the number of abstract tasks, i.e., OðmÞ. In case of
MOSES runtime binding, for each invoked abstract task Si
the Adaptation Manager needs to retrieve from the
database the specific records of the table that store the
current adaptation policy xxxxki . Since B-trees are commonly
used in databases, the time complexity for searching the
implementation sets is logarithmic in the number of the
table entries. Therefore, the overall execution complexity in
MOSES is Oðm logðmjKjmaxij=ijÞÞ, where the logarithmic
factor is the overhead introduced by the Adaptation
Manager. For space reasons, we do not report the experi-
mental results that confirm this analysis.

6.4 MOSES-Based Adaptation

We now consider all the MOSES macrocomponents work-
ing together and validate the effectiveness of our frame-
work by applying it to the support of a QoS-aware
composite service.

6.4.1 Experimental Scenario

To issue requests to the composite service managed by
MOSES and to mimic the behavior of users that establish
SLAs before accessing the service, we have developed a
workload generator. It is based on an open system model
where users requesting a given service class k 2 K offered
by MOSES arrive at mean user interarrival rate �k. Each class
k user u is characterized by its SLA parameters defined in
Section 3.3 and by the contract duration tku. Each incoming
user is subject to an admission control, carried out by the
SLA Manager as follows: The user arrival rate �ku is added to
the aggregate flow Lk of class k requests currently served by
MOSES, and the thus obtained new instance of the
optimization model is solved by the Optimization Engine.
If a solution exists, the user is admitted and starts
generating requests to the composite service according to
the rate �ku until its contract ends. Otherwise, its SLA
request is rejected because MOSES does not hold sufficient
resources to manage it and the already admitted users with
their SLAs, and the user terminates.
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Fig. 11. MOSES response time.

4. The Amazon e-commerce platform [21] is an example of a service-
based system subject to tens of millions of requests. Adapting such a system
according to the per-request approach would hardly be feasible.



Differently from traditional web workload, SOA work-
load characterization has not been deeply investigated up to
now (some preliminary results can be found in [46]).
Therefore, in our workload model we assume exponential
distributions of parameters �k and 1=tk for the user
interarrival time and contract duration, respectively. We
also assume that the request interarrival rate and the
operations service time follow a Gaussian distribution,
where mk and �k are the parameters of the former and rij
and rij=12 are the parameters of the latter.

The workload generator has been implemented in C
language using the Pthreads library. Multiple independent
random number streams have been used for each stochastic
component of the workload model. Each experiment lasted
about 5 hours and involved a minimum of 77,000 completed
requests to the composite service; for each reported mean
value, the 95 percent confidence interval has been obtained
with a maximum relative error in the mean value less than
0.01. The testing environment consists of four machines, as
described in Section 6.1.2. The invoked operations hosted
on node 2 are simple stubs with no real internal logic;
however, their extra-functional behavior (i.e., response
time, reliability, and cost) conforms to their SLA.

To illustrate the dynamic behavior of the MOSES
adaptation policy, we consider again the simple abstract
workflow of Fig. 4. For the sake of simplicity we assume
that two candidate operations (with their respective SLAs)
have been identified for each task, except for task S2, for
which four operations have been identified. The respective
SLAs differ in terms of cost, reliability, and response time
(being the latter measured in seconds). Table 6 summarizes
the SLA parameters hrij; cij; diji for each operation opij. They
have been chosen so that for task Si, operation opi1
represents the best implementation, which at a higher cost
guarantees higher reliability and lower response time with
respect to operation opij for j � 2, which costs less but has
lower reliability and higher response time. For all opera-
tions, Lij ¼ 10 invocations per second.

On the user side, we assume a scenario with four classes
of the composite service managed by MOSES. The SLAs
negotiated by the users are characterized by a wide range of
QoS requirements as listed in Table 7, with users in service
class 1 having the most stringent requirements, D1

min ¼ 0:95
and R1

max ¼ 7:1, and users in service class 4 the least
stringent requirements, D4

min ¼ 0:85 and R4
max ¼ 18:1. The

SLA cost parameters for these classes have been set
accordingly, where service class 1 has the highest cost per
request, C1 ¼ 25, while service class 4 is only C4 ¼ 12. The
rightmost column of Table 7 reports the values for Lk, that is

the aggregate rate of class-k requests to the composite
service. The usage profile of the different user service
classes is given by the following values for the expected
number of service invocations: V k

1 ¼ V k
2 ¼ V k

3 ¼ 1:5, V k
4 ¼ 1,

k 2 K; V k
5 ¼ 0:7, V k

6 ¼ 0:3, k 2 f1; 3; 4g; V 2
5 ¼ V 2

6 ¼ 0:5. In
other words, all classes have the same usage profile except
for users in service class 2, who invoke the tasks S5 and S6

with different intensity. The values of the parameters that
characterize the user workload model are tk ¼ 100 and
ðmk; �kÞ ¼ ð3; 1Þ, 8k 2 K.

We have estimated the MOSES overhead for each served
request, represented by Tovd in (15), to be around 100 msec in
the testing environment used for the experiments. This
overhead includes 50 msec due to the Adaptation Manager
and the BPEL process execution (see Fig. 11, when the request
arrival rate varies between 2 and 12 req/sec due to the
considered setting of our workload parameters), and 50 msec
for the begin/commit transaction overhead due to MySQL.
For the experiments presented in the next section, the
changes detected by MOSES and that trigger the Optimiza-
tion Engine include only the arrival/departure of users that
cause a variation of the load and QoS requirements addressed
to the composite service. We recall that the MOSES prototype
is able to capture a variety of changes in its environment
(listed in Section 3.4) and to consequently trigger the
Optimization Engine for a new adaptation policy. For space
reasons, in the experimental results we consider only one
type of adaptation events. Nevertheless, due to the setting of
our workload parameters, the corresponding mean adapta-
tion rate is on average 0.02 req/sec (corresponding to the
mean interarrival rate of new contract requests), that is the
solution of a new instance of the optimization problem is on
average calculated every 1.2 minutes.

6.4.2 Runtime Adaptation Results

We illustrate the result of the adaptation directives issued
by MOSES under two different scenarios of the broker goal:
1) the maximization of the average reliability, i.e., wd ¼ 1,
2) the minimization of the average cost, i.e., wc ¼ 1.

In both sets of experiments, we analyze the effectiveness
of considering redundancy patterns for the tasks imple-
mentation. To this end, we compare the performance of a
broker that supports all the three patterns (par_or, alt, and
single) with that of a broker that supports only the single
pattern. In the first case (denoted by with-Redundancy), the
formulation of the optimization problem is in Section 5; in
the latter case (denoted by w/o-Redundancy), we solved the
same optimization problem with =i replaced by =ið0; 0Þ.
The results are summarized in Table 8, which shows for
each class the measured values of the SLA parameters for
the with and w/o-Redundancy approaches in the two
scenarios, along with the 95 percent confidence interval.
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Class SLA Parameters

TABLE 6
Operation SLA Parameters



In the first scenario, the broker goal is to maximize the
users’ reliability. In this setting, the solution provided by
the Optimization Engine is bounded by the maximum cost
the broker is willing to pay for each user (which defines its
profit margin). Only for the w/o-Redundancy approach, the
solution is also bounded by the single operations available to
implement the services. Both approaches succeed in respect-
ing the SLA values (see the left side of Table 8). We observe
that with respect to the w/o-Redundancy approach, the with-
Redundancy approach allows achieving a higher level of
satisfaction of the reliability parameter (the mean values for
the four classes range from 0.9983 to 0.9991) at a higher cost,
whose mean value is saturated to the maximum agreed in the
SLA (see Table 7). This is particularly evident for class 1,
which requires the most stringent performance requirements
at the highest cost (the mean cost ranges from 21.149 for the
w/o-Redundancy approach to 25.051 for the with-Redun-
dancy approach, being 25 the cost settled in the SLA). The
improvement of the reliability is achieved thanks to the
additional patterns par_or and alt exploited by the with-
Redundancy approach.

To compare in more detail the w/o and with-Redun-
dancy approaches with respect to the reliability QoS
parameter, Fig. 12 shows how in the first scenario the
reliability of the composite service varies over time for the
four classes. The horizontal line is the agreed reliability, as
reported in Table 7. We observe that the w/o-Redundancy

approach leads to some violations of the agreed reliability,
while the with-Redundancy approach allows the broker to
offer always a reliability much better than that agreed.

The exploitation of the redundancy coordination patterns
improves the reliability but it can determine an increase in
the response time when the alt pattern is selected. Fig. 13
shows how in the first scenario the response time of the
composite service varies over time for the four classes, the
horizontal lines being the agreed response times as reported
in Table 7. We observe that the with-Redundancy approach
leads to a response time that is slightly higher than that
achieved by the w/o-Redundancy approach. However, for
classes from 2 to 4 the response time is always much lower
than that agreed, while for class 1, which requires the most
stringent performance requirements, it reaches the max-
imum agreed in the SLA.

We now turn our attention to the second scenario, where
the broker goal is to minimize the expected cost (which in
turn maximizes the broker profit). In this setting, the broker
has no incentive to guarantee to the users more than the
minimum required. As a result, the solution provided by
the Optimization Engine guarantees only the minimum
required level of reliability (see right side of Table 8), with
increasing costs for increasing reliability levels.

Let us now consider how in the second scenario the
reliability of the composite service varies over time, as
shown in Fig. 14. As expected, we find that the reliability
level achieved with the with-Redundancy approach is
lower with respect to the first scenario. The motivation is
that, when the broker minimizes the cost of the composite
service, the solution of the optimization problem exploits
the redundancy coordination patterns par_or and alt less
frequently as they may cost more than the single pattern.
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TABLE 8
Measured Values for SLA Parameters (Mean and 95 Percent Confidence Interval)

Fig. 12. Scenario 1 (wd ¼ 1): reliability over time. Fig. 13. Scenario 1 (wd ¼ 1): response time over time.



7 RELATED WORK

7.1 Architectures for Self-Adaptation

It has been widely recognized that the architecture of self-
adaptive software systems should include one or more
control loops to perform self-adaptation tasks [17]. A
notable example of a general approach based on this idea
is the autonomic computing framework [29]. As evidenced in
Section 3, MOSES can be seen as an instantiation for the
SOA environment of an autonomic system, focused on the
fulfillment of QoS requirements.

A reference model for the architecture of a self-adaptive
software system has been presented in [33]. This paper
suggests architecting the system along three different layers
that interact with each other by reporting status information
to the above layer and issuing adaptation directives to the
layer below. The bottom layer (component control) is
concerned with adaptation at the level of single components
(i.e., services in the SOA domain). The middle layer (change
management) reactively uses a prespecified set of plans to
adapt the system consisting of components at the lower
layer. When these plans are no longer able to meet the
system goals or when new goals are introduced, the upper
layer (goal management) determines new adaptation plans.

From the viewpoint of this three-layer reference model,
the bottom layer of the MOSES framework includes the set
of concrete services used in the service composition, plus
the QoS Monitor, Service Manager, and WS Monitor
components. Indeed, each concrete service possibly imple-
ments its own adaptation actions to fulfill the QoS goals it
has negotiated. The QoS Monitor, Service Manager, and WS
Monitor components collect and report to the above middle
layer status information (reliability, delivered QoS) about
these services. The middle layer of MOSES includes those
components (Adaptation Manager and Optimization En-
gine) that use the status information from the layer below to
determine a new adaptation policy to be used for the
composite service implementation. In the MOSES frame-
work, this layer bases its actions on a predefined set of
candidate concrete services and a given utility function to
be optimized. Both can be changed by the upper goal
management layer by modifying the information stored in
the MOSES Knowledge component.

Finally, the whole system consisting of MOSES itself plus
the composite service it manages can be considered as a
single concrete service offered to prospective users, thus
appearing to those users as a bottom layer component with
self-adaptation capabilities that can be used as a basic
building block of a larger self-adaptive system.

7.2 Methodologies for QoS Driven Adaptation

According to the characterization of the problem space
given in Section 2.1, we discuss here how the different
questions have been addressed by the existing literature,
evidencing also some uncovered issues.

Why. Most of the existing approaches addressing the
fulfillment of QoS requirements concern the average values
of QoS attributes. Specifically, some approaches deal with a
single quality attribute (e.g., response time in [35], reliability
in [22], [56], and cost in [12]), while others are able to tackle
multiple quality attributes defining simple aggregate QoS
functions (e.g., [5], [11], [39], [42], [62]). A potential
limitation of these approaches lies in the fact that user
perceived QoS is often better expressed in terms of bounds
on the percentile of the QoS metrics, as also reflected in
some commercial practices.5 To the best of our knowledge,
only the approaches proposed in [24], [60] offer guarantees
on the percentile of the response time. The results in [60],
though, are limited to sequential patterns and only apply to
the single request scenario, while Gmach et al. [24] propose
a heuristic for request scheduling in a single database server
which is based on the prediction of execution time.

A related basic problem to be solved when dealing with
requirements about QoS attributes of SOA systems is how
to determine their value for a composite service, given the
QoS delivered by its component services. Some papers have
focused on this specific issue [15], [35], [53], while others
deal with it as a step within the more general problem of
QoS-based model-driven runtime adaptation of SOA
systems. MOSES currently deals with requirements con-
cerning the average value of multiple QoS attributes.

When. Existing approaches can be placed between the
link/load time and runtime stages [5], [11], [42], [39], [62],
[41], as expected in the SOA domain. These approaches
basically adopt a reactive mode to deal with adaptation. A
topic that deserves more investigation concerns proactive
adaptation. A paper considering this issue is [27]. MOSES
currently adopts a reactive mode.

Where-what. Some works consider both services and
workflow as the overall composition level where adaptation
takes place. For example, the SOA environment redundancy
is exploited in [16], [26], [59] to identify multiple diverse
workflows that can be used under different operating
conditions to achieve the same goal. A different approach,
called SASSY and proposed in [41], generates service-
oriented architectures based on quality requirements. Based
on an initial model of the required service types and their
communication, SASSY generates an optimal architecture
by selecting the best services and potentially adding
patterns such as replication or load balancing, thus also
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Fig. 14. Scenario 2 (wc ¼ 1): reliability over time.

5. The Amazon SOA-based e-commerce platform [21] includes SLAs
concerning the 99.9 percentile of the response time under a given peak load
of service requests per second.



allowing some kind of workflow restructuring. However,
most of the proposed methodologies address the problem
working at the services only composition level, using
different mechanisms to determine the concrete implemen-
tation to be bound to each workflow task (as discussed
below for the how question).

From the viewpoint of the considered number of systems
and granularity level at which adaptation is performed
(adaptation scope dimension), most of the proposed ap-
proaches focus on a scenario concerning a single system and
a single request addressed to that system, as already pointed
out in Section 2.2 [5], [11], [16], [25], [26], [40], [59], [61], [62].
Given this common reference scenario, these papers
propose different methodologies to determine the most
suitable adaptation action. Some of them propose heuristics
(e.g., [8], [25] or genetic algorithms in [11]) to determine the
adaptation actions. Others propose exact algorithms to this
end: Yu et al. [61] formulate a multidimension multichoice
0-1 knapsack problem as well as a multiconstraint optimal
path problem; Zeng et al. [62] present a global planning
approach to select an optimal execution plan by means of
integer programming; in [5], [25], [52] the adaptation
actions are selected through mixed integer programming;
while Menascé et al. [40] combine optimization techniques
and heuristic approaches.

MOSES too refers to a single SOA system to be managed,
but focuses on per-flow, rather than on per-request adapta-
tion, and determines the adaptation actions to be performed
by solving a linear programming model.

How. Several papers have focused on dynamic service
selection, such as [5], [11], [42], [39], [40], [41], [62]. Others have
instead considered the dynamic coordination pattern selection.
For example, Guo et al. [25] provide a methodology to select
different redundancy schemes to improve the reliability
experienced by a single request addressed to a composite
service. Stein et al. [58] propose a flexible heuristic provision-
ing strategy that allocates multiple services for unreliable
tasks in order to proactively deal with failures. Finally,
Martin et al. [34] present an example of adaptation based on
service tuning, using for this purpose a management interface
implemented according to the WSDM standard.

In this respect, the MOSES aim is to provide a unified
framework where service selection is integrated with
coordination pattern selection, to achieve a greater flex-
ibility in the adaptation of a SOA system.

Who. Existing approaches mainly focus on systems
managed by a single authority. At present, MOSES is
defined for a single system managed by a single authority,
but the approach can be extended in a quite straightforward
way to multiple services managed by a single authority and
to multiple services managed by multiple cooperating
authorities. Runtime adaptation issues in a scenario where
multiple services managed by multiple noncooperating
authorities compete for shared resources are instead, to the
best of our knowledge, still largely unexplored, even if this
scenario seems to be quite likely for the SOA domain.

Finally, an important aspect in model-driven adaptation
of SOA systems concerns the assumptions underlying the
proposed methodologies. In this respect, even if not always
explicitly stated, most of the proposed approaches share a

common set of assumptions. In particular, they include:
1) synchronous invocation of services, and 2) stateless
services. The former assumption is relevant for the estima-
tion of the overall response time as (possibly weighted) sum
of the response time of the invoked operations. The latter
provides the ground to freely (re)bind different functionally
equivalent operations to an abstract task and to coordinate
them by redundancy patterns. A relaxation of the stateless
assumption can be found in [5], where the proposed model
allows us to specify that different operations belonging to
the same concrete services must be bound to corresponding
abstract tasks with an “all or none” logic.

MOSES too relies on the synchronous invocation
assumption to calculate the overall response time. On the
other hand, MOSES is able to deal with both stateless and
stateful tasks, but it limits the use of the alt or par_or
patterns to stateless tasks, as described in Section 3.2.1.

8 LESSONS LEARNED AND CONCLUSIONS

In this paper, we presented the MOSES framework for
runtime QoS-driven adaptation of SOA systems. The basic
guideline we have followed in its definition has been to
devise an adaptation methodology that is flexible, to cope
with QoS requirements that may come from different
classes of users, and (as much as possible) efficient, to make
it suitable for runtime operations. To achieve flexibility, we
have presented a novel approach which allows us to
integrate within our framework different adaptation me-
chanisms (service selection and coordination pattern selec-
tion) that can be simultaneously used to serve the requests
of different users or even different requests from the same
user. Our results show that actually including both these
mechanisms in the MOSES toolset allows coping with a
broader range of dependability requirements. To achieve
efficiency, we have considered a per-flow granularity which
also allowed us to formulate the optimal adaptation
problem as an LP problem. Our experiments have indeed
shown that our approach has comparable or less computa-
tional cost than alternative approaches in the literature.
Nevertheless, the inclusion of redundancy patterns can
result in excessive computational costs given the large
number of alternative implementations to consider for
larger problem instances. This suggests limiting the use of
these patterns to a subset of the tasks (e.g., the most critical
ones) or to scenarios where the achievement of a higher
dependability is mandatory.

Because of the distributed nature of the SOA environ-
ment, the QoS perceived by a user of the composite service
can be affected by the performance of the networking
infrastructure used to access the selected component
services. In the current version of MOSES, this aspect is
not explicitly included. A possible way to manage, within
the MOSES framework, the impact of networking services
on the overall user perceived QoS could be to include these
services in the workflow that specifies the service composi-
tion. This implies that suitable SLAs should be negotiated
and monitored with the involvement of network providers
(as discussed, for example, in [57]), and taken into account
when determining the optimal service selection.
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We have presented a fully functional prototype which
implements the MOSES framework. The prototype is
presently based on a centralized architecture implementing
the whole MAPE control loop, as outlined in Section 3,
which may suffer from scalability issues. To cope with
them, a possible approach is to architect MOSES as a
decentralized system consisting of a set of federated
MOSES brokers, with each one of them exploiting partially
overlapping sets of concrete services. In this architecture,
the brokers coordinate themselves according to a master-
slave scheme, where slave brokers actually implement only
the Monitor and Execute functions of the MAPE loop. The
whole loop is implemented by the master broker, which
receives monitored data from slaves and uses them to build
and solve an overall optimization problem (through its
Optimization Engine module) that combines together the
respective goals and constraints. The calculated adaptation
policy is then transmitted to slave brokers that implement it
through their respective Adaptation Manager modules. On
the positive side, this master-slave architecture can be easily
implemented, with only minor modifications, from the
current centralized implementation. Indeed, we have
already implemented it on a local scale, as pointed out in
Section 6.3. On the negative side, the master broker could
still represent a bottleneck. Moreover, it appears suitable for
a single organization offering QoS-aware adaptive services
that needs to cope with scalability issues caused by high
volumes of requests. It could be less suitable in the case of
multiple organizations.

A more scalable and decentralized solution would
consist of distributing the whole MAPE loop among
multiple MOSES brokers. Under the hypothesis of federated
cooperating brokers, this would require devising a dis-
tributed solution of the overall optimization problem. With
respect to the current implementation, this would require a
change in the Optimization Engine algorithm and imple-
mentation. Under the hypothesis of competing brokers,
MOSES should be more deeply restructured. In this respect,
we note that our characterization of the problem space of
self-adaptation for SOA systems evidences that the case of
several self-adaptive SOA systems under cooperating or
noncooperating scenarios is not yet satisfactorily covered by
current literature. Hence, investigating how to cope with
these issues is a timely and promising indication for our
future work on the MOSES framework.

Besides this, there are several other directions along
which we plan to continue our work on the MOSES
framework, as we outline below. A first direction consists
of dealing with requirements concerning higher moments
and percentiles of QoS attributes. In this respect, a first step
toward the inclusion of percentile-based SLAs in MOSES is
presented in [13]. Moreover, we are investigating how to
extend the set of assumptions under which MOSES
currently works. This includes: relaxing the synchronous
invocation assumption, considering alternative failure
models (e.g., Byzantine failures, which require different
kinds of redundancy patterns), including additional orches-
tration patterns for service composition, with respect to
those matching the grammar presented in Section 3. A
further direction is related to the assumption, in the current

MOSES framework implementation, of a known pool of
candidate concrete services, without considering how this
pool can be selected and possibly changed at runtime, and
the relevant SLA parameters dynamically negotiated. This
is a relevant issue, and dealing with it should be one of the
tasks of the upper layer of MOSES, according to the three-
layers model presented in [33].
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