
Int J Software Informatics, Volume 7, Issue 2 (2013), pp. 195–220 Tel: +86-10-62661040

International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org

c©2013 by ISCAS. All rights reserved. Email: ijsi@iscas.ac.cn, ijsi2007@gmail.com

QoS Driven Per-Request Load-Aware Service

Selection in Service Oriented Architectures

Valeria Cardellini, Valerio Di Valerio, Vincenzo Grassi,

Stefano Iannucci, and Francesco Lo Presti

(Dipartimento di Ingegneria Civile e Ingegneria Informatica, Università di Roma “Tor Vergata”

Via del Politecnico 1, 00133 Roma, Italy)

Abstract Service selection has been widely investigated by the SOA research community

as an effective adaptation mechanism that allows a service broker, offering a composite

service, to bind at runtime each task of the composite service to a corresponding concrete

implementation, selecting it from a set of candidates which differ from one another in terms

of QoS parameters. In this paper we present a load-aware per-request approach to service

selection which aims to combine the relative benefits of the well known per-request and

per-flow approaches. Our service selection policy represents the core methodology of the

Plan phase of a self-adaptive service oriented system based on the MAPE-K reference loop.

Since the service broker operates in a variable and uncertain environment where the QoS

levels negotiated with the service providers can fluctuate, it requires some mechanism to

enforce the QoS constraints with its users. To this end, we also propose an algorithm for

the Analyze phase of MAPE-K which is based on the adaptive Cusum algorithm and allows

to determine whether a change in the QoS level requires a service selection replanning. We

present experimental results obtained with a prototype implementation of a service broker.

Our results show that the proposed load-aware approach is superior to the traditional per-

request one and combines the ability of sustaining large volume of service requests, as the

per-flow approach, while at the same time offering a finer customizable service selection, as

the per-request approach. Furthermore, the results show that the adaptive Cusum algorithm

can quickly detect changes in the execution environment and trigger a new optimization plan

before the system performance degrades.

Key words: quality of service; service oriented architecture; service selection

Cardellini V, Di Valerio V, Grassi V, Iannucci S, Lo Presti F. QoS driven per-request

load-aware service selection in service oriented architectures. Int J Software Informatics,

Vol.7, No.2 (2013): 195–220. http://www.ijsi.org/1673-7288/7/i156.htm

1 Introduction

Service Oriented Systems (SOSs) are becoming popular thanks to a widely
deployed internetworking infrastructure. SOSs are composed by a possibly large
number of heterogeneous third party subsystems. As a consequence, as they grow in
number and size, they also rapidly increase in complexity, which is further
complicated by the highly changing execution environment where they have to

Corresponding author: Francesco Lo Presti, Email: lopresti@info.uniroma2.it

Received 2012-10-01; Accepted 2012-12-17.

196 International Journal of Software and Informatics, Volume 7, Issue 2 (2013)

operate. A major trend to tackle this growing complexity is to design SOSs as
runtime self-adaptable systems, to make them able to meet both functional and non
functional requirements. The former concern the overall logic to be implemented,
while the latter concern the Quality of Service (QoS) levels that should be
guaranteed to the SOSs users. In both cases, self-adaptation can leverage different
mechanisms, including the tuning of control parameters of services used in the
composition of a SOS, the selection of the most suitable services within a set of
candidates, or even a modification of the overall SOS composition logic. In this
paper, we focus on self-adaptation based on QoS driven service selection. The
service selection goal is to determine the binding of each abstract task in the
composite service to actual implementations, leaving unchanged the composition
logic. The idea at the basis of service selection is to exploit the existence, in the
open marketplace as well as in the proprietary service parks, of several services,
referred to as concrete services, implementing the same functionality with different
non functional characteristics and cost[14, 21, 25].

The service selection problem has been widely investigated in recent years. A
first generation of service selection solutions implements a local approach[23, 28], that
time by time associates each running task of a SOS with the best available service
that implements that task. However, this local approach can guarantee only local
QoS constraints, for example the response time of a given task lower than a given
threshold. Second generation solutions implement a global approach, where the QoS
constraints are guaranteed for the whole execution of the composite SOS rather than
for its single tasks. They are more suitable in a scenario where a service provider
stipulates global Service Level Agreements (SLAs) with users.

Global approaches face the service selection problem at two granularity levels. At
the per-request grain[3, 4, 10, 17, 19, 27], the adaptation focuses on each single request
submitted to the system and aims at fulfilling the QoS constraints of that specific
request. On the contrary, the per-flow grain[2, 7, 9, 16] considers the flow of requests
of a user rather than the single request, and the adaptation goal is to fulfill the QoS
constraints that concern the global properties of that flow, e.g., the average SOS
response time or its availability.

However, the solutions proposed so far for both per-request and per-flow
granularities are not satisfactory, either in terms of QoS guarantees or scalability to
user requests. The per-request grain exhibits scalability problem under a sustained
traffic of requests, because each request is managed independently of all the other
concurrent ones. As a consequence, multiple service requests could be assigned to
the same concrete service, that could be overloaded. On the other hand, the
per-flow grain is not able to ensure QoS guarantees to a single request, and the user
perceived QoS could be very different from that stipulated in the SLA.

To overcome these limitations, as a first contribution we propose a new
per-request service selection policy, that we call load-aware per-request. The
proposed policy exploits the multiple available implementations of each abstract
task, and realizes a runtime probabilistic binding. In this way, different concurrent
requests to the same abstract task are bound to different concrete services, thus
realizing a randomized load balancing similarly to the per-flow solutions[7]. At the
same time, however, the QoS constraints are ensured for each request that the user

Valeria Cardellini, et al.: QoS driven per-request load-aware service selection ... 197

submits.
However, service selection is only one component that is needed to build a

self-adaptable system. It allows to reconfigure the system, but the system must also
be able to autonomously recognize when a reconfiguration is required, i.e., to
understand when the execution environment has changed. The latter is a
particularly critical task when a SOA application based on third party services
needs to fulfill non-functional requirements, because existing services may disappear
or their performance may quickly fluctuate over time. If the reconfiguration trigger
is not properly raised, the SOS may no longer be able to fulfill the QoS constraints
because the computed service selection becomes almost useless. The MAPE-K
loop[15], a general framework to build self-adaptable systems, identifies four logical
essential components, also called phases, that are needed to build a self-adaptable
system: Monitor, Analyze, Plan and Execute. This model is based on a
feedback-control loop that monitors the execution environment, analyzes the
collected data in order to detect changes, plans the necessary actions to reconfigure
the system maximizing at the same time some utility function, and executes these
actions. In the particular context of SOSs, realizing an MAPE-K loop poses several
challenges which range from designing an effective planning mechanism to
implementing a methodology able to quickly detect changes in the execution
environment, coupled with an efficient methodology for data collection.

As a second contribution, this paper presents a theoretical framework for a self-
adaptable SOS that attempts to address all the above challenges. Specifically, we
propose:

– a methodology to efficiently collect data from the execution environment;

– an analysis algorithm based on the adaptive Cusum algorithm proposed in
Ref. [13];

– a new service selection policy that plans the composite service reconfiguration.

Furthermore, as a third contribution, we provide a fully working
implementation of the proposed framework. We plugged it into the MOSES
prototype[6, 9] and performed an extensive experimental evaluation. The results
show the effectiveness of our proposal:

– the load-aware per-request policy, due to its inherent scalability, is more
suitable to work in a realistic environment than the service selection policy
presented in Ref. [3], which is one of the per-request top performing
state-of-the-art approaches;

– the adaptive Cusum algorithm is able to quickly detect changes in the
execution environment, thus allowing to trigger a new optimization before the
SOS performance degrades.

The rest of this paper is organized as follows. In Section 2 we introduce the
system model, the QoS model of the SOS, and the basic idea of randomized load
balancing. In Section 3 we present the MILP optimization problem that determines
the optimal selection policy, while in Section 4 we describe the Monitor

198 International Journal of Software and Informatics, Volume 7, Issue 2 (2013)

instrumentation and the Analyze algorithm. In Section 5, we first describe the
MOSES prototype and then demonstrate the effectiveness of our approach through
a set of experiments. An overview of the service selection policies proposed so far
and of some self-adaptive frameworks that include the Monitor and Analyze
components is discussed in Section 6, while the conclusions are drawn in Section 7.

2 System Model

We consider a broker that offers to the users a composite service P with different
QoS levels and monetary prices, exploiting for this purpose a set of existing concrete
services. Hence, the broker is an intermediary between users and concrete services,
acting as a service provider towards the users and as a service requestor towards the
concrete services used to implement the composite service, as shown in Fig. 1. Its
main task is to drive the adaptation of the service it manages to fulfill the Service
Level Agreements (SLAs) negotiated with its users, given the SLAs it has negotiated
with the concrete services and while optimizing a suitable broker utility function, i.e.,
response time or cost.

Figure 1. SOA architecture with service broker

Let us denote by Si ∈ S, i = 1, . . . , m the set of abstract tasks that compose
the composite service P (for sake of simplicity, in the following we will use Si and
i interchangeably) and by =i the set of concrete services implementing the abstract
task Si. Within this framework, a core task of the service broker is to determine
a proper service selection, that is to find for each abstract task Si a corresponding
implementation csij ∈ =i, so that the agreed SLAs are fulfilled. The selection criterion
corresponds to the optimization of a given utility goal of the broker.

Within this context, the load-aware per-request selection policy realizes a
probabilistic binding: for each abstract task, it determines a set of concrete services
that can be used to implement that task, with a probability associated with each of
these services. Therefore, different concrete services can be bound to the same
abstract task, depending on these probabilities. Thus, the actual implementation of
a composite service may vary from request to request.

The probabilities used by our selection policy are determined by taking into
account both the number of concurrent requests that arrive to the system and the
capacity of each concrete service, that we assume known to the service broker (we will

Valeria Cardellini, et al.: QoS driven per-request load-aware service selection ... 199

address this issue in Section 5). This probabilistic binding represents a peculiarity
of our per-request approach with respect to other service selection policies with the
same granularity. It allows us to realize a randomized load balancing which is aware
of the capacity of each concrete service as well as of the system load, thus overcoming
the limits of the per-request selection policies proposed so far. In fact, in Refs. [3,
4, 10, 28], each abstract task is deterministically bound to only one concrete service
that can be overloaded under high load conditions. By exploiting multiple service
implementations, our per-request solution is able to share the load.

However, the service broker has to satisfy the QoS levels agreed in the SLAs
with its users. Since different concrete services implementing the same task can
differ in their QoS attributes values, we may obtain different composite service
implementations with distinct overall QoS attributes, depending on the actual
service binding. To guarantee the QoS constraints, the services must be chosen so
that all the feasible implementations respect them.

The rest of this section is organized as follows. In Section 2.1 we introduce the
SLA model and the QoS attributes. In Section 2.2 we explain how the randomized
load balancing is realized. Finally, in Section 2.3 we illustrate how the QoS attributes
are calculated along the composite service.

2.1 SLA model

The QoS levels offered by the service providers are defined in SLAs. Since our
selection policy aims at satisfying every single request, the SLA states conditions that
are restricted to the single request. In general, SLA conditions may refer to different
kinds of functional and non-functional attributes of the service. We consider in this
work the following attributes:

– response time: the upper bound on the interval of time elapsed from the service
invocation to its completion;

– availability : the lower bound on the probability that the service is accessible
when invoked;

– cost : the upper bound on the price charged for the service invocation.

We model the SLA between the service broker and its users as a tuple
〈Rmax, Amin, Cmax〉, where Rmax and Cmax represent the upper bound on the
response time and cost, respectively, and Amin the lower bound on the availability.
Since the service broker plays an intermediary role, in its turn it also acts as a
service user against the providers of the concrete services it uses to implement the
abstract tasks in the service composition. Each of these concrete services is
characterized by its own SLA, that we model as an extension of the SLA offered by
the broker to its users: response time, availability, and cost maintain the same
semantics, but we add a new parameter, Lij , which is a threshold on the maximum
request rate that can be submitted to the concrete service csij . The csij provider
satisfies the QoS attributes in the advertized SLA as long as the request rate does
not exceed Lij ; in case of violation of the load threshold, there is no guarantee on
the QoS levels of csij .

200 International Journal of Software and Informatics, Volume 7, Issue 2 (2013)

2.2 Randomized load balancing

The core of our per-request selection policy is the randomized load balancing of
the requests directed to each abstract task Si, so that they are switched to multiple
concrete services implementing it. The load balancing is tuned on the basis of the
capacity of each concrete service csij , defined by the parameter Lij , and of the rate
of requests submitted by the users to Si. As we already mentioned, an abstract task
is bound by the broker to a set of concrete services, each one having an associated
probability. So, at abstract task binding time, only one of these services is
probabilistically chosen. As a consequence, only a fraction of the incoming requests
is switched to a given concrete service csij , and this fraction depends on the
probability xij determined by the broker. We define a service selection policy as the
set of all these probabilities, that we represent with the vector x = [x1, . . . ,xm],
where for each entry xi = [xij], i ∈ S, j ∈ =i, the constraints xij ∈ [0, 1] and∑

j∈=i
xij = 1 hold. Our idea is to drive the value of the xij probabilities, forcing on

each xij an upper bound Pij , so that the fraction of requests switched by the broker
to the concrete service csij does not overload it. The upper bound Pij is calculated

through the ratio Pij =
Lij

λi
, where λi is the actual request rate to the abstract task

Si and Lij is the load threshold for csij . If Pij is greater than 1, it means that there
is no upper bound because csij is able to satisfy all the incoming requests to Si on
its own. Vice versa, if Pij is less than 1, csij alone cannot satisfy all the requests
directed to Si but it must be backed by other concrete services, so that their overall
capacity can sustain the submitted load.

2.3 QoS attributes of the composite service

The QoS attributes of the composite service can be calculated using the service
selection policy x, but a model of the composite service workflow is also needed. In
the following subsections we introduce this model and, afterwards, the QoS attributes
computation.

2.3.1. Composite service graph

We assume that a composite service workflow managed by the service broker
either has a single initial task or starts with a fork-join parallel sequence. Furthermore,
we assume that for each conditional branch we know the probability of executing it;
similarly, we assume to know the probability of reiterating loops.

The composite service graph is obtained by transforming the workflow of the
composite service as in Ref. [3]. In particular, loops are peeled, i.e., they are
transformed in a sequence of branch conditions, each of which evaluates if the loop
has to continue with the next iteration or it has to exit, according to the branch
probability. A pre-requisite for loop peeling is the knowledge of the maximum
number of supposed iterations. We calculate this value as the p-percentile of the
distribution of reiterating the loop. After loop peeling, the composite service can be
modeled as a Directed Acyclic Graph (DAG). As in Ref. [3], we define:

– Execution path. An execution path epn is a multiset of tasks
epn = {S1, S2, . . . , SI} ⊆ S, such that S1 and SI are respectively the initial
and final tasks of the path and no pair Si, Sj ∈ epn belongs to alternative

Valeria Cardellini, et al.: QoS driven per-request load-aware service selection ... 201

branches. We need a multiset rather than a simple set because a single task
may appear several times in the execution path. An execution path may also
contain parallel sequences but no loops, which are peeled. A probability of
execution pn is associated with every execution path and can be calculated as
the product of the probabilities of executing the branch conditions included in
the path. Similarly, the branch conditions that arise from loop peeling produce
other execution paths.

– Subpath. A subpath of an execution path epn is a sequence of tasks [S1, . . . , SI],
from the initial to the end task, that does not contain any parallel sequence. In
other words, each branch b of a parallel sequence identifies a subpath inside the
execution path epn. We denote a subpath by spn

b .

Therefore, the set of all the execution paths identifies all the possible execution
scenarios of the composite service. The QoS constraints must hold for every execution
path to guarantee the SLAs the service broker stipulated with its users.

2.3.2. QoS attributes computation

Given the service selection policy x and the execution paths that arise from the
composition logic, we can calculate the QoS attributes of each abstract task and then
the overall QoS attributes of the composite service. We are interested in the average
QoS perceived by the users as well as in its worst case value. As discussed below, we
need both these values to maximize the broker utility function and satisfy the QoS
constraints.

Let rij be the response time of the concrete service csij , aij its availability, and
cij its cost. The average QoS values of the abstract task Si, namely, the average
response time Ri, the availability Ai, and the average cost Ci, are given by the
following expressions:

Ri =
∑

j∈=i

rijxij (1)

Ai =
∑

j∈=i

aijxij (2)

Ci =
∑

j∈=i

cijxij (3)

The worst case QoS values, denoted by Rw
i , Aw

i , and Cw
i , are given by:

Rw
i = max

j∈=i

rijyij (4)

Aw
i = min

j∈=i

aijyij (5)

Cw
i = max

j∈=i

cijyij (6)

where yij is a binary variable indicating whether the concrete service csij can be ever
bound to the abstract task Si, i.e., yij = 1 if xij > 0 and 0 otherwise.

Using these formulas and the notion of execution paths and subpaths, we can
calculate the QoS attributes along each execution path itself, using the aggregation

202 International Journal of Software and Informatics, Volume 7, Issue 2 (2013)

formulas presented in Ref. [3]. Note that the same formulas apply both for the average
case and for the worst case; therefore, for the sake of simplicity, we show only the
latter case. We denote by Rn the maximum response time of the execution path epn,
with An its minimum availability, and with Cn its maximum cost; these are, in other
words, the QoS attributes values calculated in the worst case scenario. They are:

Rn = max
spn

b ∈epn

∑

Si∈spn
b

Rw
i (7)

An =
∏

Si∈epn

Aw
i (8)

Cn =
∑

Si∈epn

Cw
i (9)

While the cost and the availability are simply obtained, respectively, as sum
and multiplication of the QoS attributes of each abstract task in the execution path,
the matter is slightly different for the response time. Indeed, the response time of
an execution path is equal to the response time of the longest subpath inside the
execution path itself.

3 Optimization Problem

Given a composite service P , the goal of the service broker is to find a selection
policy x that ensures the QoS constraints for every execution scenario, i.e., for each
execution path epn that arises from P , while realizing the randomized load balancing.
The selection policy x is calculated by solving a suitable optimization problem. We
formulate this optimization problem as a Mixed Integer Linear Problem (MILP), with
the following decision variables:

– xij : it takes value in the range [0, 1] and represents the probability that the
concrete service csij ∈ =i is bound to the abstract task Si; it is used to drive
the randomized load balancing.

– yij : it is equal to 1 if csij is bound to Si with a given probability defined by
xij , 0 otherwise. We use it to ensure that the QoS constraints are met.

While the QoS constraints are evaluated using the worst case values of the QoS
attributes for each abstract task, the objective function is maximized using the
average values, because it is the value that is expected along multiple executions of
the composite service. In particular, the optimization problem maximizes the
aggregated QoS values, which are calculated over all the possible execution paths
that arise from the composite service workflow, taking into account the relative
probability pn. We obtain the aggregated values by applying the Simple Additive
Weighting (SAW) technique as scalarization method.

In the first phase, each quality dimension along an execution path is normalized
according to the following formulas, depending on whether the QoS attribute is a
positive (10) or a negative (11) one. A QoS attribute is defined positive (negative) if
the greater the value is, the greater (lower) the quality of that attribute. Availability
is an example of positive attribute (the higher the availability, the better the quality

Valeria Cardellini, et al.: QoS driven per-request load-aware service selection ... 203

is), while response time is an example of negative attribute (the lower the response
time, the better the quality is).

zh
n(x) =





qh
n(x)−min qh

n

max qh
n −min qh

n

, if max qh
n 6= min qh

n

1, if max qh
n = min qh

n

(10)

zh
n(x) =





max qh
n − qh

n(x)
max qh

n −min qh
n

, if max qh
n 6= min qh

n

1, if max qh
n = min qh

n

(11)

In the above formulas, qh
n(x) is the h-th quality dimension value calculated over

the execution path epn using the selection policy x. max qh
n and min qh

n are its
maximum and minimum values and can be estimated across several composite
service executions.

In the second phase a score is obtained using a weighted sum of the normalized
quality attributes, as follows:

scoren =
∑

h

whzh
n(x) (12)

where the weight wh specifies the relative importance that the broker assigns to a
QoS attribute with respect to the others.

Finally, the objective function is obtained using the following weighted formula:

F (x) =
∑

n

pnscoren(x) (13)

The optimal service selection policy x can be obtained solving the following
optimization problem (for sake of simplicity, we use n instead of epn):

max F (x)

subject to:
∑

j∈=i

xij = 1 ∀i (14)

xij 6 Pij ∀i, ∀csij ∈ =i (15)

xij 6 yij ∀i, ∀csij ∈ =i (16)

rijyij 6 Rw
i ∀i, ∀csij ∈ =i (17)

aijyij > Aw
i ∀i, ∀csij ∈ =i (18)

cijyij 6 Cw
i ∀i, ∀csij ∈ =i (19)

∑

i∈spn
b

Rw
i 6 Rn ∀spn

b ∈ epn, ∀n (20)

∑
i∈epn

log(Aw
i) = An ∀n (21)

∑
i∈epn

Cw
i = Cn ∀n (22)

Rn 6 Rmax ∀n (23)

An > log(Amin) ∀n (24)

Cn 6 Cmax ∀n (25)

204 International Journal of Software and Informatics, Volume 7, Issue 2 (2013)

xij ∈ <+ ∀i, ∀csij ∈ =i

yij ∈ {0, 1} ∀i, ∀csij ∈ =i

Rw
i , Aw

i , Cw
i ∈ <+ ∀i

Rn, Cn ∈ <+ ∀n
An ∈ <− ∀n

Constraints (14) guarantee that the sum of the probabilities of choosing the
concrete services is equal to 1 for each task Si. Constraints (15) define the upper
bound to the probability of choosing a concrete service csij . These two constraints
families implement the randomized load balancing policy. Constraints from (17) to
(19) express the response time, availability, and cost of every abstract task Si in terms
of the worst concrete services that are selected to implement that task, as we discussed
in Section 2.3. Constraints (20) evaluate the response time of each execution path
epn as the response time of its longest subpath spn

b , while constraints (21) and (22)
refer respectively to the availability and cost of each execution path epn. Finally,
constraints from (23) to (25) are the QoS constraints to be fulfilled. We use the
logarithm of the availability instead of the availability in our optimization problem
because we need to linearize Equation (8) to put it in our MILP problem.

4 Monitoring and Analysis

In the previous sections, we have presented the load-aware per-request service
selection policy that guarantees the QoS constraints to each user request by
properly composing the available concrete services. Nevertheless, since these services
are offered by third party providers, even in presence of SLAs there is no actual
guarantee that the services abide to the negotiated QoS parameters as network
overload, service overload, and/or power outages may cause a service to not respect
the expected QoS level. As a consequence, to provide QoS guarantees, we have to
account for the actual services QoS, rather than the QoS values stated in the SLAs.
To this end, we need to monitor the execution of the concrete services and to
analyze the collected data, so to be able to determine whether a change in the QoS
level has occurred and a new service selection needs to be determined by using the
updated QoS parameters.

In the following, we discuss the methodologies used to monitor the concrete
services and to analyze the collected data focusing on the response time, while in
Section 5 we demonstrate their effectiveness in improving the QoS experienced by the
composite service users.

4.1 Monitoring the concrete services

The QoS attributes stated in a SLA are the targets of our monitoring activity.
The monitored data can be collected at two different locations: at the service
provider side or at the broker side. The former is made possible when the service
provider collects data for itself and makes them available to its clients, like the
Amazon CloudWatch service. However, the most common solution adopted in the
SOA context is to collect data on the service broker that manages the composite
service[1, 6, 11, 20], because the monitoring service is hardly provided by the concrete

Valeria Cardellini, et al.: QoS driven per-request load-aware service selection ... 205

services providers.
Generally, the methodology used to collect the data can be either active, if the

data are collected sending proper inputs to the monitored entities, or passive, if
the data are collected without injecting additional load but rather observing the
system behavior. We preferred the latter solution, because in the context of the SOA
applications each service invocation has a cost. Another important question regards
the frequency at which data are collected, i.e., after how many invocations of a service
we measure the QoS. Clearly, a low frequency approach requires less computing power
than a high frequency one, but we adopt the latter to react more quickly to changes
in the service QoS. Therefore, the monitoring activity of our framework is straight:
we passively measure and store the QoS of each single concrete service invocation on
a continuous time basis.

4.2 Analyzing the collected data

To analyze the collected data, we propose to use the online adaptive cumulative
sum (Cusum) algorithm[22] for service response time monitoring and abrupt change
detection. We chose not to use the standard Cusum algorithm because it has been
designed to detect changes in stationary time series with known statistical
characteristics. In a non-stationary context, like the SOA context, where the
variance can exhibit significant variation over time, standard Cusum performance is
quite poor[13]. Indeed, given a time series, its standard deviation is used to properly
tune the Cusum algorithm. Furthermore, although Cusum detects changes in the
time series mean, it assumes that the variance is always constant over time.

The online adaptive Cusum detector we implemented[13] combines an Exponential
Weighted Moving Average (EWMA) filter to tracks the slow varying response time
series average with a two-sided Cusum test to detect abrupt changes in the series
average which cannot be timely accounted by EWMA filter.

We consider the following tracking EMWA filter:

µi = αyi + (1− α)µi−1 (26)

where µi represents the i-th current estimate of the average response time, yi the
i-th collected response time sample, and α is a small constant. To timely detect the
occurrence of significant changes, the Cusum algorithm uses two variables, g+ and g−,
for positive and negative changes, respectively, which measure positive and negative
deviation of the time series with respect to its average value. They are initialized to
0 and updated at each step as follows:

g+
i = max{0, g+

i−1 + yi − (µi + K+)} (27)

g−i = max{0, g−i−1 + (µi −K−)− yi} (28)

where K+ (K−) is the smallest shift we want to detect on the leading (trailing)
edge. In our experiments, we set it equal to 25% of the response time stated in
the SLOs of the monitored services. A change is detected whenever g+

i or g−i are
greater than a suitable threshold H∗, which represents a trade-off between detection
delay and probability of false positive. To compute H∗ we followed the approach in
Ref. [13], which ensures a small probability of false detection (measured in terms of

206 International Journal of Software and Informatics, Volume 7, Issue 2 (2013)

expected number of samples between false positives, we set to 1000). This requires the
numerical inversion of the Siegmund approximation[22] which typically yields H∗ ≈
5σy, where σy is the time series standard deviation. Since σy is unknown, we resort
to a widely adopted approximation, which basically replaces the standard deviation
with the estimate of the mean deviation E[|yi − E[y]|]:

σi = β|yi − µi|+ (1− β)σi−1 (29)

where we set β to 0.5.
Whenever an abrupt change is detected, the average response time is updated

according to the following equations[22]:

µi =

{
µi−1 + K + g+

i /N+ if g+
i > H∗

µi−1 −K − g−i /N− if g−i > H∗ (30)

in place of (26), where N+ (N−) is the number of samples since the last time g+
i (g−i)

was equal to zero. Upon a change detection, g+
i and g−i are reset to 0.

The estimates of the services response time, obtained via (26) (or (30) when an
abrupt change is detected), are used by the broker in the actual formulation of the
service selection optimization problem. More precisely, since we want to guarantee
an upper bound on the composite service response time, in the problem formulation
for each concrete service csij the broker uses the largest value between rij , defined
in the SLA, and the current estimate computed above, which we denote by rCUSUM

ij ,
i.e., in (17) we replace rij by r̃ij = max{rij , r

CUSUM
ij }.

5 Experimental Analysis

In this section, we present the experimental analysis we have conducted using
the MOSES prototype to demonstrate:

– the effectiveness of the proposed load-aware per-request approach with respect
to the traditional per-request approach proposed by Ardagna and Pernici in
Ref. [3];

– the effectiveness of the adaptive Cusum algorithm, and in turn of the whole
theoretical framework for a self-adaptive SOS.

First, we briefly describe the MOSES prototype and the experimental
environment, then we analyze the experimental results.

5.1 MOSES prototype

MOSES, which stands for MOdel-based SElf adaptation of SOA systems, is a QoS-
driven runtime adaptation framework for service-oriented systems[9]. It is intended
to act as a service broker which offers to prospective users a composite service with
QoS guarantees, exploiting for this purpose the runtime binding between the abstract
functionalities of the composite service and a pool of existing concrete services that
implement the abstract functionalities. Its main task is to drive the adaptation of the
composite service to fulfill the QoS goals stipulated with its users.

The MOSES prototype has a flexible and modular system architecture, where
each module performs a specific functionality and its implementation can be changed

Valeria Cardellini, et al.: QoS driven per-request load-aware service selection ... 207

without impacting on the rest of the system. In the following, we provide an overview
on the MOSES system; a detailed description is in[6, 9].

We first describe the core MOSES modules (namely, the BPEL Engine, the
Adaptation Manager, and the Optimization Engine, together with the Storage
layer); then, we present the remaining modules that enrich the basic functionalities.

The Optimization Engine computes the selection policy x that drives the
runtime binding. The modular architecture of MOSES allows us to develop multiple
implementations of the service selection optimization policies, possibly using
external tools for finding the optimal solution. To this end, the Optimization Engine
exposes the same interface to other MOSES modules irrespectively of the specific
policy. Examples of already implemented policies are the per-flow optimization
policies in Refs. [7, 8] and the per-request optimization policy in Ref. [3], as well as
the load-aware selection policy presented in this paper.

The BPEL Engine executes the composite service, described in BPEL[24], that
defines the user-relevant business logic.

The Adaptation Manager is the actuator of the adaptation actions determined by
the Optimization Engine: it is actually a proxy interposed between the BPEL Engine
and any external service provider. Its task is to dynamically bind each abstract task’s
invocation to the real endpoint according to the optimal solution determined by the
Optimization Engine.

MOSES is architected as a self-adaptive system based on the MAPE-K
(Monitor, Analyze, Plan, Execute, and Knowledge) reference model for autonomic
systems[26]. Figure 2 shows how the MOSES modules implement each MAPE-K
macro-component, together with the system inputs (i.e., the composite service and
the pool of candidate concrete services). This input is used to build a model
(Execute), which in turn is used and is kept up-to-date at runtime (Monitor). The
monitored parameters are analyzed (Analyze) in order to know if adaptation actions
(i.e., a new service selection policy) have to be taken. A new selection policy x is
calculated (Plan) to react to some external significant event, such as a significant

Figure 2. MOSES high-level architecture based on the MAPE-K model

208 International Journal of Software and Informatics, Volume 7, Issue 2 (2013)

violation of the SLA parameters. The BPEL Engine, together with the Adaptation
Manager, belong to the Execute macro-component because their task is to execute the
logic of the business processes; on the other hand, the Optimization Engine constitutes
the Plan macro-component because it is involved in computing the selection policy.

The basic functionalities implemented in the Execute and Plan
macro-components are enriched by the modules belonging to the Monitor+Analyze
macro-component: they capture changes in the MOSES environment and, if they
are relevant, modify at runtime the system model kept in the Storage layer, also
triggering the Optimization Engine to make it calculate a new service selection
policy. The new service selection policy x will be then calculated using the system
model view as updated by the monitoring modules. Specifically, the Service
Manager and WS Monitor respectively detect the addition or removal of concrete
services (the latter due either to graceful failures or crashes). The QoS Monitor
measures the actual values of the QoS attributes provided by MOSES to its users
and offered to MOSES by its service providers and detects violations of the service
level objectives stated in the SLAs. It implements the adaptive Cusum algorithm
presented in Section 4 and triggers the Optimization Engine whenever a change
detection occurs. The Execution Path Analyzer tracks variations in the usage profile
of the abstract tasks, allowing for example to dynamically update the probability of
executing the conditional branches in the composite service workflow. Finally, the
SLA Manager manages the user registration with the associated SLA, possibly
performing an admission control.

We have implemented the MOSES prototype exploiting the Java Business
Integration (JBI) implementation provided by OpenESB and MySQL for the
storage layer. We have used Sun BPEL Service Engine to orchestrate the service
composition. The Optimization Engine relies on IBM ILOG CPLEX Optimizer[12]

as optimization software package to solve the per-request optimization problems.

5.2 Experimental setup

The testing environment consists of 3 Intel Xeon quad-core servers (2 Ghz/core)
with 8 GB RAM each (nodes 1, 2, and 3), and 1 KVM virtual machine with 1
CPU and 1 GB RAM (node 4); a Gb Ethernet connects all the machines. The
MOSES prototype is deployed as follows: node 1 hosts all the MOSES modules in
the Execute macro-component, node 2 the storage layer together with the candidate
concrete services, and node 3 the modules in the Monitor+Analyze and Plan macro-
components. Finally, node 4 hosts the workload generator.

We consider the composite service defined by the workflow in Fig. 3, composed by
6 stateless tasks, and assume that 4 concrete services (with their respective SLAs) have
been identified for each task, except for tasks S1 and S3 for which 5 implementations
have been identified. The respective SLA parameters, shown in Table 1, differ in
terms of cost cij , availability aij , and response time rij (measured in sec). In the
experiments, we used this baseline set composed of 26 concrete services, as well as an
enlarged set of concrete services where we doubled the baseline set (in the following,
we refer to the latter as 2x baseline).

Valeria Cardellini, et al.: QoS driven per-request load-aware service selection ... 209

Figure 3. Workflow of the composite service managed by MOSES

Table 1 SLA parameters for concrete services

cs rij aij cij cs rij aij cij

cs11 2 0.995 6 cs31 1 0.995 5

cs12 1.8 0.99 6 cs32 1 0.99 4.5

cs13 2 0.99 5.5 cs33 2 0.99 4

cs14 3 0.995 4.5 cs34 4 0.95 2

cs15 4 0.99 3 cs35 5 0.95 1

cs21 1 0.995 2 cs41 0.5 0.995 1

cs22 2 0.995 1.8 cs42 0.5 0.99 0.8

cs23 1.8 0.99 1.8 cs43 1 0.995 0.8

cs24 3 0.99 1 cs44 1 0.95 0.6

cs51 1 0.995 3 cs61 1.8 0.99 1

cs52 2 0.99 2 cs62 2 0.995 0.8

cs53 3 0.99 1.5 cs63 3 0.99 0.6

cs54 4 0.95 1 cs64 4 0.95 0.4

The concrete services are simple stubs, without internal logic; however, their
non-functional behavior conforms to the guaranteed levels expressed in their SLA.
The perceived response time is obtained by modeling each concrete service as an
M/D/m/PS queue implemented inside the Web service deployed in a Tomcat
container. The M/D/m/PS model is parameterized in such a way to have an
average CPU usage between 65% and 70% when the request rate is equal to 10
req/sec. Table 2 shows the SLAs offered by MOSES to the composite service users
according to different service classes.

Table 2 SLA parameters for service classes

Service class k Rk
max Ak

min Ck
max

1 16 0.88 55

2 18 0.85 50

3 20 0.82 45

4 22 0.79 40

To issue requests to the composite service managed by MOSES we developed a
workload generator in C language using the Pthreads library. The workload generator

210 International Journal of Software and Informatics, Volume 7, Issue 2 (2013)

can be configured to issue requests to MOSES service class by service class at a fixed
rate.

We conducted five sets of experiments to evaluate the service selection policies
under different scenarios and loads as well as the monitoring and analysis
components. The first set of experiments was performed to point out the scalability
problems of the traditional per-request approach; the second set was carried out to
compare the performance of the traditional per-request policy versus the load-aware
one; the third set was performed to analyze the scalability of the load-aware
per-request policy. In the first three sets of experiments, each experiment is
composed by several runs lasting 15 minutes each, during which the workload
generator generates requests corresponding to the service class 2 (see the k=2 row in
Table 2 for its SLA) at a constant rate. The request rate is then increased run by
run until the system keeps stable. The fourth set of experiments was performed in
order to prove the effectiveness of our load-aware policy. Specifically, for every
service class we generated a constant request rate for the first half of the
experiment, then increasing the request rate only for class 2 in the second half on
the experiment. Finally, the last set of experiments was performed to demonstrate
the effectiveness of the adaptive Cusum algorithm, when some services do not
behave according to the stipulated SLAs. As in the first three sets of experiments,
each experiment is composed by several runs lasting 15 minutes each. The request
rate submitted to MOSES is the same in each experiment, but an external load,
increased run by run, is submitted to cs11.

The main performance metric we measured is the response time of the composite
service. We also measured the CPU utilization of the concrete services to analyze the
different effects of the request load distribution among the concrete services achieved
by the traditional and the load-aware per-request policies.

5.3 Experimental results

In the first set of experiments, we ran three load tests on MOSES using the
traditional per-request policy in Ref. [3]. In the first test, we used the baseline set of
concrete services without instrumenting any of the MOSES modules in the Monitor
and Analyze macro-components. In the second test, we used the previous
configuration, but we exploited the 2x baseline set of concrete services. Finally, in
the last test we used the 2x baseline set of concrete services and we added the
support of the QoS Monitor, in order to detect SLA violations of the response time
of the concrete services and, in positive case, to determine a new service selection
policy that exploits different concrete services implementations.

Figure 4 shows the average response time perceived by the users of the
composite service for different request rates submitted to MOSES. We observe that
for all the three tests the response time is nearly constant until the request rate
reaches 7 req/sec. From this point on, the response time of both the tests without
QoS Monitor ([3], no QoS, baseline and [3], no QoS, 2x baseline curves), regardless
of the used concrete services set, rapidly grows because the per-request service
selection does not exploit the presence of different service implementations, always
using the same service identified as the best one. In the test with the QoS Monitor
enabled ([3], QoS, 2x baseline curve), the response times of the concrete services are

Valeria Cardellini, et al.: QoS driven per-request load-aware service selection ... 211

collected, their average calculated every 2 sec. and analyzed; if the QoS Monitor
finds out that the currently used concrete implementations do not have an adequate
performance (i.e., they are violating the response time contractualized in the SLA),
it triggers the Optimization Engine to compute a new optimal policy x, using the
actual response times of the concrete services instead of those declared into the
SLAs. As a result, the currently used overloaded services will not be used in the
near future, but they will be candidate for re-usage when the new selected concrete
services will in their turn become overloaded. However, the introduction of the QoS
Monitor provides only a modest performance improvement; even if the QoS Monitor
invocation frequency is relatively high (every 2 sec.), the reaction is not quick
enough to address higher request rates. We can conclude that the traditional
per-request approach is not able to scale out the available services implementations,
and thus it is unable to sustain higher request rates than those sustainable by the
bottleneck concrete service.

 5

 7

 9

 11

 13

 15

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
es

po
ns

e
tim

e
(s

ec
)

Request rate (req/sec)

[3], no QoS, baseline
[3], no QoS, 2x baseline

[3], QoS, 2x baseline

Figure 4. Response time of the traditional per-request service selection policy

The second set of experiments compares the traditional per-request and the
load-aware per-request selection policies. These experiments use the baseline set of
concrete services and do not involve any Monitor or Analyze MOSES component.
Figure 5 compares the average response time according to the request rate
submitted to MOSES when using the two different policies. We observe that the
response times achieved by the two policies perfectly overlap until the request rate
reaches the saturation point of the traditional per-request policy. From this point
on, the former ([3], no QoS, baseline curve) is not able to exploit the available
implementations, while the load-aware policy (no QoS, baseline curve) performs
better, scaling out the available concrete services. Therefore, the load-aware
approach is able to sustain higher request rates than the traditional per-request,
given that there are available concrete services to be exploited.

To show the load balancing effectiveness, we monitored the CPU usage of the
concrete services during the experiments. Since every concrete service is
implemented as an M/D/m/PS queue, the CPU usage has been computed with the
formula λijTij

nCPUij
, where λij is the request rate directed to the j-th implementation of

212 International Journal of Software and Informatics, Volume 7, Issue 2 (2013)

Si (that is, csij), Tij its service time, and nCPUij the number of CPUs available to
that service implementation.

 5

 7

 9

 11

 13

 15

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

R
es

po
ns

e
tim

e
(s

ec
)

Request rate (req/sec)

[3], no QoS, baseline
no QoS, baseline

Figure 5. Response time of the traditional versus load-aware per-request service selection

policies

Figure 6 shows the CPU usage of cs13, which is the single concrete service used
by the traditional per-request optimization approach to implement S1. We can see
that the load increases almost linearly until it reaches the CPU usage equal to 85%;
at that value, the system becomes unstable (see Fig. 5).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 3 4 5 6 7 8 9 10

C
P

U
 u

sa
g
e

(%
)

Request rate (req/sec)

cs_13

Figure 6. CPU usage of the concrete service selected for S1 by the traditional per-request

policy

Figure 7 shows the CPU usage of the concrete services used by the load-aware
policy to implement the abstract task S1. Differently from the traditional strategy,
with the load-aware policy multiple concrete services can be used to implement the
same task. In particular, when the request rate is low (from 1 req/sec to 6 req/sec),
there is no need to use multiple concrete services (we recall that each concrete
service is modeled so to have an average CPU usage between 65% and 70% when
the request rate is equal to 10 req/sec). Therefore, for the low request rate only cs13

Valeria Cardellini, et al.: QoS driven per-request load-aware service selection ... 213

is used, like in the traditional per-request policy. When the request rate increases
from 7 req/sec to 9 req/sec, the concrete services cs13 and cs11 are both used. From
10 req/sec on, cs15 is also used to implement S1, therefore the load is balanced
across three concrete services. We observe that the cumulative load does not
increase monotonically, because the concrete services model different underlying
hardware: cs11 and cs15 have 29 CPUs each, while cs13 has 25 CPUs. Therefore,
when more load is directed to a concrete service with a larger capacity, the overall
load decreases.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
P

U
 u

sa
g
e

(%
)

Request rate (req/sec)

cs_11
cs_13
cs_15

Figure 7. CPU usage of the concrete services selected for S1 by the load-aware

per-request policy

We carried out the third set of experiments to show the scalability capabilities of
the load-aware per-request policy. In these experiments we used both the baseline and
the 2x baseline sets of concrete services, without deploying the QoS Monitor module.
Figure 8 shows the scaling capabilities of the load-aware per-request service selection:
until one concrete service at a time can sustain the load (i.e., around 7 req/sec),
it does not matter to have a larger number of available implementations; therefore,
the results with the baseline set of concrete implementations resemble those with the
2x baseline set. However, at higher request rates, the availability of a larger set of
candidate services provides better response times and allows to manage the request
rates without incurring in overloading, because the load can be better shared among
the available implementations.

We conducted the fourth set of experiments to study the effectiveness of the
proposed load-aware per-request approach. We simulated several concurrent users
characterized by different service classes. The goal is to prove the effectiveness of the
MOSES adaptation under the load-aware per-request policy despite variations in the
submitted workload. To this end, each service class submits requests at a constant
rate equal to 1 req/sec, except class 2 for which we increased the request rate from 1 to
10 req/sec in the second half of the test. Therefore, in the first half of the experiment,
the aggregate workload is equal to 4 req/sec, which can be also easily managed by the
traditional per-request policy; on the other hand, in the second half of the experiment
we submitted to the SOS an aggregated workload equal to 13 req/sec, which cannot
be sustained by the traditional per-request policy (see the concrete services model
described in Section 5.2). The overall experiment lasted 1 hour.

214 International Journal of Software and Informatics, Volume 7, Issue 2 (2013)

 5

 7

 9

 11

 13

 15

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

R
es

p
o
n
se

 t
im

e
(s

ec
)

Request rate (req/sec)

no QoS, baseline
no QoS, 2x baseline

Figure 8. Response time of the load-aware per-request policy under the two sets of

concrete services

Figures 9(a)–9(d) show that the perceived response times are far below the
response times agreed in the SLAs and represented by the horizontal lines; this can
be explained by observing that the average behavior is very different from the worst
case considered in the formulation of the optimization policy. This latter issue could
be addressed by considering SLAs where the response time constraint is specified in
terms of bounds on the percentile.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 400 800 1200 1600 2000 2400 2800 3200

R
es

p
o

n
se

 t
im

e
(s

ec
)

Time (sec)

Class 1
SLA

(a) Service class 1

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 400 800 1200 1600 2000 2400 2800 3200

R
es

p
o
n
se

 t
im

e
(s

ec
)

Time (sec)

Class 2
SLA

(b) Service class 2

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 400 800 1200 1600 2000 2400 2800 3200

R
es

p
o

n
se

 t
im

e
(s

ec
)

Time (sec)

Class 3
SLA

(c) Service class 3

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 400 800 1200 1600 2000 2400 2800 3200

R
es

p
o
n
se

 t
im

e
(s

ec
)

Time (sec)

Class 4
SLA

(d) Service class 4

Figure 9. Response time of the load-aware per-request policy for all service classes over

time

Valeria Cardellini, et al.: QoS driven per-request load-aware service selection ... 215

Table 3 shows the average response times perceived by the users when issuing
requests either to a lightly loaded or to an heavy loaded system according to the
service class. When the system is subject to a light load, there are not appreciable
differences among the service classes. On the other hand, when the load increases, the
average response time perceived by class 4 (which has the least stringent SLA) suffers
more the load increase. The motivation is that class 4 requests can only exploit a
limited number of concrete services, because of the lowest maximum cost in the SLA
(see Table 2); therefore, to satisfy the cost constraint they cannot be distributed
among all the available concrete services.

Table 3 Average response times of the load-aware per-request policy for all

service classes under light and heavy loads

Service class Light load Heavy load

1 5.514 sec 6.254 sec

2 5.485 sec 6.350 sec

3 5.509 sec 6.357 sec

4 5.794 sec 8.112 sec

Finally, in the fifth and last set of experiments we demonstrate the effectiveness
of the adaptive Cusum algorithm. In the first test, we used the baseline set of
concrete services without instrumenting any of the MOSES modules in the Monitor
and Analyze macro-components. Conversely, in the second test we added the
support of the QoS Monitor, in order to detect SLA violations of the response time
of the concrete services and, in positive case, to determine a new service selection
policy that exploits different concrete services implementations. Both the test were
conducted submitting requests corresponding to the service class 2 at a constant
rate equal to 4 req/sec. We also submitted an external load to concrete service cs11

in order to overload it. The external load has been incremented by one unit every 15
minutes, starting from 1 req/sec. Figure 10 shows the result of the first test without
the QoS Monitor. We can see that the response time of the composite service keeps
constant until the external request rate is less than 7 req/sec, . After this threshold,
the concrete service cs11 begins to be overloaded and therefore the response time of
the composite service sharply increases. The SOS performance changes significantly
when the QoS Monitor with the adaptive Cusum algorithm is turned on, as shown
in Fig. 11. The response time of the composite service is constant, regardless of the
external request rate submitted to cs11.

6 Related Work

The service selection problem has been widely investigated in the last years and
many solutions can be found in literature. They can be broadly classified into two
categories, depending on whether they propose a local or a global approach. In the
local approach, e.g., Refs. [3, 23, 28], only QoS constraints on the execution of single
abstract tasks can be predicated: the concrete services are selected one at the time
by associating the running abstract task to the best candidate concrete service which
supports its execution. On the other hand, the global approach, e.g., Refs. [2-5, 7, 8,

216 International Journal of Software and Informatics, Volume 7, Issue 2 (2013)

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 15 30 45 60 75 90 105 120 135 150

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

R
es

p
o
n

se
 t

im
e

(s
ec

)

E
x
te

rn
al

 l
o

ad
 r

at
e

(r
eq

/s
ec

)

Time (min)

Response time
External load rate

Figure 10. Response time of the load-aware per-request policy under external load

without QoS Monitor

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 15 30 45 60 75 90 105 120 135 150

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

R
es

p
o
n

se
 t

im
e

(s
ec

)

E
x

te
rn

al
 l

o
ad

 r
at

e
(r

eq
/s

ec
)

Time (min)

Response time
External load rate

Figure 11. Response time of the load-aware per-request policy under external load with

QoS Monitor

10, 16 17, 19, 27, 28], aims to ensure the QoS constraints on the whole execution of
the composite service.

Most of the proposed methodologies for service selection focus on the global
approach and adopt in particular the per-request granularity level, formalizing the
service selection as an instance of suitable optimization problems[3-5, 10, 17, 19, 27, 28].
At the per-request granularity level, the service selection concerns each single
request submitted to the service oriented system and has the goal to fulfill the QoS
constraints of that specific request, independently of the concurrent requests that
may be addressed to the system. Zeng et al.[28] present a global planning approach
to select an optimal execution plan by means of integer programming. Their QoS
model consider price, availability, reliability, and reputation as parameters. Ardagna
and Pernici[3] model the service composition as an MILP problem and their
technique is particularly efficient for long running process instances. Their approach
is formulated as an optimization problem handling the whole application instead of
each execution path separately. The proposal by Alrifai and Risse[4] is slightly
different, as the global approach is combined with local selection techniques to
reduce the optimization complexity. The global constraints are reduced to local
constraints using integer programming in such a way that satisfying the latter also

Valeria Cardellini, et al.: QoS driven per-request load-aware service selection ... 217

ensure the former. Another approach to address the complexity of the optimization
problem is proposed by Alrifai et al. in Ref. [5], where the set of the available
concrete services is pruned on the basis of the skyline notion before resolving the
optimization problem itself. Canfora et al.[10] follow a quite different strategy for
optimal selection, relying on genetic algorithms. They define an iterative procedure
to search for the best solution of a given problem among a constant size population
without the need for linearization required by integer programming. Since the
per-request service selection problem is NP-hard, other heuristic policies have been
also proposed (e.g., see Refs. [17, 19, 27]).

The common factor to all the solutions discussed so far is that each abstract
task is only bound, from time to time, to a single concrete service. It seems
reasonable to suppose that, for a given class of requests, the same optimal binding
between an abstract task and a corresponding concrete service holds until a
significant change detected in the execution environment triggers the calculation of
a new binding. Hence, the per-request policies have the drawback of possibly
overloading the selected services during the time interval that interlapses between
two subsequents changes, because each request is handled independently of all the
others.

This drawback is partially solved by those proposals that adopt the per-flow
granularity level[2, 7, 8, 16], where the focus is on the overall flow of requests of a user,
rather than on a single request. Under the per-flow granularity, the service selection
goal is to fulfill the QoS constraints that concern the global properties of that flow, e.g.,
the average response time of the composite service. In Ref. [16] the service selection
problem is addressed with an LP formulation: an abstract task is probabilistically
bound at runtime to several concrete services thus realizing a request load balancing.
However, the actual load submitted to each concrete service is not taken into account.
Also in Refs. [7-9] the service selection problem is formulated as an LP problem that
probabilistically binds each abstract task to multiple corresponding concrete services,
but, differently from the work in Ref. [16], in these proposals the load submitted to
each concrete service is accounted. The system incoming workload is also taken into
account by Ardagna and Mirandola in Ref. [2], but the service selection is formulated
as a constrained non-linear optimization problem.

The solutions to the service selection problem presented in Refs. [2, 7-9] take into
account the load balancing issue and can scale better than the per-request approaches
because of the corresponding formulation of the optimization problem. However, they
work on a per-flow basis; therefore, the QoS constraints are ensured on average and
in the long term, but no QoS guarantee is given to each single submitted request. In
this paper we have proposed a new approach to service selection, that combines the
different advantages of the per-request and per-flow approaches proposed so far: it
scales similarly to the per-flow ones with respect to the submitted request load, but
allows to ensure the QoS constraints on a per-request basis.

With regard to full frameworks for the self-adaptation of SOS, we have few
works that extensively describe also the Monitor and Analyze phases of the
MAPE-k loop[1, 11, 18].

With respect to the Monitor phase, all the frameworks focus on monitoring the
QoS attributes stated in the SLAs stipulated with the concrete service providers, on

218 International Journal of Software and Informatics, Volume 7, Issue 2 (2013)

a continuous basis, and using a passive methodology. The only exception is Ref. [11],
because also the workload submitted to each service in the service composition and
the in-house hardware resources are monitored. Anyway, using a passive approach on
a continuous time basis appears to be the facto standard for Web service monitoring.

For what regards the Analyze phase, each framework has its own approach. The
work in Ref. [11] uses the data collected in the Monitor phase to parametrize a Markov
model of the composite service, and then solves this model to discover if the QoS
constraints will be violated. The proposal in Ref. [1] uses a rule-based approach.
Before and after each concrete service invocation a rule is evaluated in order to discover
if the concrete service behavior differs from what expected. For example, the rule can
be constructed using boolean, relational, and mathematical operators or other useful
constructs, like the maximum, minimum, and average values of collected data. Finally,
the framework presented in Ref. [18] performs the analysis using statistical methods.
It does not suggest a single method, but rather it provides as example of suitable
methodologies the application of either the Bayesian inference or the Student t-test
statistical significance test.

7 Conclusions

In this paper we have presented a theoretical framework for a self-adaptable
service oriented system. The core of the framework is a new per-request load-aware
policy that addresses the service selection issue for a service broker which offers a
composite service with QoS constraints. The proposed policy realizes a randomized
load balancing of the requests submitted to each abstract task, exploiting the
multiple concrete implementations available in the open service market-place. To
avoid overloading the chosen concrete services, the load balancing is tuned by taking
into account the capacity of each concrete service and the load submitted to the
abstract task. In particular, a probability is assigned to each concrete service
proportionally to its capacity and, for each single request, the concrete services to
be invoked are selected according to these probabilities. The other component of the
proposed framework is the adaptive Cusum algorithm to detect changes in the
execution environment. By exploiting it, the SOS can trigger a reconfiguration, thus
changing the subset of used concrete services.

Using a prototype implementation, we have first compared our approach with
one of the top performing per-request service selection policies, presented in Ref. [3].
Our experimental results show the scalability of the load-aware per-request policy:
it can sustain higher request rates than the per-request policy in Ref. [3], because
it allows to concurrently exploit multiple concrete services using the load balancing
mechanism, while the approach in Ref. [3] uses only one concrete service at a time,
i.e., it directs all the concurrent requests in the same QoS class to the same concrete
service. The experimental results also show that for a service broker using our policy
the maximum sustainable load grows with the number of available concrete services,
while this does not happen with the policy in Ref. [3]. Indeed, the latter is completely
insensitive to the number of available implementations for each abstract task, while
the load-aware service selection has proved suitable to work in a real scenario.

The second experimental contribution has demonstrated the effectiveness of the
whole theoretical framework, that includes the adaptive Cusum algorithm for the

Valeria Cardellini, et al.: QoS driven per-request load-aware service selection ... 219

Analyze phase. Our experimental results show that with adaptive Cusum the SOS
is able to reconfigure itself quickly. Furthermore, the changes in the execution
environment do not affect the response time of the composite service and so its users
do not perceive any performance degradation.

As future work we will consider QoS constraints which specify bounds on the
percentile of the response time, because the user perceived QoS can be better
expressed in terms of percentiles rather than mean values. Furthermore, due to the
computational complexity of the MILP formulation we used for the per-request
load-aware policy, we will consider to apply techniques for pruning the set of
available concrete services in such a way to speed-up the problem resolution in case
of large problem instances.

References

[1] Ardagna D, Baresi L, Comai S, Comuzzi M, Pernici B. A service-based framework for flexible

business processes. IEEE Software, March 2011, 28(2): 61–67.

[2] Ardagna D, Mirandola R. Per-flow optimal service selection for web services based processes. J.

Syst. Softw., 2010, 83(8): 1512–1523.

[3] Ardagna D, Pernici B. Adaptive service composition in flexible processes. IEEE Trans. Softw.

Eng., 2007, 33(6): 369–384.

[4] Alrifai M, Risse T. Combining global optimization with local selection for efficient qos-aware

service composition. Proc. WWW ’09. ACM. 2009. 881–890.

[5] Alrifai M, Skoutas D, Risse T. Selecting skyline services for QoS-based web service composition.

Proc. WWW ’10. ACM. 2010. 11–20.

[6] Bellucci A, Cardellini V, Di Valerio V, Iannucci S. A scalable and highly available brokering

service for SLA-based composite services. Proc. ICSOC ’10. LNCS 6470. Springer. December

2010. 527–541.

[7] Cardellini V, Casalicchio E, Grassi V, Lo Presti F, Mirandola R. Flow-based service selection

for web service composition supporting multiple qos classes. Proc. IEEE ICWS ’07. 2007.

743–750.

[8] Cardellini V, Casalicchio E, Grassi V, Lo Presti F, Mirandola R. QoS-driven runtime adaptation

of service oriented architectures. Proc. ACM ESEC/SIGSOFT FSE. 2009. 131–140.

[9] Cardellini V, Casalicchio E, Grassi V, Iannucci S, Lo Presti F, Mirandola R. MOSES: a

framework for QoS driven runtime adaptation of service-oriented systems. IEEE Trans. Softw.

Eng., September 2012, 38(5): 1138–1159.

[10] Canfora G, Di Penta M, Esposito R, Villani ML. A framework for QoS-aware binding and

re-binding of composite web services. J. Syst. Softw., 2008, 81(10): 1754–1769.

[11] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tamburrelli. Dynamic QoS

management and optimization in service-based systems. IEEE Trans. Softw. Eng., May 2011,

37(3): 387–409.

[12] IBM ILOG CPLEX Optimizer. http://www.ibm.com/software/integration/optimization/cplex-

optimizer/.

[13] Casolari S, Tosi S, Lo Presti F. An adaptive model for online detection of relevant state changes

in internet-based systems. Perform. Eval., May 2012, 69(5): 206–226.

[14] Di Nitto E, Ghezzi C, Metzger A, Papazoglou MP, Pohl K. A journey to highly dynamic, self-

adaptive service-based applications. Autom. Softw. Eng., 2008, 15(3–4): 313–341.

[15] Kephart JO, Chess DM. The vision of autonomic computing. IEEE Computer, 2003, 36(1):

41–50.

[16] Klein A, Ishikawa F, Honiden S. Efficient QoS-aware service composition with a probabilistic

service selection policy. Proc. ICSOC ’10. LNCS 6470. Springer. December 2010. 182–196.

[17] Liang Q, Wu X, Lau HC. Optimizing service systems based on application-level QoS. IEEE

Trans. Serv. Comput., April 2009, 2(2): 108–121.

[18] Mosincat A, Binder W, Jazayeri M. Achieving runtime adaptability through automated model

220 International Journal of Software and Informatics, Volume 7, Issue 2 (2013)

evolution and variant selection. Enterprise Information Systems. 2013. to appear.

[19] Menascé DA, Casalicchio E, Dubey V. On optimal service selection in service oriented

architectures. Perform. Eval., August 2010, 67(8): 659–675.

[20] Menascé DA, Gomaa H, Malek S, Sousa J. SASSY: a framework for self-architecting service-

oriented systems. IEEE Software, November 2011, 28(6): 78–85.

[21] Motahari-Nezhad HR, Li J, Stephenson B, Graupner S, Singhal S. Solution reuse for service

composition and integration. Proc. WSCA ’09. 2009.

[22] Montgomery DC. Introduction to Statistical Quality Control. Wiley, 2008.

[23] Maamar Z, Sheng QZ, Benatallah B. Interleaving web services composition and execution using

software agents and delegation. Proc. WSABE ’03. 2003.

[24] OASIS. Web Services Business Process Execution Language Version 2.0. January 2007.

[25] Papazoglou MP. Service-oriented computing: Concepts, characteristics and directions. Proc.

IEEE WISE ’03. 2003.

[26] Salehie M, Tahvildari L. Self-adaptive software: Landscape and research challenges. ACM Trans.

Auton. Adapt. Syst., 2009, 4(2): 1–42.

[27] Yu T, Zhang Y, Lin KJ. Efficient algorithms for Web services selection with end-to-end QoS

constraints. ACM Trans. Web, 2007, 1(1): 1–26.

[28] Zeng L, Benatallah B, Dumas M, Kalagnamam J, Chang H. QoS-aware middleware for web

services composition. IEEE Trans. Softw. Eng., 2004, 30(5).

