
1

A Model-Integrated Approach to Designing
Self-Protecting Systems

Stefano Iannucci, Member, IEEE, Sherif Abdelwahed, Senior Member, IEEE, Andrea Montemaggio,
Melissa Hannis, Leslie Leonard, Jason S. King, John A. Hamilton, Jr., Senior Member, IEEE

Abstract—One of the major trends in research on Self-Protecting Systems is to use a model of the system to be protected to predict
its evolution. However, very often, devising the model requires special knowledge of mathematical frameworks, that prevents the
adoption of this technique outside of the academic environment. Furthermore, some of the proposed approaches suffer from the curse
of dimensionality, as their complexity is exponential in the size of the protected system. In this paper, we introduce a model-integrated
approach for the design of Self-Protecting Systems, which automatically generates and solves Markov Decision Processes (MDPs) to
obtain optimal defense strategies for systems under attack. MDPs are created in such a way that the size of the state space does not
depend on the size of the system, but on the scope of the attack, which allows us to apply it to systems of arbitrary size.

Index Terms—Intrusion Response System, Autonomic Security Management

F

1 INTRODUCTION

Effectively protecting enterprise networks from cyber at-
tacks is a challenging task due to their large scale and
the heterogeneity of the underlying hardware and software
components. Current Security Information and Event Man-
agement Systems (SIEM) [30] products (e.g., [4], [9], [28])
are focused on intrusion detection, leaving the responsibility
of intrusion response to the system administrator, where
he/she typically manually protects the system once an alert
is raised, or configures a static mapping between every alert
typology and its proper countermeasure. However, when
trying to counter an attack, the time factor is critical [14] and
any non-guided human resolution attempt could introduce
a significant stress and delay to the execution of the proper
response, thus providing to the attackers more time to
accomplish their objectives [16].

Intrusion Response Systems (IRSs) (e.g., [29], [50], [54])
are usually classified according to their level of automa-
tion [52], i.e., notification systems, manual response systems
and automated response systems. Notification systems do
not usually provide automated protection, rather they pro-
vide a platform on top of which the system administrator
can build his own countermeasure selection methodology.
Manual response systems (e.g., [58], [60]) introduce some
level of automation by providing a static mapping between
the currently detected attack and the prospective responses.
SIEMs usually provide this level of automation. However,
an attack-response static mapping has been proven not to
be an effective approach to protect a system [29], because of
the scalability issues introduced by the massive amount of

• S. Iannucci is with the Department of Computer Science and Engineering,
Mississippi State University, Starkville, MS.

• S. Abdelwahed is with the Department of Electrical and Computer Engi-
neering, Virginia Commonwealth University, Richmond, VA

• A. Montemaggio, M. Hannis, J. A. Hamilton are with the Center for Cyber
Innovation (CCI), Mississippi State University, Starkville, MS.

• L. Leonard and J. King are with the U.S. Army Engineer Research and
Development Center (ERDC), Vicksburg, MS.

newly discovered attacks and by the ability of the attack-
ers to bypass known protection mechanisms. Automated
response systems (e.g., [11], [18], [34], [42], [51], [53]) are
designed so that the system defense process does not require
any human intervention. Usually they use a model of the
system (e.g., [62]) and/or of the attacker (e.g., [19], [63]) in
order to predict the evolution of the system itself and the
attacker’s strategy.

Most of the existing literature treats separately the in-
trusion detection and response problems and, to the best
of our knowledge, none of the existing works aims at
producing a comprehensive software architecture with the
corresponding prototype that includes all the phases of
defense life-cycle. To this end, we developed a model-based
Autonomic Security Management (ASM) framework, based
on the Monitor, Analyze, Plan, Execute and Knowledge
(MAPE-K) loop for autonomic systems [23], [33]. In this
paper, we focus on the Plan phase of the ASM, and we in-
troduce an approach based on Model Integrated Computing
(MIC) [46] to automatically instantiate, reduce, and solve the
intrusion response problem.

MIC has been widely used to achieve autonomic perfor-
mance optimization (e.g., [17], [44]), for cyber-security ex-
perimentation of cyber-physical systems [61] and for formal
validation of cyber-security constraints [46]. The proposed
approach relies on a meta-model that captures the architec-
ture and dynamics of the system from security perspectives.
System dynamics are used to predict the system evolution
and, ultimately, to compute the protection plan. We focus in
this paper on enterprise systems as a domain of application.
However, the proposed approach can be easily extended to
other domains such as, for example, health care systems and
cyber-physical systems.

1.1 Contributions and Organization
In our previous works [25], [26], we introduced an approach
based on a Markov Decision Process (MDP) [5] and stochas-
tic games [8] for planning optimal system defense strategies



2

assuming zero or partial knowledge of the attacker. How-
ever, one of the main limitations of the proposed approach
was that a new MDP had to be formulated ad-hoc for every
different system we intended to protect. For this reason,
in this paper we propose an approach based on MIC to
graphically design system models, more amenable to system
administrators, that can be automatically transformed to
an MDP formulation. Furthermore, MDPs are known to
suffer the curse of dimensionality [5], because they are based
on a state space that grows exponentially according to the
size of the defended system. For this reason, we presented
in [27] an MDP solver that was able to leverage the exis-
tence of Intel Xeon Phi many-core accelerators to reduce
the planning time. However, we observe that exploiting
accelerators is only a part of the solution, because only a
constant speed-up can be obtained, whereas the problem
has an exponential complexity. To this end, we introduce
in this paper a technique for the creation of MDPs is such
a way that the state space is not dependent on the size of
the modeled system, but only on the scope of the attack,
that is, on the amount of components of the system that are
directly or indirectly affected by the attack. We also provide
a formal demonstration that, under certain conditions, the
optimality of the solution is maintained. In order to evaluate
our approach in a quantitative fashion, we provide an
experimental case study highlighting (i) the effectiveness of
state space reduction techniques and (ii) that the number of
the components in the system to be protected is not the key
factor undermining its applicability to real scenarios.

The remainder of the paper is structured as follows.
Section 2 introduces the enterprise system meta-model.
Section 3 presents the theory underlying MDP-based plan-
ning, the transformation from system model to MDP, and a
technique to reduce the state space while maintaining the
optimality of the solution of the MDP. Section 4 experimen-
tally shows the effectiveness of the proposed state space
reduction technique. Threats to the validity of the proposed
approach are discussed in Section 5, whereas related works
are discussed in Section 6. Finally, Section 7 concludes the
work and discusses future works.

2 MODEL-INTEGRATED SYSTEM DEVELOPMENT

Having a model of the system allows to predict its evolu-
tion [2] and to produce a defense strategy. Model-Driven
Engineering can be used to design and implement model-
based systems, and several paradigms have been proposed,
such as, Model-Driven Architecture (MDA) and Model-
Integrated Computing [6] (MIC). On one hand, MDA em-
ploys an approach to system modeling that is based on
three view-points: computation independent, platform in-
dependent, and platform-specific [20]. Each one of these
view-points can be used to create its respective model,
that is, Computation Independent Model (CIM), Platform
Independent Model (PIM), and Platform Specific Model
(PSM). On the other hand, MIC extends MDA by letting
the designer model generic view-points of the system. That
is, MIC introduces some additional flexibility that is particu-
larly useful to model complex systems with custom aspects.
One of the most commonly used languages for MDA is
Eclipse Modeling Framework (EMF, [55]), whereas Generic

Fig. 1: Variable Meta-Model

Modeling Environment (GME, [35]) can be used for MIC.
However, the authors of [6] have shown that, although non-
trivial, a model transformation between GME to EMF is
possible.

We adopt the MIC paradigm, and we use GME for
its implementation. Although developed in an academic
environment, GME is a production-ready tool used world-
wide in industry and academia [32]. It envisages three
user roles [38]: environment designers, domain experts, and
component developers. Environment designers must have a
deep knowledge of the domain, and a full understanding of
how the GME toolbox works. They are in charge of building
the meta-model for a class of systems, and the correspond-
ing modeling language, which in turn is used by domain
experts to build models of instances of systems. Finally,
component designers leverage the structure provided by
the meta-model to interpret models and build model-based
software tools.

2.1 System Meta-Model

A meta-model is the model of a class of systems. In this
paper we present the design of a meta-model that captures
the structure and the dynamics of enterprise systems. The
base concept on which the entire meta-model is founded
is the Variable class. As shown in Figure 1, it can ei-
ther represent the state of a specific system component,
(SystemVariable, e.g., the status of a service, the CPU
load of a particular server, the configuration of a network,
and the version of an installed software), or the probability
that a certain type of attack has currently been detected
(AttackVariable). Variables are characterized by a type
(e.g., Boolean, Integer, Double, and so on), and by a
value.

The Enterprise System Meta-Model is represented in Fig-
ure 2. The latter defines the following hierarchical structure:
the SystemModel is the highest level of abstraction of the
system. It contains objects of type Server, Network and
NetworkConnection. The Server class models real phys-
ical or virtual machines, possibly connected to a Network
through a NetworkConnection. A Firewall is a special-
ization of a Server that models filtering rules and rout-
ing tables. Servers execute Process instances and contain
Data, either in the form of a File or of a Database
for a higher abstraction. Since different servers, processes
and data can have different importance on a given system,
we characterize the importance of a specific asset with
a parameter named Criticality. We define the latter as an
integer value ranging from 0 to 10, where 0 indicates that
the considered asset is not critical for the system, while 10



3

Fig. 2: Enterprise System Meta-Model

implies the highest possible criticality. We assume that the
system administrator sets the appropriate criticality value
to each one of the assets. Every process instance is charac-
terized by a UserReference, which points to the owner
of the process, and by the Application that spawned the
process itself. Furthermore, each Server, Process and
Network object includes an arbitrary number of Variable
instances, that are used to model their attributes (e.g.,
whether or not a server is powered on, the system uptime,
the path to the executable of a given process, and so on).
The SecurityPolicy class models the security policy that
the system has to comply with.

The hierarchical structure described so far is able to
capture the static composition of a system. However, since
our aim is to predict its evolution, we are also interested in
its dynamic behavior. In other words, we need some tool
that allows us to describe how the system state can change
over time. To this end, we create an Action meta-model
(not showed here for space reasons), with the Action
class as its core component to model the execution of the
defense commands on the system. Each Action instance
uses a VariableReference instance to compose expres-
sions regarding its pre-conditions and post-conditions. A
Precondition instance is a boolean expression identifying
the subset of states in which the action is executable; a
Postcondition instance is a formula that sets new values
to the referred variables. In other words, postconditions
define the probability distribution of the next states of the
system after the execution of an action. Actions can be
executed on Server, Process and Network objects and
are characterized by several parameters used in the defense
strategy planning problem, such as:

• cost, representing the economic cost of the execu-
tion of a given action;

• execTime, representing the average amount of time
needed to complete the execution of a given action;

• confidentiality, representing the impact on the
Confidentiality attribute of the Confidentiality, In-
tegrity, Availability (CIA) triad. This value ranges
from 0 to 1, where 0 indicates no impact on the
Confidentiality, while 1 implies total information dis-
closure;

• integrity, representing the impact on the Integrity
attribute of the CIA triad. This value ranges from 0
(no impact) to 1 (total impairment);

• availability, representing the impact on the
Availability attribute of the CIA triad. This value
ranges from 0 (no impact) to 1 (asset unavailable).

An example of highest level of the hierarchy of a system
model compliant with the proposed meta-model, an exam-
ple of security policy, and an example of characterization of
an action are depicted respectively in Figures 5, 6 and 7.

3 INTRUSION RESPONSE METHODOLOGY

In the following, we provide a short introduction to the
theory of MDP (Section 3.1); then, we discuss in detail how
we transform a system model to a MDP-based represen-
tation (Section 3.2); finally, we present a technique for the
reduction of the state space of the MDP (Section 3.3).

3.1 MDP-based Response Planner

Our approach to response planning is based on solving an
instance of the MDP derived from the system model having
the current state of the system as the initial state.

We define an MDP as a tuple 〈S,A, P,R, T, γ〉, where
S is the state space that the agent can navigate, A is the



4

finite set of actions available to the agent to navigate such
a space and T ⊆ S is a set of terminal states, i.e. the states
from which the agent cannot move. The dynamics of the
system are given by the transition probability function P :
S × A × S 7→ [0, 1] s.t. P (s0, a, s1) is the probability that
by executing the action a in state s0, the next state is s1.
While moving through the state space, the agent is given
bonuses and penalties according to the reward function R :
S ×A× S 7→ R, with R(s0, a, s1) being the reward given to
an agent that from the state s0 moves to a state s1 selecting
the action a. Finally, the parameter γ ∈ [0, 1] is the discount
factor, which models the agent’s preference for short-term
or long-term rewards.

Whilst the classical definition of an MDP [5] does not
include the set T of terminal states, this notion is crucial
to our approach. Indeed, we consider the set of terminal
states as the set of all the states in which the security policy
defined in the system model is satisfied, and we use it as a
termination condition while solving the MDP instance.

In the domain of automated intrusion response, with
the objective of simplifying the formulation of the system
model, it is common to consider the actions independently
from the state where they are executed [12], [26], [40], [53]. In
this paper, we use a simplified reward function R̄ : A 7→ R,
so that it only depends on the executed actions, that is,
for all states s0, s1 ∈ S and actions a ∈ A we have that
R(s0, a, s1) = R̄(a) holds.

According to this assumption, we define the reward
function as a linear combination of five criteria: cost, exe-
cution time, confidentiality, integrity, availability.

R̄(a) = Criticality × (−wt
T (a)

Tmax
− wc

C(a)

Cmax
− wconfConf(a)− wiI(a)− waA(a))

(1)

where wt, wc, wconf , wi, wa ∈ [0, 1] reflect the importance
of, respectively, execution time T (a), costC(a), confidential-
ity Conf(a), integrity I(a), availability A(a) optimization
criteria for action a. Criticality ∈ {0, 1, . . . 10} is taken as
the maximum of the criticalities of the assets involved in
the execution of action a and works as a negative reward
amplifier that discourages, when possible, the execution of
actions on critical components of the system. Tmax and
Cmax represent respectively the maximum response time
and the maximum cost for the considered response actions
and are used to normalize their values.

The given definition of an MDP is quite impractical
to work with, both for problem description purposes and
to apply the state space reduction techniques discussed in
Section 3.3, because the state space has no structure that can
be exploited. For this reason, and in order to bridge the gap
between the MDP theoretical framework and the behavioral
meta-model described in Section 2.1, we adopt a factored
representation of an MDP [21], derived automatically from
a system model as described in Section 3.2. As we will for-
mally define in the following, in this factored representation
the state space is generated by the set of variables defined
in the system model and the dynamics of the system state
are described by a set of difference equations over the state
variables associated with each action post-condition.

In the following, to keep the presentation clear, we
assume the state variable values to range over a single

arbitrary domain: the set of all the possible strings Σ∗ from
an arbitrary alphabet Σ. This does not hurt the generality
since the discussion could be easily extended by introducing
the set T of the variable types as defined in the meta-model
(see Section 2.1), the function D : T 7→ 2Σ∗ that maps a
variable type to its domain (i.e. the set of all possible values
a variable of that type can have, encoded as strings in Σ∗)
and by adding some constraints between variables and their
domain where required.

In order to formally define our factored representation of
an MDP, to which we refer in the following as MDP factored
model, we need to introduce some definitions and notation.
Let V be a set of variables characterizing the state of a given
system. We define the state space SV generated by V as the
set of all the functions V → Σ∗, so that a system state is
represented by a function that associates a value to each of
the variables in V . In order to represent the post-condition
dynamics, we define the family EV of evaluation functions
over the variables V as the set of all the functions SV →
Σ∗, namely the functions that evaluate a system state to a
value in Σ∗. Similarly, to represent the action pre-condition
and the system security policy (i.e., the MDP termination
function) we define the family BV of boolean evaluation
functions as the set of all functions SV → {true, false},
that assign a truth value to a system state. In the prototype
implementation all these functions are represented as Spring
Expression Language (SpEL) [43] strings and are evaluated
at runtime with the system state as a context.

For a given variable set V , we define PV ⊆ [0, 1] × DV
as the set of all the post-conditions that can be represented
over V , where DV is the set of all functions V → EV
that map the future value of each system variable to an
evaluation function, viz. the set of all the representable
system dynamics equations. Therefore, a post-condition is
a tuple 〈p, λ〉 where p is the probability that the action
outcome described by the system dynamics equation set λ
occurs.

With these basic definitions set up, we can say that
our representation of an MDP factored model is a tuple
〈V,A, ξ,Λ, φ, R̄, γ〉 where V is the set of system variables, A
is the set of actions, ξ : A 7→ BV is a function that maps each
action to its pre-condition evaluation function, Λ : A 7→ 2PV

is a function that associates a set of post-conditions to an ac-
tion, φ ∈ BV is a boolean evaluation function to serve as the
MDP termination function, R̄ : A 7→ R is a stateless reward
function and γ ∈ [0, 1] is the discount factor. Moreover, for
Λ to be valid, the following must hold:

∀a ∈ A
∑

〈p,λ〉∈Λ(a)

p = 1

Given an MDP factored modelM = 〈V,A, ξ,Λ, φ, R̄, γ〉,
in the following we denote as M̂ = 〈SV , A, P, T, R̄, γ〉 the
MDP resulting from the interpretation of the factored model
M, s.t. the set of terminal states T = {σ ∈ SV | φ(σ) =
true} is the set of states satisfying the termination function
φ and the transition probability function P is defined in
terms of the system dynamics as follows

P (σ0, x, σ1) =

{
p ∃〈p, λ〉 ∈ Λ(x) : σ0

λ−→ σ1

0 otherwise
(2)



5

Fig. 3: The Model Transformation process

where λ−→⊆ SV × SV is a binary relation s.t. σ0
λ−→ σ1 holds

iff ∀v ∈ V σ1(v) = λ(v)(σ0).
From the implementation perspective, in the MDP solv-

ing phase the factored model is interpreted as an MDP
suitable to be solved with the BURLAP library [1].

3.2 Transformation of the System Model to MDP

The diagram in Figure 3 shows the process of automatically
transforming the GME system model into a MDP instance
solvable by BURLAP. An XML of the exported system model
maintains all of the configurations developed in GME. Since
the GME model contains details that are not needed for
the instantiation of the MDP problem (e.g., configurations
of the monitoring agents, auto-deployment settings and so
on), we apply a XSLT transformation to strip the model from
all the unneeded details. Specifically, the transformed XML
holds the extraction of: the variables for the creation of the
MDP state structure, the attributes from each action that
determine the MDP reward, the pre- and post-conditions
of each action to create the MDP transition dynamics, and
the security policy to build the MDP termination func-
tion. Afterwards, JAXB is used to unmarshall the MDP
XML model into a Java instance of the MDP model. The
post-processing chain enables additional arbitrary model-
to-model transformations that we use to address the com-
plexities that arise from some of the features provided by
the modeling environment. For example, although not dis-
cussed in detail in this paper for space reasons, we defined
the concept of action templates for actions that behave in a
similar manner in the GME system model. In order to keep
the MDP solver simple, these action templates are grounded
into simple actions within the post-processing chain. Once
the transformation process is complete, the instance of the
MDP model is used as input to the BURLAP MDP solver.

3.3 System model reduction

In order to solve the minimal MDP in terms of size of the
state space, we apply the variables elimination technique we
developed to reduce the MDP state space acting on the MDP
model, possibly keeping the ability to find optimal solu-
tions. In the following, we introduce some more definitions
to formally describe this technique. We define a function
ΨV : (EV ∪ BV ) 7→ 2V s.t. given an evaluation function in
EV or BV , returns all the variables in V the evaluated value
depends upon. The ΨV function is defined as follows:

ΨV (f) =
{
x ∈ V

∣∣ ∀σ ∈ SV , v ∈ Σ∗f(σ) 6= f(σ[x\v])
}

where with the σ[x\v] notation we mean a higher-order
function SV × V × Σ∗ 7→ SV s.t.

σ[x\v](y) =

{
v x = y

σ(y) otherwise

Although in general this function could be challenging
to compute, the factored representation makes its realization
straightforward. From the implementation standpoint, since
the evaluation functions are represented by expressions,
the ΨV function is realized by returning all the variables
referred in the given expression. For example, given an
evaluation function f(v0, v1) described by the expression
v0 + v1 + 1, we have that ΨV (f) = {v0, v1}.

3.3.1 Variables elimination

Given an MDP factored model M = 〈V,A, ξ,Λ, φ, R̄, γ〉,
the variables elimination technique is aimed at building a
reduced factored model M′ = 〈V ′, A, ξ′,Λ′, φ′, R̄, γ〉, with
V ′ ⊆ V being the smallest subset of the original variable set,
s.t. an optimal policy can still be found to bring the system
into a state satisfying the system security policy.

The rationale behind this approach is to eliminate from
the problem all the post-condition equations that do not
directly or indirectly change the values of the variables
referenced by the termination function. Thus, the main step
in order to construct the reduced factored model, is to find
the smallest subset of variables that preserves the possibility
to evaluate the termination function.

Given an MDP factored modelM, let LV = 〈 2V ,⊆ 〉 be
the complete lattice of the power-set of V . ForM we define
the dependency closure step as a function δM : 2V 7→ 2V s.t.

δM(W ) = W ∪
⋃
a∈A

{
x ∈ ΨV

(
ξ(a)

)
∪ΨV (λ(w))

∣∣ ∃w ∈W,
〈p, λ〉 ∈ Λ(a) : ΨV

(
λ(w)

)
6= ∅

}
Indeed, each application of δM returns the given set

of variables (possibly) augmented with all the variables
taken from the actions’ pre-conditions and post-conditions
equations, that directly influence the value of any other
variable already present in the set.

Since δM is defined to be an increasing function over
LV and V is finite, as a consequence of Tarski’s fixed
point theorem [59] we have that δM has a least fixed point
LFPLV (δM) and ∃n ∈ N, LFPLV (δM) = δnM(⊥).

We are interested in finding the smallest subset of V still
having all the variables used in the termination function,
thus we work on the interval lattice L̂V = 〈[V,ΨV (φ)],⊆〉,
which is also a complete lattice, and we find the least fixed
point ∆M = LFPL̂V (δM) iterating the application of the
dependency closure step function over L̂V , starting from
the infimum element ΨV (φ), i.e. the set of variables used by
the termination function.

3.3.2 Construction of the reduced MDP model

Given an MDP factored model M = 〈V,A, ξ,Λ, φ, R̄, γ〉,
we build the reduced modelM′ = 〈V ′, A, ξ′,Λ′, φ′, R̄, γ〉 as



6

follows:

V ′ = ∆M

ξ′(a)(σ) =
∨
τ∈SV
τ�
V ′=σ

ξ(a)(τ)

Λ′(a) =
{
〈p, λ′〉

∣∣ ∃〈p, λ〉 ∈ Λ(a) :

λ′(v) =
{

(σ,w) |
⋂
τ∈SV
τ�
V ′=σ

{λ(v)(τ)} = {w}
}}

φ′(σ) =
∧
τ∈SV
τ�
V ′=σ

φ(τ)

Since the state space SV is restricted to SV ′ , it may be
the case that more than one state is mapped to the same
reduced state of the restricted state space (see Figure 4).
For this specific reason, the termination function φ′ for a
given reduced state is defined as the conjunction of the
applications of the original termination function φ to all the
states that map to the same reduced state.

As a consequence of how the post-conditions mapping
Λ′ is defined, we have the following property.

Lemma 1. Given a post-condition dynamic equations set λ :
V 7→ EV of some MDP factored modelM and its corresponding
equations set λ′ : V ′ 7→ EV ′ , built as shown in the definition of
Λ′ in the reduced factored modelM′ the following holds

∀σ0, σ1 ∈ SV σ0
λ−→ σ1 ⇐⇒ σ0 �V ′

λ′−→ σ1 �V ′

In the following, when we want to refer to a specific
constituent of either an MDP factored modelM or its inter-
preted MDP M̂, we will add a subscript to the symbol used
to refer to that constituent, e.g. VM for the set of variables
ofM and PM̂ for the transition probability function of M̂.

Hereinafter, we use the following definition of the q-
value function Q∗X̂ for an MDP X̂ :

Q∗X̂ (σ, a) = R̄X̂ (a) + γ
∑
σ′

PX̂ (σ, a, σ′) · V∗X̂ (σ′) (3)

where V∗X̂ is the state value function of the optimal policy
π∗X̂ for X̂ , both defined as follows

V∗X̂ (σ) = max
a∈ΞX (σ)

Q∗X̂ (σ, a) (4)

π∗X̂ (σ) = arg max
a∈ΞX (σ)

Q∗X̂ (σ, a) (5)

where the function ΞX : SVX 7→ 2AX s.t. ΞX (σ) = {a ∈
AX | ξX (a)(σ)} gives the subset of the actions defined in the
factored model X that are available in a certain state.

Theorem 1. For a given MDP X̂ ′ interpreted from the reduced
factored model X ′, which was derived from a factored model X
by applying the construction given in Section 3.3.2, the following
holds

∀x ∈ A, σ ∈ SV Q∗X̂ (σ, x) = Q∗X̂ ′(σ �V ′ , x) (6)

with V and V ′ being the variable sets, respectively, of X and X ′
and A being the action set of X̂ ′.

Theorem 2. For a given MDP X̂ ′ interpreted from the reduced
factored model X ′, which was derived from a factored model X

σ0

τ

σ1

σ′0

σ′1

�V ′

�V ′

�V ′

x

y

y

x

y

Fig. 4: State space restriction. The state transition graphs of both an
MDP M̂ (left) and the reduced MDP M̂′ (right) are shown. A dotted
line is drawn between a state of M̂ and the reduced state in M̂′,
obtained by the restriction �V ′ of the original state to the set V ′ = ∆M.
In the depicted case, two states τ and σ0 are restricted to the same state
σ′0 = σ0 �V ′= τ �V ′ . The action x is represented with a dashed line to
mean it can be removed from the reduced MDP model M′ due to its
lack of utility (see lemma 2).

by applying the construction given in Section 3.3.2, the following
holds

∀σ ∈ SV V∗X̂ (σ) = V∗X̂ ′(σ �V ′) (7)

Moreover, if the reward function is always negative as
the one defined in (1), we can optimize the reduced MDP
further by removing post-conditions and potentially entire
actions, according to the following result.

Lemma 2. Given an MDP factored model X and an action a ∈
AX , under the hypothesis (h0) that the reward function is always
negative, any post-condition 〈p, λ〉 ∈ ΛX (a) s.t.

∀σ ∈ SVX σ
λ−→ σ

can be removed without changing the state value V∗X̂ (σ).

As shown in theorem 2, when the dependency closure
step is iterated starting from the set of variables used in the
security policy, the application of the variables elimination
technique to an MDP model produces a new reduced MDP
model, whose optimal policy leads to the same total reward
the agent would have on the original MDP. In this case we
say that we are applying conservative variables elimination,
since after the optimization we are still able to find optimal
policies. Furthermore, this kind of optimization can be ap-
plied in an offline fashion, i.e. with no dependency on the
actual system state.

The same technique can be applied starting from a
different set of variables, trading the possibility to find
optimal solutions for a more aggressive MDP state space
reduction. This is useful especially during the runtime of
the ASM, when a number of heuristics can be applied to
the information produced by the sensors to build subsets
of the system variables to be used as a starting set. As an
example, the attack information provided by the IDS can
be used to determine the subset of the variables impacted
by the attack and this subset can be used as the initial set
for applying variables elimination. Another heuristic can be



7

realized by analyzing the system state changes in which
the initial state satisfies the security policy, while the final
state does not. Hereafter, we will refer to this technique as
divergence compensation. Given such a state change, the only
variables that changed their value can be used as the starting
subset for variables elimination. The rationale behind this
heuristic is to solve the reduced MDP model having only
the actions that can act on these changed values. Whilst
possibly not optimal, the resulting policy will compensate
the change bringing back the system in a state satisfying the
security policy.

4 CASE STUDY

In this section we present experimental results obtained by
letting the Planner plan a defense strategy to protect the
system represented by a sample system model.

After characterizing the sample system model adopted,
a description of the methodology used to conduct the ex-
periments follows. The section ends with a discussion on
the results, where we evaluate the produced policies and the
effectiveness of the state space reduction techniques applied.

4.1 Sample system model
The sample system model includes three hosts, a firewall
and two networks, as depicted in Figure 5. The AppServer
host runs the Tomcat service provided by the Tomcat pack-
age, while the WebServer host runs Httpd and Vsftpd
services provided, respectively, by the packages Apache
and Vsftp. Finally, the DBServer host runs the Mysqld
service provided by the Mysql package.

In order simplify the system model design, our pro-
totype supports parametric action templates for behavior
specification. In Table 1 all the action templates defined
in the sample system model are described, whilst Table 3
shows the actual (ground) actions resulting from the appli-
cation of templates to components, as defined in the system
model itself, along with the action-dependent reward func-
tion parameters. As an example, in Figure 7 the definition
of the Quarantine{H} action template is shown, in which
the pre-condition requires the Is{H}Quarantined variable
to be false for the action to be executed, while the post-
conditions model the possible outcomes: the successful one
sets the Is{H}Quarantined to true with a probability of
0.9, whereas the other models a failure by leaving the state
unchanged.

The global security policy for the sample system model
is shown in Figure 6. Two safe regions have been defined,
with different levels of confidence: R0 requires all the com-
ponents not to be under attack and all the installed packages
not to be vulnerable, whilst R1 relaxes these constraints
on the WebServer host, provided that it gets quarantined.
Both of the safe regions require all the hosts to be on with
a maximum load per instance of 70% and all the services to
be started.

4.2 Methodology
The Planner does not enumerate the entire state space, that
could be possibly infinite, but explores only the states that
are reachable from a given initial state. In order to generate

Fig. 5: Topology for the sample system model.

AND

AllHostsOn

IsFalseAnyHostUnderAttack

AllServicesStarted

AnyNonWSPackageVulnerable IsFalse

AnyNonWSServiceUnderAttack

IsTrue

IsFalse

AND

AND R1

R0

IsFalseAnyPackageVulnerable

<= 70%

IsWebServerQuarantined

IsTrue

IsTrue

AllInstancesLoad

Fig. 6: Global security policy for the sample system model. In
order to promote compactness and flexibility in the representa-
tion of security policies, we employ pattern meta-variables in
formulas that are expanded to ground formulas in the model
transformation stage as we do for action templates (see Section
3.2). For instance, the pattern meta-variable AnyHostUnderAttack
in the formula ¬AnyHostUnderAttack is parametrized by the
regular expression Is(.+)UnderAttack, thus it is expanded
to ¬IsAppServerUnderAttack ∧ ¬IsWebServerUnderAttack ∧
¬IsDBServerUnderAttack, i.e. the conjunction of the ground for-
mulas bound to the state variables matching the pattern.

an MDP with an increasing number of states given a single
system model, we start from a safe state σ0 to build a
sequence of unsafe states {σ1, σ2, . . . , σn}, where n is the
number of system variables involved in the global security
policy, s.t. σi = σi−1[xi \ vi] for 1 ≤ i ≤ n, with xi being the
i-th variable from an arbitrary total order and vi being any
value in the domain of xi turning the global security policy
to false. As shown in Table 2, we followed the lexicographic
order over the names of the variables within the same host

IsFalseHostIsQuarantined Precondition

Failure

True
Success

p = 0.1

p = 0.9

Fig. 7: Definition of the Quarantine{H} action template.



8

Name Parameters Variables Semantics

Cut{H}Cord H:Host Is{H}On, Is{H}UnderAttack,
Is{H}FSCorrupted

Powers off the host H, possibly causing filesystem corruption or
teminating an ongoing attack.

Fsck{H} H:Host Is{H}FSCorrupted Repairs filesystem(s) of the host H.

Quarantine{H} H:Host Is{H}Quarantined Puts the host H in an insulated network environment.

ScaleUp{H} H:Host {H}Instances, {H}InstanceLoad Increases the number of instances for the host H.

ScaleDown{H} H:Host {H}Instances, {H}InstanceLoad Decreases the number of instances for the host H.

Startup{H} H:Host Is{H}On, Is{H}FSCorrupted Starts up the operating system of H, if the filesystem is not
corrupted.

Shutdown{H} H:Host Is{H}On, Is{H}UnderAttack Shuts-down the operating system of H, thus possibly terminating
the attack condition.

Start{S} H:Host,
S:Service

Is{S}Started, Is{H}On Starts the service S, while the host H is on.

Stop{S} H:Host,
S:Service

Is{S}Started, Is{H}On,
Is{H}{S}UnderAttack

Stops the service S, while the host H is on and S is running.

Update{P} H:Host,
P:Package,
S:Service

Is{H}{P}Vulnerable,
Is{H}{P}NewVersionAvailable,
Is{S}Started, Is{H}On

While the host H is on, if the package P is vulnerable and a new
version is available, then P is updated and the related service S
restarted.

TABLE 1: System model action templates.

Attack scope Host Variable Safety condition Unsafe value

i = 1 AppServer AppServerInstanceLoad ≤ 70 80

i = 2 AppServer IsAppServerTomcatUnderAttack false true

i = 3 AppServer IsAppServerTomcatVulnerable false true

i = 4 AppServer IsAppServerUnderAttack false true

i = 5 WebServer IsWebServerApacheVulnerable false true

i = 6 WebServer IsWebServerHttpdUnderAttack false true

i = 7 WebServer IsWebServerUnderAttack false true

i = 8 WebServer IsWebServerVsftpVulnerable false true

i = 9 WebServer IsWebServerVsftpdUnderAttack false true

i = 10 WebServer WebServerInstanceLoad ≤ 70 80

i = 11 DBServer DBServerInstanceLoad ≤ 70 80

i = 12 DBServer IsDBServerMysqlVulnerable false true

i = 13 DBServer IsDBServerMysqldUnderAttack false true

i = 14 DBServer IsDBServerUnderAttack false true

TABLE 2: Incremental changes of the variables with the increasing of the attack scope.

while changing their values, starting the attack from the
AppServer host and extending it to the WebServer host
and finally to the DBServerHost.

Each unsafe state σi of the sequence, has i divergent
variables, namely the variables whose values do not satisfy
the safety conditions expressed in the global security policy.
In the following, we refer to i as the attack scope, and use it as
a simple measure of how extended is an attack: the higher i
is, the more components of the system are involved.

Given such a sequence of unsafe states and the MDP fac-
tored modelM derived from the sample system model, for
each unsafe state σi in the sequence we generate a reduced
factored model M̄i by applying variables elimination (see
Section 3.3.1) with the set of variables that changed their

value between the safe state σ0 and σi as the set of variables
to preserve. Before deriving the reduced models from M,
a variables elimination pass is performed to retain only the
variables referred by the security policy. In the following,
we refer to the reduced version ofM as the full model.

In order to measure the effectiveness of the divergence
compensation technique, for each unsafe state σi in the
generated sequence, the MDP interpreted from both the
original factored model M and the reduced model M̄i

has been solved with the Value Iteration algorithm to find
the optimal policies π∗i and π̄∗i , respectively, using a dis-
count factor γ = 0.99 and even reward function weights
wt = wc = wconf = wi = wa = 0.2.

Finally, the average cumulative reward accumulated by



9

AppServer Action a T (a) C(a) Conf(a) I(a) A(a)

CutAppServerCord 1 0 0 0 1
FsckAppServer 1800 0 0 0 0
ScaleUpAppServer 10 10 0 0 0
ScaleDownAppServer 10 0 0 0 0
StartupAppServer 60 0 0 0 0
ShutdownAppServer 60 0 0 0 1
StartTomcat 5 0 0 0 0
StopTomcat 5 0 0 0 1
UpdateTomcat 1800 0 0 0 0

DBServer Action a T (a) C(a) Conf(a) I(a) A(a)

CutDBServerCord 1 0 0 0 1
FsckDBServer 1800 0 0 0 0
ScaleUpDBServer 10 10 0 0 0
ScaleDownDBServer 10 0 0 0 0
StartupDBServer 60 0 0 0 0
ShutdownDBServer 60 0 0 0 1
StartMysqld 5 0 0 0 0
StopMysqld 5 0 0 0 1
UpdateMysql 1800 0 0 0 0

WebServer Action a T (a) C(a) Conf(a) I(a) A(a)

CutWebServerCord 1 0 0 0 1
QuarantineWebServer 5 0 0 0 0.8
FsckWebServer 1800 0 0 0 0
ScaleUpWebServer 10 10 0 0 0
ScaleDownWebServer 10 0 0 0 0
StartupWebServer 60 0 0 0 0
ShutdownWebServer 60 0 0 0 1
StartHttpd 5 0 0 0 0
StopHttpd 5 0 0 0 1
UpdateApache 1800 0 0 0 0
StartVsftpd 5 0 0 0 0
StopVsftpd 5 0 0 0 1
UpdateVsftp 1800 0 0 0 0

TABLE 3: Reward function parameters for all the ground actions
defined in the sample system model.

the agent over 10,000 policy roll-outs was used to compare
the policies π∗i and π̄∗i , for each i.

4.3 Evaluation

For each unsafe state σi in the sequence, two kinds of data
have been collected while calculating the optimal policies π∗i
and π̄∗i : (i) the size of the state space that the MDP explored
starting from σi and (ii) the total cumulative reward the
agent accumulated.

In the following, we use (i) to evaluate the effectiveness
of the state space reduction provided, while (ii) is used to
show the potential sub-optimality of the policies computed
on the reduced models.

Figure 8a shows that, although the size of the explored
state space still grows exponentially with the attack scope,
the reduced model MDPs have a state space that can be
several orders of magnitude smaller in size than the one
generated by the full model. Indeed, by leveraging the
information about the state change, we can obtain a more
tractable problem, whose size depends on the extension of
the attack.

As shown in theorem 2 of Section 3.3.2, if the reduced
model contains all the variables referenced by the security
policy and their dependencies, the optimal policy for the
reduced model is still optimal for the full model. The re-

duced models generated by the divergence compensation
technique contain a smaller set of variables, so the resulting
optimal policies are not guaranteed to be optimal for the full
model.

Starting with i = 5, the attack scope extends beyond
the AppServer component and the Figure 8b shows that
π̄∗i starts to be sub-optimal w.r.t. π∗i , i.e. the policy com-
puted for the full model. This situation arises since, in
our sample model, the only component for which there
exists an instance of the Quarantine{H} action tem-
plate is the WebServer host and the relaxed safe re-
gion R1 exists admitting safety whenever that compo-
nent is quarantined, regardless the value of the vulnera-
bility related variables IsWebServerApacheVulnerable
and IsWebServerVsftpVulnerable, or the attack re-
lated variables IsWebServerHttpdUnderAttack and
IsWebServerUnderAttack.

From Table 2 we have that, for i = 5, the only
changed variable that is added to the set to be pre-
served is IsWebServerApacheVulnerable, but since
the QuarantineWebServer action does not reference
that variable, variables elimination does not preserve that
action in the reduced model. As a consequence, the
MDP generated from the full model knows about the
QuarantineWebServer action and chooses it to counter
the attack to the WebServer component, whilst the reduced
model cannot and is forced to counter the attack in a less
rewarding manner. A similar argument explains the sub-
optimality for all i ≥ 5.

It is worth noting that, while the
QuarantineWebServer action can solve the issues
on the WebServer component for 5 ≤ i ≤ 9, it is not
able to counter the violation of the safety condition for
the variable WebServerInstanceLoad that occurs with
i = 10. As a consequence, the reward of the π∗i policy does
not change for 5 ≤ i ≤ 9, and continues to decay for i ≥ 10.
The quicker decay of the reward of policies π̄∗i is due to
the fact that in the reduced model more actions are to be
executed to bring the system in the safe region.

In conclusion, we found that the proposed approach
provides multiple benefits: (i) given the same computation
effort, it allows to deal with larger systems, possibly with
optimal results, (ii) the computation effort to counter an
attack does not depend on the size of the system, but
depends on its complexity and on the attack scope.

5 THREATS TO VALIDITY

Modeling enterprise systems is well documented. Hamilton,
Nash and Pooch noted [22]: “Broadly speaking, there are
two classes of strategies which may be used to validate a
model”: (i) axiomatic [48] and (ii) empirical. The methodol-
ogy proposed in this paper is well suited to validation by
both axiomatic and empirical methods: the former can be
used when operations such as model minimization have to
be performed, as shown in Section 3; the latter are instead
particularly useful to measure the divergence of the model-
based predictions with real observations on the system.

Indeed, the primary threat to validation is an inaccurate
model of the target enterprise system. A model is valid
if it can produce the outputs that are equivalent to the



10

101

102

103

104

105

106

107

108

0 2 4 6 8 10 12 14

Ex
pl

or
ed

st
at

e
sp

ac
e

si
ze

Attack scope (i)

Full model MDP (M)
Reduced model MDP (M̄i)

(a) State space size reduction effectiveness.

-14

-12

-10

-8

-6

-4

-2

0

1 2 3 4 5 6 7 8 9 10

C
um

ul
at

iv
e

re
w

ar
d

Attack scope (i)

Full model policy (π∗i )
Reduced model policy (π̄∗i )

(b) The agent return of the optimal policies for full and reduced
models. The π̄∗i policy shows its sub-optimality starting with an
attack scope i = 5.

Fig. 8: Evaluation of the divergence compensation technique.

ones that would be observed given the same inputs in the
environment being modeled [22]. In other words, the model
is capable of predicting the behavior of the system being
modeled within a specified tolerance. This threat is par-
ticularly evident in non-stationary systems like enterprise
systems, where their behavior could change over time, for
instance, due to the addition or removal of components, due
to changes on the software base, and due to changes in the
behavior of the users. Non-stationarity could be addressed
in several ways. One of the possibilities is to record historical
data regarding the behavior of the system and periodically
update the parameters of the model to more accurately
reflect the current or the predicted behavior, for instance
by using filters like Exponential Weighted Moving Average
(EWMA [24]) or Kalman’s [7], but this would require the
re-execution of a computationally expensive planning every
time a change is detected. A more interesting alternative is
to use Reinforcement Learning techniques that can lever-
age the MDP-based structure of the problem, such as, Q-
Learning, SARSA [57] and Artificial Neural Networks [56],
that allow the planner to automatically evolve as the system
does, without the need for a computationally expensive
planning when a change to the system occurs.

Another important threat to validity is given by the
scope of the model. The one that has been presented in
this paper only considers the defense side of the problem,
and assumes that the attacker does not make any move
during the execution of the defense plan. In the real world,
of course, this assumption is not realistic. This problem can
be either mitigated by considering the existence of external
controls, and by re-planning the defense strategy every time
an external control occurs, or embraced by extending the
model so to include the behavior of the attacker. The same
structure of the MDP-based formulation can then be used
to realize a multi-agent stochastic game, which potentially
allows the agents to execute proactive actions.

However, extending the model and defining the problem
as a multi-agent stochastic game, also has the potential to
increase the planning time, thus reducing the effectiveness

of the proposed methodology. For this reason, optimal
and/or sub-optimal model reduction techniques, like the
one presented in this paper, must be considered in order
to mitigate this issue.

Other threats to validity can come from the completeness
of the model: undocumented, undiscovered and unknown
systems connected to target system are not going to be in
the system model. If the static model is incomplete, dynamic
modeling based on that static model will have some errors
and omissions.

6 RELATED WORKS

Autonomic computing comprises four main dimensions
as described in [33], namely, self-configuration, self-
optimization, self-healing and self-protection. Most of the
proposed autonomic frameworks are focused on perfor-
mance and reliability management to maximize Quality
of Service (QoS) under uncertain operating conditions
(e.g., [10], [36], [37], [39], [47]), and only few address the self-
protection aspect. In the following, we present a summary
of the current state of the art research on autonomic frame-
works supporting self-protection and related approaches
to software development using Model Integrated Comput-
ing [15].

In [12] the authors developed an autonomic security
management for healthcare information systems, that in-
cludes vulnerability assessment, intrusion estimation, in-
trusion detection and intrusion response. The anomaly-
based intrusion detection system uses system features such
as CPU load, memory utilization, and network and disk
throughputs to verify whether or not the system is in the
safe region. Should the system not reside in the safe region,
the intrusion response component selects a proper coun-
termeasure according to a list of actions executable on the
system, ordered according to the effectiveness in countering
the attack.

The authors of [13] propose an autonomic framework
named SHAPE for self-healing and self-protecting enter-
prise systems. It uses the same features proposed by [12]



11

to identify potential software anomalies on the hosts,
whereas Snort is used for network intrusion detection. The
framework provides a wide range of monitoring sensors
(e.g., hardware monitoring agent, software agents, mem-
ory agents, network agents) for handling different aspects
of fault management and self-protection. The output of
the monitoring modules is correlated and signatures are
generated when a deviation from the secure region is de-
tected. Currently, SHAPE only provides a limited set of
countermeasures (i.e., hardware/software restart and job
resubmission) and a static mapping approach is used to
select the best possible intrusion response action.

In [49], the authors describe an approach to architecture-
based self-protection. The main features of the proposed
framework, named Rainbow, reside in the separation be-
tween application logic and control layer and the usage of
system models for reasoning and deciding the countermea-
sure to deploy. Rainbow is designed according to the MAPE
loop for autonomic systems and, in the same way as [13], it
can be used for self-healing in addition to self-protection by
implementing the MAPE phases with the proper tools. In
this work, the authors show how Rainbow is able to defend
the system from a Denial of Service (DoS) attack.

In [45] the authors introduce a framework based on
MAPE for the self-protection of computer networks. The
monitor phase works with network traffic as well as with
the same set of system features used by [12], [13] for
anomalous behavior analysis. Filtered data is then continu-
ously streamed to the anomaly analysis module, that uses
sliding windows of different sizes to detect attacks with
different time granularity. The planning phase relies on
boolean expressions that define acceptable operations and
are associated with actions that describe how the boolean
condition would change. Since the main focus of this work
is network protection, routers are the main components
subject to control and target of the execute phase.

The authors of [3] describe how the human, that is usu-
ally considered to be in-the-loop, should instead be brought
on-the-loop, therefore having only the responsibility to
oversee the automated process and eventually validate the
results of the automated analysis. The work highlights how
modeling the attacks with attack graphs (e.g., [31]) without
modeling the system behavior introduces some limitations
to the predictive behavior of the protection tool, because
the attack graphs are not able to capture the likelihood of
each attack pattern and/or the real impact on the enterprise
system. To this end, they propose a framework based on
a system model that also includes the effects of attacks on
the present vulnerabilities, based on a service dependency
analysis. Once an attack pattern has been detected, the
framework is able to automatically generate a ranked list
of prospective actions to execute to minimize its impact.

7 CONCLUSIONS AND FUTURE WORKS

Although often with a limited rate of false positives, the
rate of the alerts generated by intrusion detection tools is
too high to be manually handled by a human operator.
Intrusion response systems replace the human operator with
an algorithm in charge of automatically finding a (possibly)
optimal countermeasure to the detected threat. Most of

the works proposed so far treat separately the intrusion
detection and the intrusion response steps and, to the best
of our knowledge, none of the existing research proposes
a comprehensive model-based framework that integrates
system monitoring, intrusion detection, intrusion response
selection, intrusion response execution and realize a work-
ing prototype.

In this paper, we presented the design and implemen-
tation of the Plan phase of an Autonomic Security Man-
agement system architected according to the Monitor, Ana-
lyze, Plan, Execute loop for autonomic systems. In order to
make the solution suitable to be used outside an academic
environment, we employed Model Integrated Computing
for the automatic generation of MDP from a system model,
and we proposed a novel technique that shifts the curse
of dimensionality from the size of the system to the scope
of the attack. Experimental results show that it is practically
possible to obtain a reduction of several orders of magnitude
of the state space of the MDP, while maintaining optimal
or near-optimal solutions, according to the initial set of
attributes chosen for the execution of the heuristic.

The MAPE approach proposed in this work is in theory
sufficient to protect a system that behaves exactly in the way
it is described into the model. That is, everything works
perfectly with the assumption of a perfect model. However,
the effects of the defense actions executed on the system
might change over time, leading thus to a non-stationary
process. This is due to different reasons, among which, shifts
in the system configurations, updates to the software base,
changes of the users behavior. One possible way to address
this issue would be to monitor the execution of the actions
and to update the parameters of the model, for instance
by using filters like EWMA or Kalman’s, but this would
require the re-execution of a computationally expensive
planning every time a change is detected. For these reasons,
as a future work, we will investigate the realization of
a self-adaptive controller, by changing the reinforcement
learning paradigm from model-based to model-free. Specif-
ically, we will perform research on learning agents based
on widely used algorithms and technologies, such as, Q-
Learning, SARSA, Expected SARSA, QVLearning, double
Q-Learning [57] and Artificial Neural Networks [56], to let
the controller automatically evolve as the environment does,
without the need for a computationally expensive planning
when a change to the system occurs.

Finally, we are planning to conduct a Cognitive Task
Analysis [41] to compare the cognitive load required from
the end-user in presence of the ASM and without it. This
experiment will be particularly useful to identify the stages
of the planning that require the most cognitive activity from
the user, thus giving hints on what aspects of the ASM
should be enhanced.

ACKNOWLEDGMENT

Funding for this work was partially provided by the U.S
Army Engineer Research and Development Center (ERDC),
under Contract W912HZ-17-C-009.

REFERENCES

[1] Brown-umbc reinforcement learning and planning (burlap). http:
//burlap.cs.brown.edu/.

http://burlap.cs.brown.edu/
http://burlap.cs.brown.edu/


12

[2] S. Abdelwahed, J. Bai, R. Su, and N. Kandasamy. On the appli-
cation of predictive control techniques for adaptive performance
management of computing systems. Network and Service Manage-
ment, IEEE Transactions on, 6(4):212–225, 2009.

[3] M. Albanese, H. Cam, and S. Jajodia. Automated cyber situation
awareness tools and models for improving analyst performance.
In Cybersecurity Systems for Human Cognition Augmentation, pages
47–60. Springer, 2014.

[4] H. ArcSight. Security intelligence for a faster world, 2012.
[5] R. Bellman. Dynamic programming. BellmanDynamic Program-

ming1957, 1957.
[6] J. Bézivin, C. Brunette, R. Chevrel, F. Jouault, and I. Kurtev.

Bridging the generic modeling environment (gme) and the eclipse
modeling framework (emf). In Proceedings of the Best Practices for
Model Driven Software Development at OOPSLA, volume 5, 2005.

[7] R. G. Brown, P. Y. Hwang, et al. Introduction to random signals and
applied Kalman filtering, volume 3. Wiley New York, 1992.

[8] L. Busoniu, R. Babuska, and B. De Schutter. A comprehensive
survey of multiagent reinforcement learning. Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE Transactions on,
38(2):156–172, 2008.

[9] D. Carasso. Exploring splunk. published by CITO Research, New
York, USA, ISBN, pages 978–0, 2012.

[10] V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci, F. L. Presti, and
R. Mirandola. Moses: A framework for qos driven runtime adap-
tation of service-oriented systems. IEEE Transactions on Software
Engineering, 38(5):1138–1159, 2012.

[11] Q. Chen, S. Abdelwahed, and A. Erradi. A model-based validated
autonomic approach to self-protect computing systems. Internet of
Things Journal, IEEE, 1(5):446–460, 2014.

[12] Q. Chen, J. Lambright, and S. Abdelwahed. Towards autonomic
security management of healthcare information systems. In Con-
nected Health: Applications, Systems and Engineering Technologies
(CHASE), 2016 IEEE First International Conference on, pages 113–
118. IEEE, 2016.

[13] I. Chopra and M. Singh. Shape—an approach for self-healing and
self-protection in complex distributed networks. The Journal of
Supercomputing, 67(2):585–613, 2014.

[14] F. Cohen. Simulating cyber attacks, defences, and consequences.
Computers & Security, 18(6):479–518, 1999.

[15] J. Davis. Gme: the generic modeling environment. In Companion
of the 18th annual ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, pages 82–83. ACM,
2003.

[16] M. J. Druzdzel and R. R. Flynn. Encyclopedia of library and
information science, chapter decision support systems, 2003.

[17] J. M. Ewing. Autonomic Performance Optimization with Application
to Self-Architecting Software Systems. PhD thesis, George Mason
University, 2015.

[18] B. A. Fessi, S. Benabdallah, N. Boudriga, and M. Hamdi. A multi-
attribute decision model for intrusion response system. Information
Sciences, 270:237–254, 2014.

[19] B. Foo, Y.-S. Wu, Y.-C. Mao, S. Bagchi, and E. Spafford. Adepts:
adaptive intrusion response using attack graphs in an e-commerce
environment. In Dependable Systems and Networks, 2005. DSN 2005.
Proceedings. International Conference on, pages 508–517. IEEE, 2005.

[20] R. France and B. Rumpe. Model-driven development of complex
software: A research roadmap. In 2007 Future of Software Engineer-
ing, pages 37–54. IEEE Computer Society, 2007.

[21] R. Givan, T. Dean, and M. Greig. Equivalence notions and model
minimization in markov decision processes. Artificial Intelligence,
147(1-2):163–223, 2003.

[22] J. A. Hamilton, D. A. Nash, and U. W. Pooch. Distributed simulation,
volume 8. CRC Press, 1997.

[23] S. Hariri, B. Khargharia, H. Chen, J. Yang, Y. Zhang, M. Parashar,
and H. Liu. The autonomic computing paradigm. Cluster Comput-
ing, 9(1):5–17, 2006.

[24] J. S. Hunter. The exponentially weighted moving average. Journal
of quality technology, 18(4):203–210, 1986.

[25] S. Iannucci and S. Abdelwahed. A probabilistic approach to
autonomic security management. In Proceedings of the 13th IEEE
International Conference on Autonomic Computing (ICAC), 2016.

[26] S. Iannucci and S. Abdelwahed. Model-based response planning
strategies for autonomic intrusion protection. ACM Transactions on
Autonomous and Adaptive Systems (TAAS), 13(1):4, 2018.

[27] S. Iannucci, Q. Chen, and S. Abdelwahed. High-performance
intrusion response planning on many-core architectures. In Work-
shop on Network Security Analytics and Automation (NSAA), 2016.

[28] IBM. Admin Guide: IBM Security QRadar SIEM Version 7.2. 2013.
[29] Z. Inayat, A. Gani, N. B. Anuar, M. K. Khan, and S. Anwar.

Intrusion response systems: Foundations, design, and challenges.
Journal of Network and Computer Applications, 62:53–74, 2016.

[30] M. Irfan, H. Abbas, Y. Sun, A. Sajid, and M. Pasha. A framework
for cloud forensics evidence collection and analysis using security
information and event management. Security and Communication
Networks, 9(16):3790–3807, 2016.

[31] S. Jajodia, S. Noel, P. Kalapa, M. Albanese, and J. Williams. Caul-
dron mission-centric cyber situational awareness with defense in
depth. In 2011-MILCOM 2011 Military Communications Conference,
pages 1339–1344. IEEE, 2011.

[32] G. Karsai. Generic modeling environemnt: Building tools
that build tools, 2013. https://engineering.vanderbilt.edu/
innovations-2013/building-tools.php.

[33] J. O. Kephart and D. M. Chess. The vision of autonomic comput-
ing. IEEE Computer, 36(1):41–50, 2003.

[34] N. Kheir, H. Debar, N. Cuppens-Boulahia, F. Cuppens, and J. Vi-
inikka. Cost evaluation for intrusion response using dependency
graphs. In Network and Service Security, 2009. N2S’09. International
Conference on, pages 1–6. IEEE, 2009.

[35] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thoma-
son, G. Nordstrom, J. Sprinkle, and P. Volgyesi. The generic
modeling environment. In Workshop on Intelligent Signal Processing,
Budapest, Hungary, volume 17, page 1, 2001.

[36] D. Menasce, H. Gomaa, J. Sousa, et al. Sassy: A framework for
self-architecting service-oriented systems. Ieee Software, 28(6):78–
85, 2011.

[37] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar. End-to-end
support for qos-aware service selection, binding, and mediation in
vresco. IEEE Transactions on Services Computing, 3(3):193–205, 2010.

[38] Z. Molnár, D. Balasubramanian, and Á. Lédeczi. An introduc-
tion to the generic modeling environment. In Proceedings of the
TOOLS Europe 2007 Workshop on Model-Driven Development Tool
Implementers Forum, 2007.

[39] O. Moser, F. Rosenberg, and S. Dustdar. Domain-specific service
selection for composite services. IEEE Transactions on Software
Engineering, 38(4):828–843, 2012.

[40] C. Mu and Y. Li. An intrusion response decision-making model
based on hierarchical task network planning. Expert systems with
applications, 37(3):2465–2472, 2010.

[41] M. A. Neerincx. Cognitive task load analysis: allocating tasks and
designing support. Handbook of cognitive task design, 2003:283–305,
2003.

[42] S. Ossenbuhl, J. Steinberger, and H. Baier. Towards automated
incident handling: How to select an appropriate response against
a network-based attack? In IT Security Incident Management & IT
Forensics (IMF), 2015 Ninth International Conference on, pages 51–67.
IEEE, 2015.

[43] Pivotal. Spring expression language (spel). https://docs.spring.
io/spring/docs/current/spring-framework-reference/core.html#
expressions, 2018.

[44] S. Pradhan, A. Dubey, T. Levendovszky, P. S. Kumar, W. A.
Emfinger, D. Balasubramanian, W. Otte, and G. Karsai. Achieving
resilience in distributed software systems via self-reconfiguration.
Journal of Systems and Software, 122:344–363, 2016.

[45] G. Qu, O. A. Rawashdeh, and D. Che. Self-protection against
attacks in an autonomic computing environment. IJ Comput. Appl.,
17(4):250–256, 2010.

[46] G. Rasche, E. Allwein, M. Moore, and B. Abbott. Model-based
cyber security. In Engineering of Computer-Based Systems, 2007.
ECBS’07. 14th Annual IEEE International Conference and Workshops
on the, pages 405–412. IEEE, 2007.

[47] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S. Hallsteinsen,
J. Lorenzo, A. Mamelli, and U. Scholz. Music: Middleware support
for self-adaptation in ubiquitous and service-oriented environ-
ments. In Software engineering for self-adaptive systems, pages 164–
182. Springer, 2009.

[48] R. Sargent. An overview of verification and validation of simula-
tion. In Proceedings of Winter Simulation Conference, 1987.

[49] B. Schmerl, J. Cámara, J. Gennari, D. Garlan, P. Casanova, G. A.
Moreno, T. J. Glazier, and J. M. Barnes. Architecture-based self-
protection: composing and reasoning about denial-of-service mit-

https://engineering.vanderbilt.edu/innovations-2013/building-tools.php
https://engineering.vanderbilt.edu/innovations-2013/building-tools.php
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions


13

igations. In Proceedings of the 2014 Symposium and Bootcamp on the
Science of Security, page 2. ACM, 2014.

[50] A. Shameli-Sendi, M. Cheriet, and A. Hamou-Lhadj. Taxonomy
of intrusion risk assessment and response system. Computers &
Security, 45:1–16, 2014.

[51] A. Shameli-Sendi and M. Dagenais. Orcef: Online response cost
evaluation framework for intrusion response system. Journal of
Network and Computer Applications, 2015.

[52] A. Shameli-Sendi, N. Ezzati-Jivan, M. Jabbarifar, and M. Dagenais.
Intrusion response systems: survey and taxonomy. Int. J. Comput.
Sci. Netw. Secur, 12(1):1–14, 2012.

[53] N. Stakhanova, S. Basu, and J. Wong. A cost-sensitive model for
preemptive intrusion response systems. In AINA, volume 7, pages
428–435, 2007.

[54] N. Stakhanova, S. Basu, and J. Wong. A taxonomy of intrusion
response systems. International Journal of Information and Computer
Security, 1(1-2):169–184, 2007.

[55] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro. EMF:
eclipse modeling framework. Pearson Education, 2008.

[56] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley,
and J. Clune. Deep neuroevolution: Genetic algorithms are a
competitive alternative for training deep neural networks for
reinforcement learning. arXiv preprint arXiv:1712.06567, 2017.

[57] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction,
volume 1. MIT press Cambridge, 2018.

[58] S. Tanachaiwiwat, K. Hwang, and Y. Chen. Adaptive intrusion
response to minimize risk over multiple network attacks. ACM
Trans on Information and System Security, 19:1–30, 2002.

[59] A. Tarski. A lattice-theoretical fixpoint theorem and its applica-
tions. 1955.

[60] T. Toth and C. Kruegel. Evaluating the impact of automated
intrusion response mechanisms. In Computer Security Applications
Conference, 2002. Proceedings. 18th Annual, pages 301–310. IEEE,
2002.

[61] W. Yan, Y. Xue, X. Li, J. Weng, T. Busch, and J. Sztipanovits.
Integrated simulation and emulation platform for cyber-physical
system security experimentation. In Proceedings of the 1st interna-
tional conference on High Confidence Networked Systems, pages 81–88.
ACM, 2012.

[62] X. Zan, F. Gao, J. Han, X. Liu, and J. Zhou. A hierarchical and fac-
tored pomdp based automated intrusion response framework. In
Software Technology and Engineering (ICSTE), 2010 2nd International
Conference on, volume 2, pages V2–410. IEEE, 2010.

[63] S. A. Zonouz, H. Khurana, W. H. Sanders, and T. M. Yardley. Rre:
A game-theoretic intrusion response and recovery engine. Parallel
and Distributed Systems, IEEE Transactions on, 25(2):395–406, 2014.

Stefano Iannucci is an Assistant Professor of
Computer Science and Engineering at Missis-
sippi State University and an affiliated member
of the Center for Cyber Innovation (CCI) de-
partment of the High Performance Computing
Collaboratory at Mississippi State University. He
received his Ph.D. in 2015 from the University
of Rome Tor Vergata. His research focuses on
cyber-security automation, autonomic comput-
ing, Internet of Things and performance mod-
eling and benchmarking. He published over 20

papers on top journals and conferences. Dr. Iannucci has chaired sev-
eral international workshops and has been the workshops chair for IEEE
ICCAC, one of the leading conferences in autonomic computing. He is
member of IEEE.

Sherif Abdelwahed is a Professor of Electri-
cal and Computer Engineering (ECE) at Virginia
Commonwealth University (VCU). Before joining
VCU in August 2017, he served as the associate
director of the Distributed Analytics and Security
Institute at Mississippi State University (MSU).
He was also is also an Associate Professor in
the ECE Department at MSU. He received his
Ph.D in 2002 from the Department of Electrical
and Computer Engineering at the University of
Toronto. Prior to joining Mississippi State Univer-

sity, he was a research assistant professor at the Department of Elec-
trical Engineering and Computer Science and senior research scientist
at the Institute for Software Integrated Systems, Vanderbilt University,
from 2001-2007. From 2000-2001 he worked as a research scientist
with the system diagnosis group at the Rockwell Scientific Company. Dr.
Abdelwahed has chaired several international conferences and confer-
ence tracks, and has served as technical committee member at vari-
ous national and international conferences. He received the StatePride
Faculty award for 2010 and 2011, the Bagley College of Engineering
Hearin Faculty Excellence award in 2010, and recently the 2016 Faculty
Research Award from the Bagley College of Engineering at MSU. He
has more than 140 publications and is a senior member of the IEEE.

Andrea Montemaggio is a Research Engineer
at Center for Cyber Innovation (CCI), Mississippi
State University (MSU). In 2017 he earned his
B.E. degree in Computer Engineering, with hon-
ors, from the University of Rome Tor Vergata.
He has been working as a Software Engineer
since 2003, both for private companies and as a
free-lance, gaining experience as a team leader,
project manager and software architect mainly
in the retail and financial industries. In 2009, he
has been an Associate Editor of the proceedings

of the Open Source in the Public Administration (OSPA) workshop
sponsored by the LUISS Guido Carli University in Rome.

Melissa Hannis is a Research Engineer at Mis-
sissippi State University (MSU) in the Center for
Cyber Innovation (CCI) department at The High
Performance Computing Collaboratory (HPC2).
She graduated from MSU with a BS in Computer
Science in 2015, and is currently working on fin-
ishing her MS in Computer Science. Much of her
interest in research was acquired during her time
as a student worker at The Center for Advanced
Vehicular Systems (CAVS), where she worked
on a number of research projects. She started

working at CAVS in 2014 as an undergraduate student researcher and
later as a Graduate Research Assistant. This interest in research is what
encouraged her to pursue a job as a full-time Research Engineer at CCI.



14

Leslie Leonard is a Computer Scientist at the
U.S Army Engineer Research and Development
Center (ERDC). She serves as the Cyberse-
curity Research lead for the High Performance
Computer Modernization Program’s (HPCMP)
Security team. She received her Ph.D. in 2015
from the University of Maryland. Dr. Leonard
leads Research and Development (R&D) for new
technologies, tools, and techniques that enable
the HPCMP to defend, mitigate, and secure
five Defense Supercomputing Resource Centers

(DSRCs) and the Defense Research and Engineering Network (DREN).
In 2013, 2015, and 2016, she was recognized by the ERDC direc-
tor, ERDC commander, and U.S. Army Corps of Engineers (USACE)
Command Sergeant Major for her professional excellence. In 2017,
she received the USACE Cybersecurity Professional of the Year award.
Dr. Leonard and her cybersecurity research team also received the
ERDC Research and Development Achievement Award for Technical
Collaboration and Technical Achievement. She is a published author and
served as a member of various technical committees.

Jason S. King joined the High Performance
Modernization Program (HPCMP) at the En-
gineer Research and Development Center
(ERDC) shortly after graduating with a Bache-
lor’s degree in Computer Science from Missis-
sippi State University in May, 2016. Mr. King
began working with a team developing a state
of the art intrusion detection system built around
a Bro sensor network. The Cybersecurity Envi-
ronment for Detection, Analysis and Response
(CEDAR) was designed to provide analysts with

a more accurate, integrated framework of processing tools to reduce
the time of cyber-incident response. More recently, Mr. King has been
integral in the establishment of the HPCMP as a Cybersecurity Service
Provider (CSSP) utilizing the CEDAR IDS, acting as both Detect and
Respond and Cyber Threat Intelligence Team Leads. Mr. King is part of
a team of researchers exploring the use of HPC systems to develop new
algorithms for use in cybersecurity incident detections. Current research
includes exploring data science techniques to identify malicious content
using ssl/tls handshakes.

John A. Hamilton, Jr. is a Professor of Com-
puter Science & Engineering at Mississippi State
University where he directs two research cen-
ters: the Distributed Analytics and Security Insti-
tute and the Center for Cyber Innovation. Previ-
ous faculty appointments were at Auburn Univer-
sity, the US Military Academy and the US Naval
Postgraduate School. Dr. Hamilton earned his
doctorate in computer science from Texas A&M
University and is a distinguished graduate of the
US Naval War College.



15

APPENDIX

PROOF OF LEMMA 1

Proof: By contradiction. We show that a contradiction
can be derived from both the following cases.

∃σ0, σ1 ∈ SV σ0
λ−/−→ σ1 ∧ σ0 �V ′

λ′−→ σ1 �V ′ (i)

∃σ0, σ1 ∈ SV σ0
λ−→ σ1 ∧ σ0 �V ′

λ′−/−→ σ1 �V ′ (ii)

For the case (i), we have that there must exist a state
σ2 6= σ1 s.t. σ0

λ−→ σ2. By applying the definition of the
transition relation and the definition of λ′ we have

∀v ∈ V λ(v)(σ0) = σ2(v)

∧
∀v′ ∈ V ′

⋂
τ∈SV
τ�
V ′=σ

{λ(v′)(τ)} = {σ1 �V ′ (v′)}

By resolving the intersection and since V ′ ⊆ V this can
be rewritten as ∀v ∈ V λ(v)(σ0) = σ2(v) ∧ ∀v′ ∈ V ′, τ ∈
SV λ(v′)(τ) = σ1(v′), from which if we can derive the
following contradiction

∀v ∈ V λ(v)(σ0) = σ2(v) ∧ ∀v′ ∈ V ′ λ(v′)(σ0) = σ1(v′)

With a similar argument it can be shown that the case (ii)
also leads to a contradiction.

PROOF OF THEOREM 1

Proof: By the definition of the q-value function (3), we
have that its value depends upon the reward function and
the transition probability function only. The construction
does not change the reward function, so we have to show
that the following holds

∀x ∈ A,∀σ0, σ1 ∈ SV
PX̂ (σ0, x, σ1) = PX̂ ′(σ0 �V ′ , x, σ1 �V ′)

(8)

For every action x ∈ A and post-condition 〈p, λ〉 ∈
ΛX (x) of x, the construction of ΛX ′ does not alter the
probability distribution, hence the equation (8) does not
hold iff for some x ∈ A and σ0, σ1 ∈ SV (i) the LHS is 0
while the RHS is p, or (ii) the LHS is p while the RHS is 0.

For the case (i), by applying (2) we have that

∃x ∈ A,∃σ0, σ1 ∈ SV(
∀〈p, λ〉 ∈ ΛX (x) σ0

λ−/−→ σ1

)
∧(

∃〈p, λ′〉 ∈ ΛX ′(x) σ0 �V ′
λ′−→ σ1 �V ′

)
which contradicts lemma 1.
With a similar argument it can be shown that even the

case (ii) leads to a contradiction.

PROOF OF THEOREM 2
Proof: By reductio ad absurdum, we show that a

contradiction follows from

∃σ ∈ SV V∗X̂ (σ) 6= V∗X̂ ′(σ �V ′) (9)

From (9) and by definition of the value function we obtain

∃σ ∈ SV Q∗X̂ (σ, x) 6= Q∗X̂ ′(σ �V ′ , y) (10)

where x = π∗X̂ (σ) and y = π∗X̂ ′(σ �V ′) are the actions
selected by the optimal policies for the MDPs X̂ and X̂ ′,
respectively.

For (10), either (i) x = y or (ii) x 6= y must hold. If (i)
holds, this would be in contrast with theorem 1. Otherwise,
for the case (ii) we have that x is chosen over y by the
optimal policy π∗X̂ , whereas y is chosen over x by the
optimal policy π∗X̂ ′ of the reduced MDP.

Hence, from the definition of optimal policy (5), there
must exist a state σ ∈ SV s.t. Q∗X̂ (σ, x) > Q∗X̂ (σ, y) ∧
Q∗X̂ ′(σ �V ′ , x) < Q∗X̂ ′(σ �V ′ , y) holds, from which we derive
a contradiction due to theorem 1.

PROOF OF LEMMA 2
Proof: Let X be an MDP factored model and X ′

the factored model derived from X by removing a post-
condition 〈p, λ〉 ∈ ΛX (a) s.t. ∀σ ∈ SV = SVX = SVX′ σ

λ−→
σ, for some action a ∈ A = AX = AX ′ , and let R̄ be the
reward function of both X and X ′ s.t. ∀x ∈ A R̄(x) < 0,
strictly negative by hypothesis (h0).

In order to show that the removal of such a post-
condition does not change the state-value it is enough to
show that the following holds

∀x ∈ A, σ ∈ SV
Q∗X̂ (σ, x) > Q∗X̂ (σ, a) =⇒ Q∗X̂ ′(σ, x) > Q∗X̂ ′(σ, a)

(11)

Hence, by reductio ad absurdum we show that a contra-
diction can be derived if both the following relations hold.

Q∗X̂ (σ, x)−Q∗X̂ (σ, a) > 0 (i)

Q∗X̂ ′(σ, x)−Q∗X̂ ′(σ, a) ≤ 0 (ii)

By the definition of the q-value function (3), in (ii) we rewrite
Q∗X̂ ′(σ, a) in terms of Q∗X̂ (σ, a), by subtracting the term
related to the removed post-condition 〈p, λ〉. Furthermore,
the derivation of X ′ did not change the action x, thus we
can write Q∗X̂ ′(σ, x) = Q∗X̂ (σ, x) to derive

Q∗X̂ (σ, x)−Q∗X̂ (σ, a) ≤ −γpV∗X̂ ′(σ) (12)

For both (i) and (12) to hold, −γpV∗X̂ ′(σ) ≤ 0 must hold.
Since the sign of the state-value function V∗X̂ ′ depends only
upon the sign of the reward function R̄, it should be that
∀x ∈ A R̄(x) ≥ 0, which contradicts the hypothesis (h0)
about the strict negativity of R̄.


	Introduction
	Contributions and Organization

	Model-integrated System Development
	System Meta-Model

	Intrusion Response Methodology
	MDP-based Response Planner
	Transformation of the System Model to MDP
	System model reduction
	Variables elimination
	Construction of the reduced MDP model


	Case Study
	Sample system model
	Methodology
	Evaluation

	Threats to Validity
	Related Works
	Conclusions and Future Works
	References
	Biographies
	Stefano Iannucci
	Sherif Abdelwahed
	Andrea Montemaggio
	Melissa Hannis
	Leslie Leonard
	Jason S. King
	John A. Hamilton, Jr.

	Appendix

