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Abstract
Containerization is a lightweight virtualization technology enabling the deployment and execu-

tion of distributed applications on cloud, edge/fog and Internet-of-Things platforms. Container

technologies are evolving at the speed of light and there are many open research challenges.

In this paper, an extensive literature review is presented that identifies the challenges related

to the adoption of container technologies in High Performance Computing, Big Data analytics

and geo-distributed (Edge, Fog, Internet-of-Things) applications. From our study, it emerges that

performance, orchestration and cyber-security are the main issues. For each challenge, the state-

of-the-art solutions are then analyzed.

Performance is related to the assessment of the performance footprint of containers and com-

parison with the footprint of virtual machines and bare metal deployments, the monitoring,

the performance prediction, the I/O throughput improvement. Orchestration is related to the

selection, the deployment, and the dynamic control of the configuration of multi-container pack-

aged applications on distributed platforms. The focus of this work is on run-time adaptation.

Cyber-security is about container isolation, confidentiality of containerized data, and network

security.

From the analysis of 97 papers, it came out that the state-of-the-art is more mature in the area of

performance evaluation and run-time adaptation rather than in security solutions. However, the

main unsolved challenges are: I/O throughput optimization, performance prediction, multi-layer

monitoring, isolation and data confidentiality (at rest and in transit).

KEYWORDS:
Run-time Adaptation, cyber-security, performance, Container, Docker, Cloud computing, Orches-
tration, Auto-scaling, Big Data, HPC, Distributed computing, Edge computing, Fog computing,
Internet-of.-Things

1 INTRODUCTION

Nowadays, distributed applications and infrastructures are moving from being Virtual Machine (VM) centric to container centric. The technology
of containers is strongly supported by PaaS providers 1,2, IaaS providers 3 and Internet Service Providers 4. Moreover, container technologies are
used to deploy large scale applications in challenging fields, such as, big data analytics 5,6, scientific computing 7 8, edge computing 9 10 and Internet-
of-Things (IoT) 11,12.

Container’s keys to success are many: an easier management of the life-cycle of distributed applcations 13; a negligible overhead for when
they run either on bare-metal or virtual servers 14,15,16,17, and their time to start, re-start and stop, which is reduced up to an order of magnitude
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with respect to VMs. Last but not least, containers enable application portability, which is where hypervisor-based virtualization failed. Docker,
Kubernetes and Cloudify, the de-facto standard container technologies, are compliant with the cloud portability framework TOSCA 18,19. Moreover,
portability is also supported by the Open Container Initiative (opencontainers.org), created to define a standard image format and a standard
run-time environment for containers.

Because of thesemany advantages, the container technology landscape is developing and expanding at the speed of light, but there are still many
challenges to be solved, for example: the reduction of networking and I/O overheads compared to hypervisors; the secure resource sharing and
isolation to enable multi-tenancy; methodologies and tools for multi-layer monitoring, functional to sophisticated run-time adaptation algorithms;
advanced run-time adaptation capabilities (e.g. scale-out/in, scale-up/down and migration) and high availability support.

In such fast evolving and challenging scenario, a wide spectrum review of the literature which identifies mature and early stage research results
is missing. To fill that gap, we analyzed research work using the following methodology: firstly, we scrutinized the literature to identify the most
demanding application fields adopting container technologies (i.e. High Performance computing, Big data analytics and geo-distributed applications)
and their related challenges (i.e. performance, run-time adaptation, and security). Then, we collected and analyzed additional literature to identify
the solutions proposed to solve these challenges, and to point out the open issues. As a result of the above methodology, this survey presents a
classification and analysis of the literature along the following four categories:

• Applications. This category clusters research papers that use containers in High Performance Computing, Big Data analytics and geo-
distributed (Fog, Edge, IoT) applications.

• Performance comparison. This category groups research works that evaluate the performance of containers under different workloads and
on different host environments. All these papers investigated the advantages and drawbacks of using containers as an alternative to VMs
or stacked on top of VMs.

• Orchestration. This category includes studies that address the challenge of run-time adaptation of containerized applications 1 and container
platforms to guarantee performance and high availability.

• Security. This category contains research results addressing cyber-security challenges. The focus of the literature is on containers isolation,
containers image layers security, storage volumes security, and network security.

To the best of our knowledge, and at the time of writing this paper, this is the first extensive literature review on the subject, and it largely
extends the previous published survey on container orchestration 20. A research work quite close to this paper is a survey on the micro-service
software architectures 21. However, that study investigates architectural patterns and does not mention challenges related to the implementation
and deployment of micro-services with containers.

The remaining of this paper is organized as in what follows. Section 2 provides background on application and system containers, container
managers and container orchestrators. The literature’s taxonomy, that delineate the abovementioned categories, is described in details in Section 3.
Sections 4, 5, 6 and 7 analyze the state-of-the-artworks for the categories introduced above. To conclude, Section 8 summarizes how the challenges
in the application field are addressed by the literature and put in evidence the open issues.

2 BACKGROUND

The idea of container dates back to 1992 22. At the base of container technology there is the concept of cgroup and Linux namespace 23. To
understand the landscape of containers technology, four main concepts are important: application and system containers, container managers and
container orchestrators.

2.1 Application and System Containers
Application and system containers build on the same technologies and concepts. The only difference is in their use: a system container runs a full
operating system, while an application container is intended for the deployment of an application or an application component. For example, the
Docker development guidelines and best practices recommend to run a microservice, rather than a full application, in a container. An application

1A containerized application refers to an application packed in a container. It could be a monolithic application or an application composed of independent
components. In the later case, each component could be packed in an independent container

opencontainers.org
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TABLE 1 Container technologies considered in this work. The Type acronyms are defined as follow: Application Container (AC); System Container
(SC), Container Manager (CM), Orchestration Framework (OF)

Type

Technology SC AC CM OF Url

Linux Container (LXC) Y Y https://linuxcontainers.org
OpenVZ Y Y https://openvz.org
Windows Hyper-V Container (WHC) Y https://docs.microsoft.com/en-us/virtualization/windowscontainers
Docker Y Y https://www.docker.com/
Windows Server Container (WSC) Y https://docs.microsoft.com/en-us/virtualization/windowscontainers
rkt Y https://coreos.com/rkt
LXD Y https://linuxcontainers.org
Oracle Solaris Container Y Y Y Y http://www.oracle.com/technetwork/server-storage/solaris/containers-169727.html
Amazon EC2 Container Service (ECS) Y Y https://aws.amazon.com/ecs
Google Container Engine (GCE) Y Y https://cloud.google.com/container-engine
Microsoft Azure Container Service (ACS) Y Y https://azure.microsoft.com/en-us/services/container-service
Joyent Triton Y Y https://www.joyent.com/
Kubernetes Y https://kubernetes.io
Swarm Y https://www.docker.com
Marathon Y https://mesosphere.github.io/marathon
Cloudify Y http://cloudify.co

container is built up from a series of image layers leveraging the Union File System service 24 and the Copy-on-Write technique, that allows a
filesystem to appear as writable, but without actually allowing writes to change the filesystem content. Usually, an application developer can start
from a base image (e.g. the operating system kernel and default libraries). Afterwards, the application can be copied in a new layer (or possibly in
two – a bottom layer with the source code and libraries and a top layer with the executable). In the same way, a system container incorporates a
base operating system image in the bottom layer, which could be customized with the addition of libraries, tools, and data in new layers. After the
multilayer image is built, all the layers are read-only except the last one, which is readable and writable, but not persistent. That means the content
is lost when the container is deleted.

To persistently store data, a containerized application needs to mount a virtual disk (Docker volumes in the Docker jargon). Docker volumes can
be mounted in multiple containers simultaneously, allowing concurrent reads and writes. Concurrency can be either managed at the application
level, or with a distributed filesystem, such as, GlusterFS 25 and Ceph 26. Bind-mount is an alternative solution for persistent storage that allows to
store data in the host filesystem. Its data is accessible both from the container and the host. Such solution is not portable and introduces security
issues 27 but, on the other end, it could improve the I/O performance.

Table 1 lists the container technologies considered in this paper. The most widely used application container technology is Docker, a multi
platform solution designed for Linux, OSX and Windows. Docker extends LXC with a kernel and application-level API to facilitate container man-
agement and the management of containerized applications. LXC also can be used as application container. rkt is a solution designed to run
application containers in a cloud native environment, i.e. CoreOS (Container Linux). The Oracle Solaris container solution offers more isolation
than Docker. Windows Server Container (WSC) is the Microsoft version of application containers. Concerning system containers, Linux Container
and OpenVZ allow to share a linux kernel among containers built from the same base image. LXC uses a standard kernel while OpenVZ uses a
specialized kernel. Windows Hyper-V Container (WHC) is the Microsoft version of system containers; however, in order to guarantee a strong
environment isolation, WHCs do not share the kernel among containers.

2.2 Container Manager
A container manager is a framework providing a set of API to easily manage all the life cycle of the container 13 (cf. Fig. 1), which consists of the
following phases: Acquire, Build, Deliver, Deploy, Run and Maintain. Acquire is related to select and download a container image from a container
repository (e.g. Docker Hub), and to use it as the base layer on top of which the application will be containerized. In the Build phase, all the
application components, libraries and possibly data are packaged in the container image. Afterwards, the image is published in a public/private

https://linuxcontainers.org
https://openvz.org
https://docs.microsoft.com/en-us/virtualization/windowscontainers
https://www.docker.com/
https://docs.microsoft.com/en-us/virtualization/windowscontainers
https://coreos.com/rkt
https://linuxcontainers.org
http://www.oracle.com/technetwork/server-storage/solaris/containers-169727.html
https://aws.amazon.com/ecs
https://cloud.google.com/container-engine
https://azure.microsoft.com/en-us/services/container-service
https://www.joyent.com/
https://kubernetes.io
https://www.docker.com
https://mesosphere.github.io/marathon
http://cloudify.co
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FIGURE 1 The container lifecycle. A container manager provides API to support at least from the acquire to the run phases, while the Orchestrator
allows to automatize the deployment, run and maintain (run-time) phases.

repository. Delivery concerns to bring the application in production, and could also include a vulnerability analysis step. Deploy is about deploying
the application and maintaining it up-to-date, for instance, by using a continuous delivery model. The run phase sets the management system and
runtime environment (e.g. scaling policy, health check, recovery policies). The final step is to maintain the application at run-time and off-line. The
application behaviour is monitored and, when failures are triggered, the system tries to manage them at run-time, e.g., by re-starting a container.
Off-line, the application is de-bugged, to find the root-cause of fault, and fixed. Then, the process goes again through the Acquire or Build phases
to create a new containerized version of the application that will be delivered, deployed and maintained.

Container managers can be classified as either on-premise or managed solutions. On-premise solutions need to be installed, configured and
managed on private datacenters or on virtual machines running in the cloud or geo-distributed infrastructures. Managed solutions are instead
offered by cloud providers as a service, and need only to be partially configured. Among the technologies listed in Table 1, Docker, LXD, OpenVZ
and rkt are examples of on-premise solutions. Examples of managed solutions are: Google Container Engine, Microsoft Azure Container Service
and Amazon ECS. Docker has been designed as a container management system and is becoming the de-facto standard. For example: Windows
Server container and Hyper-V container both can be managed with Docker; GCE, ACS and ECS support Docker containers, and rkt offers APIs for
easy application container management. Concerning system containers, LXD is the manager for LXC. OpenVZ also provide container management
APIs.

2.3 Container Orchestration
Container orchestration allows cloud and application providers to define how to select, deploy, monitor, and dynamically control the configuration
of multi-container packaged applications in the cloud 28. Container orchestration is concerned with the management at runtime to support the
Deploy, Run andMaintain phases (cf. Figure 1). Container orchestrators usually offer the following main features (cf. Table 2): resource limit control,
scheduling, load balancing, health check, fault tolerance, auto-scaling.

Resource limit control allows to reserve a specific amount of CPU andmemory for a container; these constraints can be used to make scheduling
decisions and to limit the resource contention among containers. Resource limit control features leverage the equivalent mechanisms offered by
the container manager. Indeed, while a container can use all the resource available in the underlying system, container managers provide APIs to
limit the amount of memory and CPU used and the specific CPU used. However, more sophisticatedmechanisms can be implemented. For example,
Kubernetes offers the possibility to reserve a specific amount of a resource, e.g., the CPU, with spec.containers[].resources.requests.cpu

and/or to limit the use of a reserved resource, e.g. the CPU with spec.containers[].resources.limits.cpu. If we consider the example of the
CPU, request allows to allocate a specific amount of CPU (e.g. 0.5, 1, 2 cores) while the limit allows to specify the maximum amount of time the
requested CPU portion is used over 100ms. The request quota is stringent: if a node is running two containers that specified a CPU request of 0.5
and 0.3, a new container can be allocated only if it has a CPU request less than or equal to 0.2. The limit quota is instead not stringent, that is a
container can exceed, for some time, the quota.

Scheduling defines the policy used to place the desired amount of containers on the desired nodes at a give time instant. Scheduling can be done
either on the basis of resource constraints, or node affinity, or both of them. More sophisticated schedulers can usually be integrated as external
components (the custom feature in Tab. 2).
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TABLE 2 Features implemented by different orchestration framework.

Orchestration Frameworks
Orchestration Features Swarm Kubernetes Cloudify Marathon

Resource limit control CPU, Memory N.A. N.A.
Scheduling Resource constrained, Node affinity, Custom
Load balancing Round-Robin, Custom N.A. Custom
Health check Open port connections (UDP, TCP, SSL), HTTP req/res
Fault tolerance Replica control, High availability controller N.A.
Auto-scaling Custom Custom, Threshold based (CPU) Custom

The load balancer does the work of distributing the load among multiple container instances. Round-Robin is the default implemented policy.
More complex policies can be provided by external load balancers (the custom feature in Tab 2).

Health-check is achieved controlling if a container is capable to answer requests. Usual implementations make use of TCP/UDP/SSH connection
attempts to open ports, and HTTP request/response checking.

Fault tolerance can be implemented as replica control and/or high availability controller. Replica control allows to specify and maintain a desired
number of containers. Health check is used to determinewhen a faulty container should be destroyed and a newone launched tomaintain the target
number of replicas. The high availability controller allows to configure multiple orchestration managers to have always control on the application
in case an orchestrator node fails or is overloaded. The same technique used to create a high availability controller can be used to implement a
scalable controller.

Auto-scaling allows to automatically add and remove containers. The implemented policies are usually based on thresholds (e.g., on CPU and
memory utilization), but in some cases it is possible to plug-in more sophisticated autoscalers or to define custom autoscaling policies (the custom
feature in Tab. 2).

In the landscape of container orchestration frameworks, the choice is between on-premise solutions and managed solutions (as for the con-
tainer managers). The main on-premise solutions are: Docker Swarm, the native Docker orchestrator offering clustering functionality for Docker
containers, which lets system administrator turn a group of Docker engines into a single, virtual Docker engine. Kubernetes is an orchestration
system for Docker containers capable to handle scheduling and to manage workloads based on user-defined parameters. Mesosphere Marathon
is a container orchestration framework for Apache Mesos. It offers key features for running applications in a clustered environment. Cloudify is
a cloud orchestration framework that enables the modeling of applications and services and automates their entire life cycle. Cloudify is TOSCA
compliant and could be used to deploy Docker containers, Docker Swarm clusters, or Kubernetes clusters. Container as a service solutions offer
also orchestration services. Examples are: Google Container Engine, Amazon Elastic Container Service, Microsoft Azure Container Service.

3 STATE-OF-THE-ART TAXONOMY

The focus of this survey is schematized in Figure 2. The literature is classified using a taxonomy composed of the four categories described in
Section 1 and several sub-categories: Application’s sub-categories are: High Performance Computing, Big Data analytics, and geo-distributed (Fog,
Edge and Internet-of-Things) applications. Although any application can be deployed using containers, the above mentioned are the most chal-
lenging domains. The Performance comparison category doesn’t need to be further detailed by sub categories because all the studies compare the
performance of container solutions w.r.t. system virtualization and native environments.Orchestration sub-categories are: PerformanceMonitoring,
Characterization and Prediction, Auto-scaling, High Availability, and Scheduling. Energy efficiency is another important aspect, and it is orthogo-
nal to the Performance Evaluation and Orchestration categories. Security sub-categories collect research results about container’s isolation, image
layers and volumes encryption, and network security.

We decided to organize the literature as above because the analysis of application fields is valuable to understand challenges and open issues.
And the study of the other categories, orthogonal to the first one, present the solution proposed to address the challenges and put in evidence
what areas and results are mature, and what need more effort.

This survey presents the result of an extensive, although not omni-comprehensive, literature review that analyzes and summarizes the contribu-
tion of 97 verified sources selected among about 110 retrieved from the main research databases, like: ACM digital library, IEEE Explorer, Scopus,
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FIGURE 3 Distribution of the analyzed papers: by publication year (right) and by taxonomy categories (left)

arXiv. The following are the main keywords used in the search: docker, container, application virtualization, performance, monitoring, orchestra-
tion, self-adaptation, scheduling, energy efficiency, auto-scaling, security, encryption, availability, self-healing. The paper selection process took
into consideration also the quantity of papers in each category. A reasonable balance between the applications category (about 1/4 of the papers)
and the other categories (about 3/4 of the papers) has been maintained, as Figure 3 shows.

The distribution of the papers among the four main categories highlights that the majorities of research work is focused on orchestration (38%),
while the 23% address security issues and 13% performance comparison. While it is understandable that there are few works on performance
comparison, because the outcomes obtained until now converge to similar results (small footprint w.r.t. VMs, and limitation in network I/O perfor-
mance), the number of papers addressing security issues is inadequate, considering also the importance of cyber security today. A more detailed
analysis (c.f. Table 6) highlights that researchers’ effort is mainly devoted to enhance isolation properties of containers, while there are few research
works on image/volume encryption and network security.

Finally, it is also interesting to observe the novelty of research results: the 90% of the studies have been published between 2015 and 2018, as
illustrated by the diagram in Figure 3; and the 50% of the papers analyzed have been published in the last two years, 2017-2018.
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TABLE 3 Challenges in the HPC, Big Data analytics and geo-distributed (Fog, Edge, IoT) application fields

HPC Big Data analytics Fog, Edge, IoT applications

Security 8 29 Security 30 31 Security 32

Deployment of parallel applications onCPU
33 34 29 35and on GPU 34 35

Scalable stream processing 36 37 and batch
processing 38 5 platforms

Container migration 10 39

HPC job Scheduling 40 29 Scalable testing 5 37 and training 31 plat-
forms

Resource and energy efficient service provi-
sioning 41 39 42

Optimization of performance 8 40 29 35 Large data set management 30 43 44 Deployment on etherogeneus nodes 45 32 42

4 APPLICATIONS

4.1 High Performance Computing
Today, the users of super computing platforms are demanding for solutions to easily deploy their own defined software stack or virtual HPC
clusters, and for leveraging the flexibility offered by containers in their real-life computational and data intensive jobs. To satisfy such demand, many
challenges should be solved, for instance: support for MPI and CUDA libraries; support for execution of containerized parallel applications on GPU
and FPGA; scheduling of containerized HPC jobs; mechanisms to guarantee, in the new container enabled HPC platforms, the same performance
of native environments; solutions to guarantee the proper level of security (isolation of users’ environment, data security, network security). Table 3
(first column) summarizes the challenges and the related work raising and/or proposing solutions to the challenges.

In 8 the authors address the problem of deploying User Defined Software Stacks (UDSS) in supercomputing centers. The challenge is to provide a
usable environment while minimizing the risks: security, support burden, missing functionality, and performance. The paper proposes Charliecloud,
a framework based on Linux user andmount namespaces to run UDSS in Docker containers with no privileged operations or daemons. The adopted
solution does not use network, host and domain name namespaces to gain in networking performance (critical for HPC). User namespace is used to
limit the access to system calls, while security is managed using the Linux kernel capabilities (e.g. to enforce access control). Charliecloud has been
validated against security attacks and performance. Socker 29 aims to leverage the flexibility offered by containers in HPC real-life computational
and data intensive jobs. Socker is a solution to securely run Docker within cluster jobs and HPC job scripts (it is essentially a secure wrapper), and
to limit the resource usage of a Docker job to the borders defined by the HPC queuing system. Socker is based on the Slurm queuing systems and
does not require to modify the underlying Docker engine or to replace it. Fe2vCl2 35 is a framework for deploying HPC applications on common
cloud infrastructures. Specifically, Fe2vCl2 allows the deployment of user defined virtual clusters for running HPC applications. The performance
(FLOPS and network throughput) of the proposed solution has been assessed against a deployment based on VMs.

In 34 the authors propose a framework to efficiently deploy parallel C++ applications in a cloud environment by using Docker containers
and Docker Swarm (for automatic node scaling). The proposed solution leverages OpenMPI (open-mpi.org) and CUDA (developer.nvidia.com/
cuda-zone) container images to enable code execution on both CPU and GPU. In 33 the authors extend MPICH (www.mpich.org/) to support
containers. The proposed solution allows to deploy MPI-based parallel applications with Dockers.

In 40 the authors propose a solution to deploy scientific applications and workflows on HPC cluster using Docker containers and the Adaptive
Computing’s Moab scheduler. The performance of the proposed solution has been evaluated in term of FLOPS, network throughput and filesystem
throughput, and compared with the performance of a RedHat cluster. To increase container’s network performance, a bridge network solution and
the Linux’s macvlan feature are used instead of Docker’s NAT native mechanisms. The filesystem performance in case of NFS has been enhanced
using a Docker’s NFS plugin.

4.2 Big Data Analytics Applications
Containers offer an easy way to deploy Big data analytics applications based on the map-reduce or stream processing paradigms. Moreover, as
discussed in the previous section, solutions are emerging to support the execution of containers on GPU and FPGA, and to speedup specific
analytics tasks. As summarized in Table 3 (second column), the deployment of Big Data analytics applications with containers poses new challenges:
scalability and performance should be guaranteed for stream processing and batch processing applications, as well as for training and testing
environments. For the latter, there is also the automation challenge. Finally, the large volume of data needs to be securely managed on-the-fly
(ephemeral filesystems) and at rest (Docker volumes).

open-mpi.org
developer.nvidia.com/cuda-zone
developer.nvidia.com/cuda-zone
www.mpich.org/
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Data stream processing is a computing model that finds application in many fields, such as, big data analytics, security, IoT, performance monitor-
ing, distributed event processing. In 36 the authors implement a Stream Processing Platform Service, deployed using Docker and Kubernetes, to test
the data flow prediction algorithms they proposed. In 37 the authors propose a Docker-based architecture and a partitioning method to reduce the
scalability problem of Apache Spark-based scale-up servers, caused by garbage collection and remote memory access overheads when the servers
are equipped with significant number of cores and Non-Uniform Memory Access (NUMA). The paper shows that, using Docker container-based
architecture, the problem could be minimized effectively by partitioning the original scale-up server into small logical servers.

In 38 the authors describe the development of Virtual Hadoop, a Docker-based framework that overcomes the scalability issues of HadoopCL,
a variant of Hadoop that takes advantage of heterogeneous computing by offloading the computation kernels of a Hadoop application to the
accelerators composed by multicore CPUs, GPUs, and/or even FPGA boards. HadoopCL does not support on-demand resource scaling. Docker is
used to wrap-up the execution environment of Hadoop rather than the user application. Virtual Hadoop includes an extension of the methods of
resource inference and allocation, and an auto-scalingmechanism to dynamically allocate resources on-demandwhen newworkloads are submitted
to the Hadoop cluster. The autoscaling is based on a performance model that predicts the needed resources for the new workload and estimates
if the available resources (Hadoop virtual nodes) are enough to run the new workload, or new nodes are needed. In 5 Docker is used to deploy an
Hadoop virtual cluster on a single server node to run a distributed version of the Vp-Tree algorithm that leverages the MapReduce framework. The
performance on the Docker cluster is compared with the performance of a traditional virtual machine based cluster (on a single server node).

In 31 the authors present the Isolated, Scalable, and Lightweight Environment for Training (ISELT), targetingMassive OpenOnline Courses requir-
ing interactive GNU/Linux commandline environment. ISELT has been deployed using docker containers and claims to overcome many of the
distribution, scaling and security challenges for the specific training subject. While the authors provide a performance evaluation of ISELT, they do
not provide any detail about how security and isolation are managed.

SciServer 30 is a big-data infrastructure project that is developing amodular and scalable infrastructure for the storage, access, query and process-
ing of large, petabyte scale, scientific datasets. The SciServer Compute component leverages Docker containers to provide security and isolation,
and to allow flexible configuration of computational contexts through domain specific images and mounting of domain specific data sets. Docker
volumes are used to encapsulate dataset, which makes it easy to attach them to application containers as external storage, bringing data close to
compute resources running analytic applications.

The storage of large datasets is also addressed in 44, who tackle the two main limitations of data deduplication based on Map-Reduce, namely:
the inability to find duplicate data in adjacent blocks, and the possibility to miss duplicate date due to a fixed sliding window. Their approach has
been validated using Docker containers to run 3 Hadoop instances on a physical node to execute the Map-Reduce jobs. Furthermore, given the
highly distributed nature of container-based applications, and the need to process large datasets, the role of efficient caching becomes crucial
to reduce the network utilization, which might become a bottleneck, and thus to reduce the processing and waiting time. Semantic cache allows
the cache to be used even though the requested data is only partially present in the cache. Several solutions (e.g., 46,47) have been proposed that
implement semantic-caching; however, some challenges remain open, such as, the reduction of the query processing time and the cache hit ratio.
To this end, in 43 the authors propose a novel semantic caching algorithm that outperforms regular semantic cache and decisional semantic cache 46.

4.3 Edge, Fog and IoT Applications
Since containers are portable and have a small performance footprint, they are suitable to deploy applications on heterogeneous, resource limited
and power limited computational units. Deploying containers on edge or fog computing nodes, or deploying containers on IoT boards like Rasperry
PI, is extremely advantageous, although it rises challenges in migration, service and resource provisioning and security, as outlined in Table 3 (Third
column).

In 10 the authors address the problem of mobile clients that need to offload services to an edge computing platform. The authors present
a novel service handoff system based on container migration. In the paper, an important performance issue in Docker container migration has
been identified and solved. The proposed solution leverages the layered storage system to reduce filesystem synchronization overhead, without
dependence on the distributed filesystem.

The feasibility of using docker in Mobile Edge Computing scenarios, and specifically for video streaming and multiplayer gaming applications,
is investigated in 48. The authors discover that, in case of video streaming, the overhead is independent from the number of clients and servers
while, in case of multiplayer gaming, the overhead increases with the number of servers (running containers). A study about how to improve service
provisioning flexibility in edge community cloud is proposed in 41. The authors present the evolution of Guifi.net, integrating Docker and Cloudify to
deploy software defined networks. Another example of how container could facilitate edge computing is provided in 39. In that paper, the authors
describe how Docker is used: to deploy a learning environment on the Jetstream cloud infrastructure; and to enable portability of the students’
learning environment from the cloud to their edge devices (e.g. laptop or tablet).
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TABLE 4 A summary of the performance comparison studies

Performance Comparison

Docker vs KVM and Linux native 14 15

Docker vs VMware and Linux native 49

Docker vs LXC 16 and Joyent’s Triton 50

Docker configuration tuning: Memory 51, Filesystems 52,53,54

Docker vs native deployment on Raspberry Pi 55

Energy consumption Docker/LXC vs KVM/Xen 56

A container-based fog-oriented framework for Internet-of-Things applications based on Kura gateway and Docker is studied in 45. The paper
demonstrates that Kura gateway can be containerized for an easy deployment on top of existing, off-the-shelf, and limited-cost gateway nodes.
Specifically, it has been possible to implement a highly manageable and interoperable way to create fog nodes on-the-fly via the adoption of
application containerization and container orchestration. In 32 the authors address the heterogeneity problem in industrial IoT by proposing aDocker
based architecture that allows the deployment of applications despite the specific device/protocol. Moreover, high availability and scalability, as
well as fault tolerance, are guaranteed by the Docker engine and Docker Swarm.

Another interesting use of container is Cloudrone 42: a micro cloud deployed on Raspberry PIs mobile nodes transported by drones. The solution
uses Docker to deploy services with a very small resource demand footprint and Swarm to manage clusters of Docker nodes.

5 PERFORMANCE COMPARISON

One of the first goals of the research community has been to assess, under different workloads: how the performance of a deployment based on
containers compare with the performance of virtual machines and/or bare-metal deployments; and how containers compares with VMs in term of
energy consumption. The outcome of the analysis is the following: the performance footprint of containers is negligible; read andwrite performance
heavily depends on the filesystem type selected and on its configuration; and network I/O is poor compared to VMs and native environments.
Table 4 summarizes the comparison scenarios considered in literature.

The first seminal work on container performance evaluation 14 provides an extensive comparison among a native Linux environment, Docker
and KVM. In that work, the three environments are compared in presence of CPU intensive, I/O intensive, Network intensive, and NoSQL/SQL
workloads. The main intention of the work is to assess the performance improvement of running workloads in containers rather than in VMs. The
comparison is based on the performance metrics collected by the benchmarking tools, rather than on the workload footprint. In 15 the authors
present a similar study, aimed at comparing the performance of containers with hypervisors. The performance of Cassandra while running on bare-
metal native cluster of nodes, VMware VMs and Docker containers is investigated in 49. The authors focus their investigation on the throughput
and latency of Cassandra when different replication factors and consistency schemas are used, with the final goal of providing recommendations
for Cassandra virtual cluster configuration and deployment.

Different studies investigate the performance of containers running on cloud infrastructures, like AWS EC2. A performance comparison of
Docker versus Flockport (LXC) is presented in 16, using the same benchmarks as in 14. In this work, containers are deployed on top of the NeCTAR
cloud. The comparison is intended to explore the performance of CPU, memory, network and disk. Docker versus Joyent’s Triton is studied in 50.
The authors show that on top of AWS EC2 virtual machines, Joyent’s Triton performs better or almost the same than Docker, and that it is a valid
alternative considering the added security features (cf. Sec. 7).

While standard benchmarks are used in the previous studies, the scientific workload is considered in 51. The authors show that Docker memory
configuration can be tuned to make container performance be slightly better than VMs.

The performance of containers running on Internet-of-Things devices are investigated in 55. Docker runs on a Single Board Computer device
such as Raspberry Pi 21. Workload used are: system benchmarks to independently stress CPU, memory, network I/O, disk I/O; and applica-
tion benchmarks reproducing MySQL and Apache workloads. The reference for comparison are the performance of the system without any
virtualization.

Howfilesystem selection and configuration could impact the performance ofDocker is investigated in 52,53. In 52 the authors perform an extensive
study to unravel the multi-faceted nature of Docker storage, for a wide range of filesystems, and to demonstrate its impact on system and workload
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TABLE 5 A summary of the solutions proposed by the research community to address the container orchestration challenges: Performance
Monitoring, Characterization and Prediction; Auto-scaling and High-availability; Scheduling.

Performance Monitoring, Characterization
and Prediction

Auto-scaling and High-availability Scheduling

Measurement methods and techniques 17 57 58 Horizontal scaling 6 59 60 61 57 62 Scheduling of containers on VMs 63 64 65,
on PMs 66, and in Geo-distributed environ-
ments 67 68 69

Multi-layer Monitoring solutions 57 58 61 Vertical scaling 70 59 CPU andMemory-based opimization 64 66,
I/O-based optimization 63

Characterization of resource contention 71 72 Geo-distributed scaling 59 73 Multi Objective optimization 67

Enhancement of Docker monitoring: 72 57 Application specific scaling: Time critical 60,
Hadoop 38, Data stream processing 36

Energy-based optimization 11

Performance prediction 71 58 74 61 High-availability solutions 75 76

Characterization of energy consumption 77

performance. An assessment of the performance of Docker when the Union filesystem and CoW are used to build image layers is provided in 53.
The impact of high speed SSDs storage on Docker performance is analyzed in 54. The authors evaluate the performance of storing Docker images
and data w.r.t. different filesystems type and storage drivers.

In 56 the authors compare the energy consumed by Docker and LXC with the energy consumed by KVM and Xen. In the comparison, the cases
for memory, CPU and network intensive workload are considered, as well as for the idle state. Results show that container technologies consume
less energy than hypervisors-based virtualization only for network intensive workload. In all the other cases, virtualization technologies behave
the same.

6 ORCHESTRATION

In the container life cycle, orchestration supports automation and run-time adaption (c.f. Figure 1). In this survey, we focus on the run-time adap-
tation challenges, that are: to design new methods and tools for performance monitoring, characterization and prediction; to design resource and
energy efficient auto-scaling and scheduling algorithms; and to design new solutions for high-availability. The solutions proposed by the research
community to address the above challenges are summarized in Table 5. An analysis of the literature is presented in what follows.

6.1 Performance Monitoring, Characterization and Prediction
Performance monitoring is a topic of increasing interest for the containers’ research community. In 17 the authors assess the different measurement
techniques used to collect performance counters for CPU and disk I/O intensive Docker workload. The study demonstrates that container perfor-
mance counters introduce an under estimation ranging between the 5 and 10 percent w.r.t. system performance counters. Such a difference could
hurt the behaviour of scheduling and autoscaling algorithms, as proved in 61, where the impact of relative and absolute metrics on the Kubernetes
autoscaling algorithm is investigated.

The importance of planning deployment and adaptation decisions on the basis of performance counter values collected at all the virtualization
layers is addressed in 57 and 58. In 57 the authors propose Elascale, a cloud service that: automatically instruments the containerized application to
collect performance counters at container and VMs layers; and then it uses the performance measure for autoscaling. The same approach is used
in 58, where multi-layer monitored data are used to drive the run-time adaptation. In 72 the authors propose an enhancement of the Docker’s kernel
to collect the maximum I/O bandwidth for the machine it is running on. That made available one more performance measure in Docker.

In 71 the authors characterize the impact of Docker configuration and resource contention on the performance and scalability of big data
workloads (four typical Apache Spark’s applications). The resource contention amongmultiple I/O intensive applications sharing the same resources
and running in Docker containers is characterized in 72. A preliminary characterization of the energy consumed by Docker containers is provided
in 77. The authors focus on correlating the energy consumed with the CPU and network pressure. The results show that CPU is the main source
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of energy consumption. Intensive network load that stresses the OS results in a not negligible consumption of energy as well. Such results are
important for designing energy efficient resource scheduling.

Performance prediction is key for capacity planning, optimal deployment and run-time adaptation. A performance predictionmodel based on the
Support Vector Regression is proposed in 71. The paper considers data stream processing Apache Spark applications, running in Docker containers,
with different configurations and resource contention settings. In 58 the authors propose a Learning Classifier System that, on the basis ofmulti-layer
monitored data, incrementally learns rules representing the behaviour of containerized applications. The extracted behaviour is used to predict the
QoS level offered by the application. A Layered Queuing Network-based performance prediction model for multi-tier containerized applications is
proposed in 74. The model allows to predict resource demand in development phase. In 61 the author study the correlation between the container
performance counters (counters from /cgroup filesystem) and the system performance counters (from /proc filesystem). Such correlation model
is useful for workload prediction and for the design of scheduling and autoscaling strategies.

6.2 Auto-Scaling and High-Availability
The adoption of container technologies call for new run-time adaptation solutions 78,28. Recently,many researchworks have proposed new solutions
for horizontal and vertical scaling of Docker containers. The approaches used are generally inspired by the research results obtained in the last two
decades in autonomic computing 79,80,81,82.

Among the auto-scaling solutions, the most promising mix vertical and horizontal scaling and/or migration. Usually the autoscaling algorithms
were designed for locally-distributed adaptation, but solutions that consider the geo-distributed case, suitable for IoT applications, have been
proposed as well. In high-availability, the most promising approach is to make the detection of faulty nodes more sophisticated, e.g., based on
abnormal behavior rather than only on network level or application level probes.

An early study on container management 83 shows that Elastic Application Container-based resource management outperforms the VM-based
approach.

In 6 the authors provide an Integer Linear Programming (ILP) formulation of the elastic provisioning of virtual machines for container deploy-
ment. The general ILP problem formulation takes explicitly into consideration the heterogeneity of container requirements and virtual machine
resources. Only QoS and cost are considered in the problem formulation. The same approach is used in 59 where the authors propose Adaptive
Container Deployment (ACD), a general model of the deployment and adaptation of containerized applications. Besides acquiring and releasing
geo-distributed computing resources, ACD can optimize multiple run-time deployment goals, by exploiting horizontal and vertical elasticity of
containers. The ACDmodel is used as a benchmark to evaluate the behavior of several greedy heuristics for determining the container deployment.

An adaptivemulti-instance container-based architecture targeting time-critical applications is proposed in 60. The solution has been implemented
with Docker and Kubernetes.

The behaviour of the Kubernetes Horizontal Pods auto-scaling algorithm is studied in 84. The author proposes a new solution to make a more
appropriate allocation of resources to fulfill application response time constraints. ElasticDocker, an autonomic controller powering vertical elas-
ticity of Docker containers is presented in 70. ElasticDocker scales up and down both CPU and memory assigned to each container according to
the application workload, and live-migrates containers when there is not enough resources on the hosting machine. The experiments show that
ElasticDocker makes better resource utilization for container providers, and improves Quality of Experience for application end-users. An archi-
tecture of a SaaS autonomic application manager based on Docker and Kubernetes is proposed in 73. The high level architecture is based on three
autonomic managers that should be capable to adapt the multi-cloud infrastructure and the multi technology data storage level with the goal of
guaranteeing tenants’ SLAs. While no details on adaptation algorithms are provided, the proposed architecture delineates a new research problem
in the field. Elascale 57 scales micro services based applications deployed with Docker and Docker Swarm. The proposed solution applies a default
threshold-based, reactive scaling algorithm for all the application’s micro and macro services. In 62 the authors propose a proactive autoscaling
mechanism that scales in/out containers and distributes the load among instances on the base of the network traffic intensity.

Autoscaling algorithms targeting specific computing paradigms are discussed in 38 (Hadoop) and 36 (Data stream processing). In 38 the authors
propose an auto-scaling algorithm for docker containers wrapping up the execution environments of Hadoop nodes. The autoscaling algorithm
is integrated in a framework called Virtual Hadoop for deploying Hadoop clusters on heterogeneous nodes. The algorithm estimates the needed
amount of containers to meet the time constraint of the Hadoop job and automatically allocates containers. In 36 the authors propose SSPS, an
autoscalingmechanisms for Data Stream Processing applications deployed using Docker. The proposed autoscaling algorithm takes decisions based
on the predicted data arrival rate. SSPS is designed to replace the default CPU threshold based scaling policy in the Horizontal Pod Autoscaler of
Kubernetes.

Container orchestrators such as Docker Swarm and Kubernetes offer high-availability mechanisms based on monitoring the health state of a
service and restarting the container in case the health check fails. Such basic mechanisms are enhanced in Serfnode 75, a lightweight platform
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TABLE 6 A summary of the solution proposed by the research community to address the security challenges: isolation; volumes and images
encryption, network security.

Isolation Volumes and Images encryption Network security

SGX-based isolation 85 86 87 88 89 90 SGX-based volumes encryption 85 86 87 90 SGX-based communication channel
encryption 86 87 88 91

Kernel-based isolation in Linux 8 29 and in
Solaris 50 (Joynet Triton)

SGX-based ephemeral filesystem encryp-
tion 86 87

Host Identity Protocol based 92

Linux hardening-techniques 93 94 Selective image layers encryption
at-rest 95 85 and on-the-fly 95

Channel leakage mitigation techniques 96

Application level isolation 97

Detection of escape attacks 98

agnostic and easy to integrate with an existing system of Docker containers. The proposed solution includes a monitoring and self-healing mech-
anism based on Supervisor (supervisord.org) for increased availability. In 76 the authors propose an intuitive approach based on Computational
Intelligence (CI) for enhancing the availability of Docker Swarm. The proposed CI-based approach predicts the possible failure of the host of a
manager node by observing its abnormal behaviour. Thus, this indication can automatically trigger the process of creating a new manager node or
promoting an existing node as a manager for enhancing the orchestrator’s availability.

6.3 Scheduling
Scheduling is another brick of the run-time adaptation. Both static and dynamic scheduling solutions have been proposed.

In 63 the authors investigate the problem of scheduling network I/O intensive containerized applications on top of a cloud computing infrastruc-
ture (i.e. VMs). The proposed solution maximizes the number of allocated applications (i.e., containers) on a finite set of VMs with no outbreak of
I/O bandwidth of physical nodes. At the same time, the optimal scheduling satisfies the application constraints on CPU, memory and disk demand.
The proposed scheduler has been implemented in Diego, a Docker container orchestrator for Cloud Foundry.

In 64 the authors propose an Ant Colony Optimization (ACO) algorithm to schedule resource for Docker containers. The ACO algorithm has
been implemented in Docker SwarmKit and the performance has been compared with the default greedy scheduling algorithm. A framework
for Application Oriented Docker container (AODC) resource allocation is presented in 66. AODC minimizes the application deployment cost in
datacenters and considers deployment of containers on PM. The deployment cost is related to available supporting libraries on PMs and required
libraries of applications. AODC is compared against optimal VM placement algorithms.

C-Port 67 is the first example of orchestrator that makes it possible to deploy and manage containers across multiple clouds. The authors address
the issues of container scheduling and placement, and dynamic adaptation. In term of orchestration policy, C-port uses a constraint-programming
model for dynamic resource discovery, selection and scheduling. Decisions can be taken on the basis of availability, cost, performance, security,
or power consumption constraints. The C-Port orchestrator is also used in 65 to realize a distributed software defined environment that deploys
applications with docker over the CometCloud federated cloud infrastructure.

Scheduling containers on geo-distributed platform (e.g. federated clouds, edge, fog and IoT infrastructures) is challenging for a latency efficient
download and deployment. In CoMICon 68 the authors propose a solution for reducing deployment time by co-operative management of Docker
images. That enables their latency efficient scheduling algorithm to start container in a distributed or geo-distributed platform. In 69 the authors
propose FID, a system for fast docker image distribution. FID uses a P2P BitTorrent based approach integrating a BitTorrent client in Docker registry
and developing a FID agent that could work as a proxy for the Docker engine or as a REST API for developers (in that case the FID component
uses Docker load).

In 11 the problem of properly scheduling resources to containers in a IoT scenario to reduce energy consumption is addressed. The authors
propose DockerCap, a software-level power capping orchestrator for Docker containers that follows an Observe-Decide-Act loop structure: that
allows to quickly react to changes that impact on the power consumption by managing resources of each container at run-time, to ensure the
desired power cap. The paper shows that it is possible to obtain results comparable with the state-of-the-art power capping solution provided by
Intel RAPL, while still being able to tune the performance of the containers and even guarantee SLA constraints.

supervisord.org
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7 SECURITY

Docker security issues and challenges are discussed in 99. The authors give an overview of the vulnerabilities in terms of container isolation,
host hardening and network security. Moreover, there are relevant security issues at the image distribution and container control levels. The
Docker Content Trust Infrastructure relies on TUF 100 to enable image signature; Docker Hub integrates Diplomat 101 to implement disambiguated
trust delegations. However, other repositories could apply lower security mechanisms. Mechanisms and protocols to make trustable an image
repository do not prevent the image to contain vulnerabilities that could be exploited. The authors of the Docker Image Vulnerability Analysis
(DIVA) framework 102 discovered that both official and community images contain more than 180 vulnerabilities on average when considering all
versions. That challenge can be solved by means of automatic security updates. Frameworks for updates recommendation, such as RUDSEA 103,
can be an approach to mitigates the problem.

A software engineering approach to enhance container security is considered in 104. The authors propose a reference architecture for the con-
tainer ecosystem, claiming that it could facilitatewho aims to ensure compliance, privacy, safety, reliability and/or governance. For example, security
patterns can be used to build secure systems by describing ways to control specific threats, fix a vulnerability, or provide a security attribute.

Table 6 summarizes the solutions proposed by the research community to improve container isolation, image encryption and network security.
A detailed analysis of the literature is presented in what follows.

7.1 Isolation
The majority of work in container security addresses the isolation challenges. Isolation in accessing the resources is fairly guaranteed by the Linux
namespace and cgroup, but there is a flaw in how containers share the same network bridge. Moreover, container isolation can be lowered at
launch time playing with specific settings. In terms of host hardening, Linux operating system security policies offer a good protection for the host
but they do no protect a container from other containers. The most promising solutions are based on Intel SGX enclaves, but the drawback is the
dependence on the Intel architecture and the implementation complexity.

In 98 the authors focus on Docker escape attacks and exhaustively discuss the existing security mechanisms and security issues of Docker. The
paper describes different methods to conduct Docker escape attacks and proposes a defense method based on status inspection of namespaces
to detect anomalous processes. Covert channels could cause critical results like information leak between one container and another (or even
the host). Covert channels attacks against Docker are extensively investigated in 93, where the authors analyze how to identify different types of
covert channels and how current isolation mechanisms can be used and configured to prevent the attacks. Furthermore, the authors conclude that
adopting full-fledged SELinux or AppArmor security policy is a key condition to protect the security perimeters of containers. Another study about
the use of Linux hardening techniques to improve container security is presented in 94. Joinet Triton are containers running on Oracle/Solaris and
offer the built-in zone, an isolated and secure environment for running containerized applications 105. Hence, Joynet Triton is a secure alternative
to Docker when containers run on bare-metal. In 50 the authors compare the performance of Docker running on AWS EC2 with Joyent’s Triton
container showing that the latter performs better or almost the same, and that it is a valid alternative adding security to performance.

As mentioned before, Charliecloud 8 is a secure framework based on Linux user and mount namespaces to run HPC applications on Docker
containers. Charliecloud provides isolation using Linux kernel to enforce access control and other aspects of security. Moreover, Charliecloud
prevents shenanigans such as creating device files or setuid binaries by means of doing operations on center-owned resources as the invoking
unprivileged user. Charliecloud has been proved secure against hacks tentatives, such as, chroot escape, bypass of file and directory permissions,
bind to privileged ports on all host IP addresses, seteuid to an unmapped UID, and the like. As mentioned before, Socker 29 is a secure wrapper for
running Docker containers on Slurm and similar HPC queuing systems. The execution of containers within Slurm jobs is done with the submitting
user privileges instead of root privileges. Moreover, Socker enforces the inclusion of containers in the cgroups assigned by the queuing system to
the parent jobs.

In 85 the authors present a generic concept to provide SGX security guarantees for operating system components, isolating kernel functionalities
by means of Intel SGX enclaves. The solution can be useful to increase container security. SCONE 86 is a secure container mechanism for Docker
that uses the Intel SGX to protect container processes from outside attacks. SCONE exposes a C standard library interface for transparently
encrypting/decrypting application data on a per-file-descriptor basis. The proposed solution has a low overhead and is transparent to Docker
because secure containers behave like regular containers. SCONE is also used by other solutions, such as, SERECA 87 and SecureCloud 88, to
increase security of the stored data, and of the network communications. For example, SecureCloud aims to provide a secure remote computation
platform running microservices in secure SCONE containers. Also in 89 the authors propose to use Intel SGX enclaves to isolate applications by
means of encrypted memory. They assume to have applications which code need to be partitioned in single functionalities (step not needed if the
application is designed using the microservice architecture). SecureStream 90 is a reactive middleware framework to deploy and process secure
streams (e.g. Map-Reduce applications) at scale. SecureStream combines the high-level reactive dataflow programming paradigm with Intel SGX
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enclaves in order to guarantee privacy and integrity of the processed data. All the containers run in enclaves and store encrypted data within
enclaves, thus realizing high isolation.

DATS, a system to increase isolation at application level, is proposed in 97 . The authors consider web applications that heavily access data in
shared folders and that are deployed with containers. DATS introduces a templating language to compose data across data containers. Moreover,
DATS introduces two primitives that act as robust declassifiers to enforce non-interference across containers, taking large applications out of the
trusted computing base.

7.2 Encryption of Image Layers and of Data Volume
Another issue with Docker is the lack of native support for: the encryption of image layers to protect sensitive data from malicious privileged users
(e.g., registry administrator, cloud provider); and the encryption of the data volumes. Also for the data security challenge, the most encouraging
approach is the use of the SGX support. For container images, the selective layer encryption is another possibility.

In 95 the authors propose and demonstrate a mechanism for secure Docker imagemanipulation throughout its life cycle: mechanisms for encryp-
tion/decryption at-rest and on-the-fly are used to protect confidentiality all the time, during creation, storage and usage of a Docker image.
Distribution and migration of images has been enhanced with a mechanism that selectively encrypts only the layers of the filesystem that require
strong confidentiality. SCONE 86 supports filesystem shields, preventing low-level attacks, such as the OS kernel controlling pointers and buffer
sizes passed to the services and ensuring the confidentiality and integrity of the application data passed through the OS.With the filesystem shield,
is possible to encrypt files or to authenticate the access to files. Moreover, SCONE provides a support for encryption and authentication of the
ephemeral container’s filesystem. SCONE is used in SERECA 87, which runs MongoDB and MySQL into SCONE secure containers. In that way the
data is encrypted in memory and on the disk.

Another solution that leverages Intel SGX enclaves for disk encryption is presented in 85 and has proved to be robust to attacks to single-level and
multi-level authentication. This solution could be used for encrypting data volumes and images. Unfortunately, it introduces a significant overhead
w.r.t. traditional disk encryption.

7.3 Network Security
Portability is one of the main advantages of containers, hence the mechanism for interconnecting containers should be independent from the cloud
service provider (or platform). Moreover, in fog computing or federated cloud scenarios the application components could communicate inter-
cloud. The inter-cloud connectivity highlights the need for NAT and firewall traversal support in the containers, and the need for secure end-to-end
connectivity.

The network security challenges have been addressed in different ways, depending on the type of attack considered. The solutions independent
from the specific attack and that seem to offer the stronger protection are based on SGX enclaves.

In 92 the authors propose a solution, named SynAPTIC, to provide secure and persistent connectivity for containers. The proposed solution is
based on the Host Identity Protocol (HIP), that enables strong authentication based on public key encryption. SynAPTIC integrates HIP in Docker
containers. It does not require any changes in networking infrastructure and supports the use of SoftwareDefinedNetworking. TheDocker daemon
is usually controlled through a Unix socket, but this can be changed to a TCP socket to grant attacker remote control to run any container in
privileged mode. The only remedy is to enable by default TLS connections. SCONE 86, before mentioned, wraps all socket operations and redirects
them to a network shield. The network shield, upon establishing a new connection, performs a TLS handshake and encrypts/decrypts any data
transmitted through the socket. This approach is transparent to the client and server. The private key and certificate are read from the container’s
filesystem and can be protected by the filesystem shield (above mentioned).

SERECA 87 addresses the network security challenge by creating a secure event bus and encryption service leveraging SGX enclaves, and lets
them communicate with the event bus. In SecureCloud 88, the secure communication among microservices (deployed into containers) is supported
by Intel SGX enclaves. The proposed solution protects the exchanged messages by encrypting them inside of enclaves via an event bus. Encryption
and decryption are automatically performed within enclaves. Decryption keys are stored securely within enclaves only. In 91 SecureCloud is used
to deploy a secure metering system.

The problem of mitigating network side channel leakage in stream processing applications is addressed in 96. The authors proposed a multicast
and an any-cast technique to make the communication obvious and to mitigate leakage at inter-stage communication. That solution can be used
to increase the security of any type of application, and specifically of container-based data-stream processing applications.
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8 DISCUSSION AND FINAL REMARKS

Since 2014, a considerable research effort has been devoted to improve container technologies. Many application areas found attractive the
advantages offered by containers with respect to consolidated virtualization technologies, i.e. virtual machines. This survey reviewed the use of
containers in High Performance Computing, Big Data analytics and geo-distributed (Fog, Edge, IoT) applications. These are different fields, but with
common challenges: performance, scalability, high availability, isolation, data and network security. Moreover, there are also specific challenges, for
example: in High Performance Computing there is the need to integrate parallel programming libraries with containers, such as Docker. Scheduling
of containerized I/O intensive jobs is also a challenge. Furthermore, I/O performance limitation of containers should be mitigated or eliminated
at all. Concerning Big Data applications, data stream and batch processing applications have performance as the key requirement and there is a
need of run-time adaption algorithms to optimally deploy the required computing elements and to scale the ones with higher demand in case
of surge of workload. Edge and fog computing applications are deployed on geo-distributed infrastructures, hence they demand for deployment
strategies and run-time adaptation mechanisms that take into account latency and time to download images from repositories. In that case, there
is also the problem of guaranteeing trusted geo-distributed image repositories. Internet of Things applications mainly demand for energy efficient
deployment and run-time adaptation strategies.

The literature on performance comparison give an important contribution in demonstrating the small performance footprint of containers and
the advantages with respect to virtual machines. Moreover, limitations in term of I/O overhead are found and remedies are proposed. Other
performance aspects investigated in literature classify as Performance Monitoring, Characterization and Prediction. They focus on performance pre-
diction models, multi-layer monitoring solutions, characterization of the performance contention for multi-tenant intensive I/O workloads, impact
of different filesystems on the container performances. All this research work provide results and suggestions to fully exploit the advantages of
containers.

Run-time adaptation challenges are investigated by research work on auto-scaling, high-availability and scheduling. The auto-scaling and high-
availability solutions aremainly developed for big data and analytics applications running on cloud, edge and fog infrastructures (andmore in general
for fog and IoT applications). Among the auto-scaling solutions, the most promising mix vertical and horizontal scaling and/or migration. Usually
the auto-scaling algorithms are designed for locally-distributed adaptation, but solutions that consider the geo-distributed case, suitable for IoT
applications, are proposed as well. Different approaches aim to enhance the solutions implemented in tools like Docker Swarm and Kubernetes,
like threshold-based algorithms, and algorithms based on mathematical programming or Ant Colony Optimization. The effort on high-availability
focuses on enhancing the self-healing capabilities for container orchestrators like Docker Swarm and Kubernetes. The most promising approach is
to make the detection of faulty nodes more sophisticated rather than based only on network level or application level probes.

The scheduling solutions are mainly intended for high performance computing applications and Internet-of-things applications. Scheduling
challenges are addressed using different techniques to produce optimal schedules that take into account resource usage and energy consumption.
Because of the poor network I/O performance of container, scheduling algorithms try to optimize the schedule of network I/O intensive workloads.
Scheduling solutions try also to be energy efficient in the case of IoT applications. Solutions capping the energy at application level rather than at
hardware level are promising.

Finally, security related research results largely focus on how to improve container isolation by means of hardening the configuration of existing
mechanisms, or proposing new solutions based on Intel SGX. Resilience to different type of attacks (like covert channels and root escape) are also
evaluated, and solutions to prevent and mitigate such attacks are proposed. Another security issue is to preserve the confidentiality of data storage
in image layers. The proposed solutions are mainly techniques to encrypt/decrypt at rest and at run-time the image layers. Finally, the secure
communication among container is evaluated and solutions or protocols to secure the communication are proposed. Results obtained leveraging
the Intel-SGX enclaves are encouraging, also because they allow to address all the challenges: isolation, data encryption and network security.
Hardening techniques are easier to implement, but weaker than SGX-based solutions.

To conclude, from the analysis of the literature presented in this paper, considering also how research works are distributed among topics (cf.
Figure 3), it emerges that more effort should be devoted to solve I/O performance, multi-layer adaptation, energy efficiency and security challenges.
Probably security is one of themost urgent needs, and security mechanisms should be integrated by design in themost popular container managers
and orchestrators like Docker and Kubernets. While security solutions should be application and platform agnostic, it makes sense that the energy
efficiency, run-time adaptation and high availability solutions are tailored to specific deployments, e.g., geo-distributed versus locally-distributed,
and workloads, e.g., batch versus stream processing.
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