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Abstract—Sepsis is the leading cause of death in ICUs and
a very costly medical phenomena. The earlier it is predicted,
the less inpatient mortality and the less the length of ICU stay,
thus a major cut in medical expenses. Although the current deep
learning models are able to make predictions about the possibility
of sepsis in the ICU, they still lack the ability to reveal the
major factors that lead to the outcomes of the predictions. In
this paper, we have explored the use of an attention-based model
in prediction of sepsis which provides more details on the amount
of contribution of each of the medical measurements to the final
prediction. This would help health care providers to improve
their procedures to reduce sepsis related mortality rate.

I. INTRODUCTION

Sepsis is defined as a syndrome of abnormal biochemical,
physiologic, and pathologic status caused by infection [1]. As
the leading cause of death in ICUs all over the world, which
accounts for over $23 billion of medical expenses in the United
States, it is a major medical concern [2]. This is while with
early detection of sepsis and proper intervention, up to 80
percent of in-hospital sepsis-related deaths can be prevented
[3].

To help physicians to diagnose sepsis, several medical
scoring systems have been proposed as guidelines in the ICU,
such as SOFA [4], APACHE II [5], and MEWS [6]. Moreover,
with the advances in technology and AI, more comprehensive
and efficient approaches to data analysis for this purpose have
been made possible. The Electronic Health Records (EHR)
alongside statistical and deep learning approaches provide new
insights from the physiological and biochemical measurements
and diagnoses that help physicians in predicting medical
outcomes and intervening accordingly [7].

Despite the promising predictive capabilities of the deep
models [8]–[13] in terms of accuracy, precision, AUROC, etc.,
due to their non-linearity and high complexity, they act as
blackbox that provide the user with sole probability values
[14]. Whereas, in the health care context, understanding the
causes that lead to a certain prediction can make a difference
in a life threatening situation.

In this research work, we implemented an attention-based
deep model for the prediction of sepsis that visualizes the
extent to which a medical parameter affects the outcome of
the prediction. In section (II) a review of the related works
is provided. In section (III), the data set used in our study is

described. We then explain our methodology in section (IV),
and discuss the results in section (V). Finally conclusion and
future works are presented in the last section.

II. RELATED WORK

There has been efforts to define some standards and defi-
nitions that could help medical doctors identify sepsis during
an ICU stay [4]–[6]. However, the AI based predictive deep
models look more and more promising and are attracting more
researchers every day. Based on the format of input data,
we can group the approaches into two categories. In one
approach, ICD91 codes, that are actually procedures billed
during each visit of patients to health centers, are used in
order to predict the medical outcomes of patients [15]–[19].
In the other major approach, instead of using ICD9 codes,
electronic health records (EHR) such as heart rate, respiratory
rate, systolic blood pressure, etc. are used as multivariate time
series [3], [7]–[10], [13], [20], [21]. Additionally, as in [11],
there exist few approaches in which both of these data types
are utilized.

In spite of the fact that both approaches yield high quality
results in prediction, they have a few differences that should be
considered: First, the former approach highly depends on the
billed procedures for each patient’s visit without considering
any further details about the corresponding visit and patient’s
health status. On the other hand, in the latter approach, more
detailed information about patient’s health status is provided.
Thus making decisions/predictions based on the patterns in the
EHR would be more precise and realistic.

Second, the research papers that follow the former approach
tend to map the ICD9 labels to the machine translation
problems [22] for making predictions. Hence, they mostly
make use of variations of Recurrent Neural Networks (RNN)
such as LSTM and GRU [23]. However, in studies where
inputs are multivariate time series, other architectures are
proposed such as in [3] or in [7] that a CNN-based model is
applied to this problem. Additionally, a model called Artificial
Intelligence Sepsis Expert has been proposed [21] which
is based on Weibull-Cox proportional hazards model [24].
Another statistical model called Insight was proposed in [13]
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for sepsis prediction. Furthermore, [8]–[11] have used RNNs
for multivariate time series.

Although both of the aforementioned approaches result in
high quality predictions, they mostly tend to perform as a
black-box which lacks the ability to explain what has led to
a certain result. This is while naturally the physicians would
make more reliable preventive decisions, if they are aware of
such information. The issue of interpretability is addressed for
ICD9 codes in [16]–[19]; however, the drawbacks of using
ICD9 codes still remain. On the other hand, for the EHR
data, interpretable models are proposed which do not have
the drawbacks of ICD9 [3], [8], [21].

In this study, we explore the use of an attention based RNN
with GRU cells in order to make visually interpretable predic-
tions, addressing the shortcomings of ICD9 based approaches.
Although this is a classification problem, classifying a patient
as septic or non-septic, we simply use the word prediction
throughout this paper.

III. DATA SET

For this research project, we have used MIMIC-III data set
[25], which is a freely accessible database developed by the
Laboratory of Computational Physiology at MIT. This data set
consists of vital signs, laboratory measurements, diagnostic
codes, procedure codes, observations and notes provided by
medical staff and so on for over 53000 adult patients. In this
work, we have used only a subset of this database which is
explained in the next section.

A. Gold Standard

The general definition of sepsis can be stated as the life-
threatening organ failure in response to inflammatory response
to infection. Technically, in order for a patient to be considered
septic, a set of certain parameters should meet the criteria of
the Third International Consensus Definitions for Sepsis and
Septic Shock [1]. We have utilized [2], [26] to produce our
cohort of study and label patients as septic and non-septic
based on Sepsis 3 Definition [1]. In total there are 11,791
patients in the cohort studied in [2]. However, we did not
consider the ones that were either too sparse or too short,
which resulted in total number of 11,700 patients.

B. Feature Selection and Preprocessing

The definition of Sepsis 3 [1] provides a flowchart which
uses SOFA [4] and qSOFA [27] scores alongside laboratory
measurements for determining a patient as septic. We chose
these features for our study, in total 39 Features, including 7
vital signs and 32 laboratory and output values. We aggregated
data to one-hour bins. The missing values were filled with
forward filling, and we interpolated the intermediate missing
values for the training set. As in [12], we then discretized each
of these continuous values into bins as follows:
• Lower than Normal
• Normal
• Higher than Normal

We used [28] as reference of normal values and considered the
age and gender in discretization process. We also consulted
medical experts for a few of the reference values. Where no
value was present for any laboratory measurements at all, as in
[11] we assumed that medical doctors deemed the parameter
irrelevant to the patients’ status. Otherwise, they would have
measured it. Thereupon, we considered them as normal. The
lengths of multi-variate sequences of patients are different
across our cohort which is the case for the real world settings.

IV. METHODOLOGY

In this study we use RNNs in order to make predictions
given multi-variate time series of patients’ data. Among the
variations of the RNNs, we use GRU [22] in our implemen-
tations and throughout this paper, and we simply refer to it
by RNN. In machine translation problems, the sequences of
the words contribute to the final output of the RNN, and
therefore, to the outcome of the translation [22]. Likewise,
we have assumed the sequence of the different statuses of
the features contribute to the final outcome of the patients’
status. Thus, we use attention to calculate the context for
the variables as in [16], [19] in order to understand what
parameters have contributed most to the final outcome. In the
following sections, we first explain the inputs and the time
series then the model is explained, and finally, we explain
how the results are actually interpreted.

A. Problem Setup

For each patient i we have a multi-variate sequence Pi
= [x1, x2, x3, ..., xn] where xt ∈ {0, 1}rand1 ≤ t ≤ n. xt
is a vector representing status of different physiological and
laboratory variables at time-step t of the sequence, and r is the
total number of possible states of features that were explained
in section (III-B). For each of the aforementioned states, the
corresponding element of vector xt is one.

B. Prediction Model

The high level architecture of our model is depicted in
Fig. 1. Essentially, we have employed the prediction model
proposed in [16] as the core of our model as is explained
below. In order to consider the influence at the time-step level
and the variable level (individual elements of xt), a linear
embedding is used as follows:

vt =Wembxt (1)

The vector vt is the linear embedding of the input vector xt,
m is the size of the embedding dimension and Wemb ∈ m×r
represents the embedding matrix.

We employ two sets of weights, one for calculating
the attention at time-step level and the other for calcu-
lating the attention at variable level. The set of scalars
α1, α2, ..., αn hold the amount of influence of time-step
t on the final outcome and vectors β1, β2, ..., βn repre-
sent the influence of each coordinate of embedding vector
v1,1, v1,2, v1,m, ..., vn,1, vn,2, ..., vn,m .



Unlike [16], we do not use unidirectional RNNs. Rather,
we employ bidirectional RNNs as in [17]–[19]. Bidirectional
RNNs are becoming a point of interest in time series analysis.
With their ability to produce two different sets of hidden states,
from backward and forward iterating, they tend to outperform
their unidirectional counterparts [19]. In order to generate
α′s and β′s separately, we employ two biderctional RNNs,
BiRNNα and BiRNNβ . The hidden states are calculated for
both directions for each of the BiRNNs. For each t, 1 ≤ t ≤ n
we calculate hidden states of BiRNNs as follows:

[gft ; g
b
t ] = BiRNNα(vt)

gt = [gft ; g
b
t ]

et = wTαgt + bα

[hft ;h
b
t ] = BiRNNβ(vt)

ht = [hft ;h
b
t ]

(2)

We then calculate α′s:

α1, α2, ..., αn = softmax(e1, e2, ..., en) (3)

For t = 1 to n the variable-level attentions are calculated as:

βt = tanh(Wβht + bβ) (4)

We can calculate the context vector ct for the time-step t using
the equation below:

ct =

t∑
j=1

αjβj � vj (5)

In the above equation, � represents an element-wise multipli-
cation. Using context vector ct ∈ IRm, we can predict the true
label yt ∈ {0, 1}2 as follows:

ŷt = softmax(Wct + b) (6)

The parameters W ∈ IR2×m and b ∈ IR2 are learned. In order
to calculate the loss, we use the cross-entropy as follows:

L(x1, x2, .., xN ) =

− 1

N

N∑
n=1

1

T (n)

T (n)∑
t=1

(
y>t log(ŷt) + (1− yt)>log(1− ŷt)

)
(7)

The attention mechanism that we used in our model uses
MLP2 to embed each time step’s data, and then uses RNN
to produce attention weights as in [16] with the difference
that the RNN we use is bidirectional, unlike the RETAIN
model. On the other hand, the base model of our approach
for attention mechanism [22] first encodes words by RNN and
then creates attention weights by MLP. In other words, [22]
uses the reverse order of RNN and MLP compared to our
model. By doing so we maintain the interpretability, using the
MLP embedding layer, and then we calculate attentions using
RNN, which captures chronological correlations of data and
simulates a clinical expert that pays more attention to specific
parameters of the data.

2Multilayer Perceptron

Fig. 1. A conceptual overview of the presented model. The flow of the data
through the model can be viewed as a five step procedure. 1) The inputs
are embedded. 2) The hidden values are calculated. 3) The attentions are
calculated. 4) The embedded inputs weighted by attentions are summed up
to generate contexts. Finally, prediction is made.

C. Interpretation
In order to identify the extent that parameters contribute to a

certain result of the prediction, we follow the same approach as
RETAIN [16]. α, β and v determine the contributions of each
of the medical measurements in our prediction. The idea is that
we keep the αs and βs fixed, similar to a physician paying
more attention to certain factors she might see more important.
Thus, an element in vector xt which results in highest yn,s
has the highest contribution. The predictions are made from
the inputs as follows:

p(yn|x1, ..., xn) = p(yn|cn) = softmax
(
Wct + b

)
(8)

As in equation (5), cn ∈ IRm represents the context vector.
The equation (8) can be written as:

p(yn|x1, ..., xn) = p(yn|cn) = softmax

(
W
( n∑
t=1

αtβt � vt
)
+ b

)
(9)

According to equation (1), we can split the vector vt into
Wemb × xt components. Thus we will have:

p(yn|x1, ..., xi) =

= softmax

(
W
( n∑
t=1

αtβt �
r∑

k=1

xt,kWemb[:, k]
)
+ b

)
= softmax

( n∑
t=1

r∑
k=1

xt,kαtW
(
βt �Wemb[:, k]

)
+ b

)
(10)

xt,k denotes the k-th element of vector xt. We can rewrite the
equation (10) as follows which makes us able to calculate the



TABLE I
THE SUMMARY OF PERFORMANCE OF DIFFERENT MODELS ON OUT OF

SAMPLE DATA

AUC Accuracy
HL # * 1 2 3 1 2 3
ISAP 0.7478 0.7547 0.7558 0.7484 0.7548 0.7550

RETAIN 0.7539 0.7531 0.7494 0.7540 0.7530 0.7494
CDP-TT 0.6331 0.6265 0.6038 0.6346 0.6285 0.6077

* Hidden Layers Count

contribution of each elements of vector xt (where t ≤ n) to
the prediction of yn:

λ(yn, xt,k) = αtW
(
βt �Wemb[:, k]

)
︸ ︷︷ ︸

Coefficient of contribution

xt,k (11)

To make the equation more readable, we omitted the index
n from αt and βt. However, the attention values αt and βt
are considered for the step t since we are making a prediction
for that step. The coefficient solely represents the amount of
contribution since the input vector xt is binary. We should note
that we have discretized the continuous medical measurements
xt. If we were to use the continuous inputs directly with no
discretization, the value of λ would be representative of the
contribution [16].

V. RESULTS & DISCUSSION

The presented model was trained with multivariate time
series of 11700 patients in a 5-fold cross validation. We
compared our model with the original RETAIN [16] with
different settings and another attention-based approach [18]
as baselines. In this section we discuss our results.

A. Baselines and Performances

The baselines for our model are as follows:
• RETAIN model which uses one-directional RNNs with

reverse inputs [16]. In order to refer to this model we
simply use RETAIN.

• The attention-based approach to capturing disease pro-
gression through time proposed in [18]. For referring to
this model we use CDP-TT.

• Our model which consist of bi-directional RNNs. And
we refer to it by Interpretable Attention-based Sepsis
Prediction Model (IASP).

For the RNNs implemented in the above models we consider
using 1, 2 and 3 hidden layers. 5734 out of 11700 patients
in our cohort are septic. Although it is approximately half
of the patients, we consider using ROC curve as the metric
of performance [29]. Here there are two classes: septic and
non-septic patients. Based on our experiments, our model’s
performance reaches to over 0.75 accuracy in AUROC. The
area under the ROC curve for each of our experiments are
listed in table (I). Furthermore, the ROC curves for the
different settings of our experiment are depicted in Fig. 3.

Despite the fact that we have implemented the same RE-
TAIN model, presented in [16], in order to compare its

performance against our approach, we produced different per-
formance results compared to what the authors have reported.
The key difference that explains this contradiction is that we
predict the occurrence of a certain disease (in our case, sepsis)
at the end of the sequence as in Learning to Diagnose [11].
And in order to feed the continuous medical measurements to
the model, we imputed the missing values and then discretized
them by changing them to binary vectors. Whereas the data
set used in RETAIN and in [18] is in fact of type ICD9 labels
and predictions are made for the next time-step of the sequence
given the previous encounter sequences.

B. What Do The Graphs Say?

Once the training of the model is done, the contributions for
any patient, outside of the training set, can be calculated. For a
septic patient, contributions were calculated, normalized, and
then visualized as the heat map depicted in Fig. 2. Essentially
the heat map illustrated here is composed of several tiles. Each
of these tiles represents the amount of the contribution of the
medical parameter from its corresponding hour to the final
prediction. We should note that the input data is aggregated
in hourly bins. The brighter a heat map’s tile, the more
it contributes to the final prediction of sepsis. The graph’s
timeline starts from the admission of the patient to the ICU
and ends when the patient’s data fully complies with the sepsis
3 definition [1].

Our AI model recommends medical doctors to pay more
attention to certain parameters that might be more effective
on the patient’s outcome. Thereupon, according to Fig. 2, we
have visualized the real values of parameters with highest
effects in Fig. 4. The advantage of our model to the baselines
is that since the heat map, illustrated in Fig. 2, is based on the
physiological measurements, it provides more details about
the correlation of each parameter at its time step and the
final predicted outcome. Whereas, this amount of details is
not provided by the methods that only use ICD9 codes.

We should note that when training the model, we use both
interpolation and forward filling for handling missing values.
However, in order to test our model, or for a real world
prediction setting, we do not know what will be the next value
of a certain variable. Therefore, in order to create these graphs,
we only use forward filling for handling missing values. This
explains flat segments of the curves in Fig. 4.

VI. CONCLUSION

As deep models advance through time, the blackbox-ness
of them becomes a major concern. Particularly in health care
applications, the need to justify and explain is considerable
since physicians might want to know more details about the
certain causes of the resulting predictions. So that they could
make more proper decisions.

In this research project, we used an attention-based RNN to
predict sepsis from the multivariate time series of physiologi-
cal and clinical labs and measurements. We also calculated the
relative effects of each medical parameter to the final outcome
of the prediction. However, there are a few shortcomings with



Fig. 2. A heatmap that represents the contributions of each of the measure-
ments along time for a single septic patient. The brighter the tile, the more
it contributes to the final prediction that the person is septic. The heatmap
starts from the time patient was admitted to ICU up to the point that she is
considered to be septic according to sepsis 3 definition.

Fig. 3. The ROC curves for different settings of our experiment. Figures
(a), (b), and (c) represent the models with 1, 2, and 3 hidden layers in their
RNNs,respectively.

Fig. 4. The raw measurements of parameters with highest contributions for
the patient whose contribution graph is depicted in Fig. 2.

our approach which we seek to address in our future work.
First of all, it is important to consider evaluating other methods
to handle the missing data. Second, a proper clustering of data
would possibly yield more interpretability and much robust
results. Third, we will explore other ways of feeding the data to
our model in order to increase the expressiveness of the dataset
which would hopfully yield better performance metrics.
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