

An Efficient Approach for Load-Shared and Fault-
Tolerant Multicore Shared Tree Multicasting

A. Alyanbaawi, B. Gupta, S. Rahimi, N.Rahimi, and K. Sinha
Department of Computer Science

Southern Illinois University
Carbondale, IL 62901, USA

ashraf @(siu.edu), bidyut, Rahimi, nick, Koushik.sinha@(cs.siu.edu)

 Abstract— Multicasting can be done in two different ways:
source based tree approach and shared tree approach. Shared
tree approach is preferred over source-based tree approach
because in the later construction of minimum cost tree per source
is needed unlike a single shared tree in the former approach.
However, in shared tree approach a single core needs to handle
the entire traffic load resulting in degraded multicast
performance. Besides, it also suffers from ‘single point failure’.
In this paper, novel and efficient schemes for load shared
multicore multicasting are presented. Multiple cores are selected
statically, that is, independent of any existing multicast groups
and also the selection process is independent of any underlying
unicast protocol. Some of the selected cores can be used for fault-
tolerant purpose also to guard against any possible core failures.

 Keywords—core selection; pseudo diameter; distance vector
routing; multicore multicasting; load sharing

I. INTRODUCTION

 With the growth of internet, multicast routing has gained
its importance in typical applications which include numerous
forms of audiovisual conferencing and broadcasting,
negotiation and e-commerce systems, replicated database
querying, online games as well as the trivial resource
discovery feature of Internet routers [1], [2], [4], [6], [12] -
[15].

 Multicast communication protocols can be classified into
two categories, namely, source-based trees [1], [15] and core
based trees (CBT) [2]. A problem associated with source-
based-tree routing is that a router has to keep the pair
information (source, group) and it is a one tree per source. In
reality the Internet is a complex heterogeneous environment,
which potentially has to support many thousands of active
groups, each of which may be sparsely distributed; this
technique clearly does not scale. Shared tree based approaches
like CBT [2], [11] and protocol independent multicasting –
sparse mode (PIM-SM) [6] offer an improvement in
scalability by a factor of the number of active sources.
 A core-based tree / shared tree [2] involves having a single
node, known as the core of the tree, from which branches

emanate. These branches are made up of other routers, so-
called non-core routers, which form a shortest path between a
member-host’s directly attached router and the core. A core
need not be topologically centered, since multicasts vary in
nature and therefore, the form of a core-based tree also can
vary [2]. CBT is attractive compared to source based tree
because of its key architectural features like scaling, tree
creation, and unicast routing separation. The major concerns
of shared tree approach are; core selection and core as a single
point failure. Core selection [2], [7] is the problem of
appropriate placement of a core or cores in a network for the
purpose of improving the performance of the tree(s)
constructed around these core(s).

 In static networks core selection depends on knowledge of
entire network topology. It involves all routers in the network.
There exist several important works [3], [5], [13], [14] which
take into account network topology while selecting a core.
Maximum Path Count (MPC) core selection method [3] needs
to know complete topology to calculate shortest paths for all
pairs. The nodes are then sorted in descending order of their
path counts. The first nodes are selected to be the candidate
cores. In Delay Variant Multicast Algorithm (DVMA) it is
assumed that the complete topology is available at each node
[5]. It works on the principle of k-shortest paths to the group
of destination nodes concerned. If these paths do not satisfy a
delay constraint, then it may find a longer path, which is a
shortfall of DVMA. Optimal Cost Based Tree (OCBT) [13],
[14] approach calculates the cost of the tree rooted at each
router in the network and selects the one which gives the
lowest maximum delay over all other roots with lowest cost. It
needs knowledge of the whole topology.

A. Related Works

 In the case of single core-tree based multicast, the core has
to handle all traffic load. It degrades the performance. To
overcome the problem, shared tree multicast using multiple
cores is the only solution. It distributes the total traffic load on
the cores resulting in improved load balancing and thereby
causing improved multicast performance. There exist in the

literature some important contributions in this area of
multicore-based multicasting [16] - [18]. The goal of these
works is to achieve load balancing. In [16], Jia et al. have
presented a Multiple Shared-Trees (MST) based approach to
multicast routing. In their approach, the tree roots are formed
into an anycast group so that the multicast packets can be
anycast to the nearest node at one of the shared trees.
However, load balancing is at the level of each source
choosing the best core closest to it rather than attempting to
utilize all the candidate cores simultaneously. This may lead
to congestion in a core if multiple sources choose that core
based on their shortest delay metric.

 In [17], a unique tree consisting of multiple cores is
maintained with one of the cores being the root. The objective
of the work is to develop a loop free multi-core based tree by
assigning level numbers to the cores and the nodes to join the
tree to help maintain the tree structure. The cores need to
coordinate with one another for their operations.

 Zappala et.al. [18] have considered two different
approaches for multicore load balanced multicasting. The first
one is senders-to-many scheme; it partitions the receivers of a
group among the trees rooted at different cores so that each
receiver is exactly on one core tree at a time. Therefore, one
core tree spans some of the group members only. Even though
it offers less routing state, yet it has the complex task to take
care of newly arriving group members, i.e. partition them
appropriately to the different core trees. In their second
scheme, each core tree spans over the entire receiver group.
To transmit data, different senders in a multicast group can
use different trees with respect to the proximity of the source
to the tree; it helps in balancing the traffic load and improve
performance. The trees are maintained independently unlike
the work in [17]. The core distribution method follows the
hash based scheme of [19].

B. Our Contribution

 In this paper, we have considered shared tree multicast
with multiple cores. The motivation of the work is to improve
multicast performance via load sharing; we prefer the term
‘sharing’ to ‘balancing’ because the objective of the work is to
engage all cores whenever possible and more so because it is
not possible to know a priori the duration of different
multicast sessions running at a given time. A brief sketch of
the proposed work is as follows. Our core selection process is
different from the ones in [18] and [19] and it is based on the
idea of pseudo diameter [8] – [10]. The proposed schemes
neither partition the receivers among the different core-trees
nor they build a unique tree consisting of multiple cores [17],
[18]. In our proposed scheme, each core tree spans all
members of all existing groups. Cores are determined
statically using the routing information of all routers in the
underlying unicast domain. It is independent of any
underlying unicast protocol active in the domain. The metric

used in the determination is the one used in the unicast routing
tables of the routers. The best core, i.e. the core with the
minimum pseudo diameter, is called the primary core. In our
approach, a sender does not decide which core to send packets
to unlike in [18]; rather any source must send its first packet to
the primary core and the primary core then decides if the
sender needs to send the rest of its packets to any other core.

 The paper is organized as follows. In Section II, we state
briefly the existing concept of pseudo diameter and in Section
III we state the multicore selection scheme. In Section IV, we
discuss the performance of the core selection scheme. In
Section V, we present the proposed multi-core load-sharing
multicast schemes. Finally, Section VI draws the conclusion.

II. PSEUDO DIAMETER

 Two widely used unicast routing protocols are distance
vector routing (DVR) and link state routing (LSR). In the
former one, routers do not have the knowledge of network
topology, whereas in the later routers have this knowledge.
Note that the concept of pseudo diameter is independent of the
underlying unicast routing protocol. We denote the unicast
routing table by UCTi for some router ri; it can be either the
DVR table or the LSR table of the router depending on the
unicast protocol used. Pseudo diameter of a router ri denoted
as Pd(ri) is defined as follows [8] - [10].

 In words, pseudo diameter of router ri denoted as Pd(ri), is
the maximum value among the costs (as present in its routing
table UCTi) to reach from ri all other routers in a network. The
implication of pseudo-diameter is that any other router is
reachable from router ri within the distance (i.e. no. of
hops/delay etc.) equal to the pseudo diameter Pd (ri) of router
ri,, It thus directly relates to the physical location of router ri.
Pseudo diameter is not the actual diameter of the network,
because it depends on the location of router ri in the network.
So different routers in the network may have different values
for their respective pseudo diameters. Therefore, pseudo
diameter Pd is always less than or equal to the actual diameter
of a network.

 As an example, consider the network shown in Fig. 1.
Without any loss of generality, we have considered DVR
protocol as the underlying unicast protocol used in the
network. The respective DVR tables of the routers are shown
in Fig. 2. Note that the diameter of the network is 90. From
router A’s table, its pseudo diameter is 90, which is equal to
the network diameter; whereas for router C it is 70 as is seen
from C’s DVR table. It means that if C is the source of a
communication, the maximum cost to reach any other router
will be 70, which is less than the network diameter of 90. In

Pd (ri) = max {ci,j}, where ci,j = cost (ri, rj), [1 j n, j i]
and ci,j UCTi and n = number of routers in the network

this context, the following observations [10] are worth
mentioning.

Lemma 1. Let Si be the source and ri, rj, ….., rm be the
respective reductions in the pseudo-diameter (Pd) of Si before a
data packet arrives at its destination D, then ri + rj +………+ rm

 Pd .

Lemma 2. Any broadcasting algorithm based on pseudo
diameter guarantees that each router in the network receives a
copy of the packet sent by the broadcast source.

III. MULTICORE SELECTION SCHEME

 We present a systematic approach to select the cores to be
used for multicore multicasting. Cores are selected statically
using the routing information of all routers in the underlying
unicast domain. This core selection is independent of any
multicast group. For multicore multicast, each router ri
executes the following steps to select the required number of
cores, m.

 Remark 1. Every router creates the same sorted list of the m

cores.

Remark 2. Message complexity of the core selection process
is O(n2).

Remark 3. In the core selection process, a router does not
need to know the entire topology.

Observation 1. For fault-tolerant single-core multicast, there
are (m-1) number of redundant (stand by) cores.

Observation 2a. To guard against any possible core failures
while using the m cores for multicasting, a total of 2m cores
can be selected by the Multicore selection process.

Observation 2b. According to the positions in the sorted list
all odd-numbered cores can be used for multicasting. Every
odd-numbered core will have its standby as the even
numbered core that immediately follows it in the sorted list of
the cores; this standby core selection utilizes the proximity
between these two cores from the viewpoint of their pseudo
diameter values.

A. An Example

 Consider the example network of Fig.1. Primary core, in
our approach, is a router that has the least pseudo diameter
value compared to all other routers in the network. From the
DVR tables of the network, pseudo-diameter of all routers in
the network can be obtained. Pseudo diameters of routers A,
B, C, D, E, F, G, and H are 90, 90, 70, 80, 60, 90, 80, and 80
respectively.
 Each router broadcasts its Pd value to all other routers in
the network. At the end of the broadcast, each router has the
same sorted list of the routers based on their respective pseudo
diameters. It is shown in Fig. 3. Observe in the figure that
there is more than one router with same Pd value. Routers D,
G, and H have the same Pd value, viz., 80. If this situation
arises, these routers are sorted in descending order of their
router ids (IP addresses). Without any loss of generality, we
assume that router H has the highest router id, followed by
routers G and D respectively. So router H has the priority to
be selected as a possible candidate core over routers G and D.
According to Fig. 3, for the given network in Fig. 1, router E
is the primary core as it is the one with least pseudo-diameter
value, 60. For multicore multicasting, the first few routers
from the list will be selected as needed. To incorporate core
redundancy in case of single core multicast, router C can be
chosen as the secondary core (standby core) as it has the next
least pseudo-diameter. It will make the single-core scheme
fault tolerant. More cores can act as standby for larger degree
of fault-tolerance.

 Fig. 1 An 8 router network

 Multicore selection process

1. Router ri determines its Pd (ri) from its unicast routing
table.

2. It broadcasts Pd (ri) in the network using pseudo
diameter based broadcasting [10].

3. Router ri receives all Pd (rj) from every other router rj ,
1 j n, j i

4. Router ri creates a list of m routers out of all n routers,
sorted in ascending order based on their Pd values.
// the first one in the m-router list is the primary core.

A

30

20

C B

D E F

H G

30

 20

20 20

50

20

40

50

A
Dest. Next Delay

A A 0
B B 30
C C 40
D B 60
E C 60
F C 90
G C 80
H C 80

C
Dest. Next Delay

A A 40
B A 70
C C 0
D E 60
E E 20
F F 50
G E 40
H E 40

B
Dest. Next Delay

A A 30
B B 0
C A 70
D D 30
E E 50
F E 90
G D 50
H E 70

D
Dest. Next Delay

A B 60
B B 30
C G 60
D D 0
E G 40
F G 80
G G 20
H G 60

 E
Dest. Next Delay

A C 60
B B 50
C C 20
D G 40
E E 0
F H 40
G G 20
H H 20

F
Dest. Next Delay

A C 90
B H 90
C C 50
D H 80
E H 40
F F 0
G H 60
H H 20

G
Dest. Next Delay

A E 80
B D 50
C E 40
D D 20
E E 20
F E 60
G G 0
H E 40

H
Dest. Next Delay

A E 80
B E 70
C E 40
D E 60
E E 20
F F 20
G E 40
H H 0

 Fig. 2. DVR tables of the routers

ri Pd(ri)

E 60
C 70
H 80
G 80
D 80
F 90
B 90
A 90

Fig. 3. Sorted list based on the pseudo diameters

IV. PERFORMANCE

 The presented multicore selection scheme needs only one
broadcast independent of the number of cores to be used for
multicasting. Therefore, the message complexity is O(n2),
where n is the total number of nodes in the network. However,
in our approach a router does not need to have the complete
topological information. Note that to incorporate the effect of
any changes in the network, e.g., router failure, this core
selection process can run periodically. Besides, the core
selection scheme is independent of any multicast groups
unlike most existing works because it is a static core selection
approach. The performance of the presented core selection
method is compared with some important existing core
selection approaches. Complexities of these methods are
briefly discussed below.

 Maximum path count (MPC) core selection method [3]
finds the shortest paths for all pairs of nodes in the given
network. Complexity of this approach is (n2) where n is the
number of nodes in the network. Minimum average distance
(MAD) method [3] finds the average distance along the
shortest paths from each node to all other nodes in the
network. The nodes are sorted in ascending order of their
average distance. The first few nodes are selected to be the
candidate cores. Complexity of this approach is O(n2), where
n is the total number of nodes in the network. However, in
both MPC and MAD a router needs to have the complete
topological information unlike our approach. In Delay Variant
Multicast Algorithm (DVMA) [5] the worst case complexity
of DVMA is (klmn4), where k, l are the numbers of path
generated, m is the size of the multicast group, and n is the
number of nodes in the network. OptTree [3] method suggests
an optimization criterion whose complexity is (|M|3|C|),
where M is the no. of multicast group members and C is the
no. of candidate cores.

 Topology Generation: In our experimental setup we have
used the NS2 simulator. BRITE topology generator is used to
create flat random graphs. In BRITE topology, we have
chosen Waxman model for topology generation which uses
Waxman’s probability model for interconnecting the nodes of
the topology. From the provided heavy-tailed and random

Primary
 core

approach for node placement, we have used random
placement approach in which each node is placed in a
randomly selected location of the plane.

 We have experimented with 10 different 30-router
topologies, 40-router topologies, and 50-router topologies. In
each topology group sizes vary from 5 to 25.

Fig. 4. 30-router network

Fig. 5. 40-router network

Fig. 6. 50-router network

 For each 30-router topology multiple routers are chosen as
sources for each group. We have measured the total number of
packets generated for core selection in our approach. We have
then compared it with some existing important related
approaches. Fig. 4 shows the average number of packets
generated on all 30-router topologies for the core selection
approaches discussed in this paper. In a similar way average
number of packets generated for 40 and 50-router network-
topologies are shown in Fig. 5 and Fig. 6 respectively.
Simulation results have shown superiority of our approach to
these other approaches.

V. LOAD SHARED MULTICORE MULTICAST

 In this section, we present two simple and yet very
effective load-shared multicast schemes, LSM-cast1 and
LSM-cast2; we have considered distribution of senders to
different cores irrespective of which group a sender sends to.
Each core tree spans all members of all existing groups. Cores
are determined statically using the routing information of all
routers in the underlying unicast domain. It is independent of
any underlying unicast protocol active in the domain. The best
core, i.e. the core with the minimum pseudo diameter, is called
the primary core. In our approach, a sender does not decide
which core to send packets to unlike in [18]; rather any source
must send its first packet to the primary core and the primary
core then decides if the sender needs to send the rest of its
packets to any other core. Below we present the schemes. We
assume that there are m cores present in the system, C0
denotes the primary core, and Ci denotes the ith core. Si

new
denotes the ith source; N denotes the current number of unique
senders initially set at 0.

 Let us now estimate the extra traffic load on the primary
core. Primary core always has to send the message ‘continue

1

100

10000

1000000

100000000

5 10 15 20 25

M
es

sa
ge

 C
om

pl
ex

ity

Group Members

30 Node Network

MPC / MAD

DVMA

OptTree

Static Core
Selection

1

100

10000

1000000

100000000

5 10 15 20 25

M
es

sa
ge

 C
om

pl
ex

ity

Group Members

40 Node Network

MPC / MAD

DVMA

OptTree

Static Core
Selection

1

100

10000

1000000

100000000

1E+10

5 10 15 20 25M
es

sa
ge

 C
om

pl
ex

ity

Group Members

50 Node Network

MPC / MAD

DVMA

OptTree

Static Core
Selection

LSM-cast1

Sender Sinew (executed by each new sender)

1. Sends the 1st multicast packet to C0
2. Receives the message ‘continue with core Cj’
3. Sends rest of the packets to Cj

Primary core C0 (executed by the primary core)

1. Receives the 1st multicast packet from Sinew
2. Multicasts the packet in the C0-based tree
3. Selects the core Cj = N mod m
4. Unicasts ‘continue with core Cj’ to Sinew
5. N = N+1

Core Cj

1. Multicasts the packets received from Sinew

with core Cj’. So there are N unicasts to N sources from the
primary core. In addition, we need to consider the following
different cases as well. Let N = km + n', k is an integer and 0
k m and n' < m

 We see that this extra load is a function of both N and m.
However, networks have no control over the number of
multicast sources; therefore, we infer that the extra traffic load
on the primary core can reduce as we select more cores.

We now state the second scheme.

 Let us now estimate the extra traffic load on the primary
core. As in LSM-cast1 there are N unicasts to N sources from
the primary core. In addition, we need to consider the
following.

Thus, we infer that the extra traffic load on the primary core is
less in the second approach than in the first one because it is
the extra unicasts in the second approach, not the extra

multicasts. However, when N is small the first approach may
become almost comparable with the second approach from the
viewpoint of this extra traffic load.

VI. CONCLUSION

 In this paper we have presented a multicore selection
scheme, which is independent of any existing multicast groups
and independent of any underlying unicast protocol. It uses the
concept of pseudo diameter. The metric used in the
determination is the one used in the unicast routing tables of
the routers. The core selection is unanimous because all
routers have the same information needed for the selection.
The proposed load sharing schemes neither partition the
receivers among the different core-trees nor they build a
unique tree consisting of multiple cores [17], [18]. In our
approaches, a sender does not decide which core to send
packets to unlike in [18]; rather any source must send its first
packet to the primary core and the primary core then decides if
the sender needs to send the rest of its packets to any other
core. Therefore, which core to use by a sender is not the
sender’s responsibility – this appears to be logical. We have
shown that the degree of fault-tolerance can be enhanced from
covering single point-failure to any number of core failures
and the presented idea as appeared in the observations to
achieve this is very simple. .

REFERENCES

[1] Andrew Adams, Jonathan Nicholas, and William Siadak, “Protocol
independent multicast - dense mode (PIM-DM),” Internet Engineering
Task Force (IETF), RFC-3973, January 2005.

[2] Tony A. Ballardie, “Core based tree multicast routing architecture,”
Internet Engineering Task Force (IETF), RFC 2201, September 1997.

[3] A. Karaman and H. Hassanein, “Core selection algorithms in multicast
routing – comparative and complexity analysis,” J. Computer
Communications, Vol. 29, No. 8, pp. 998-1014, May 2006.

[4] Stephen E. Deering and David R. Cheriton, “Multicast routing in
datagram internetworks and extended LANs,” ACM Transactions on
Computer Systems (TOCS), Vol. 8, No. 2, pages. 85-110, May 1990.

[5] George N. Rouskas and Ilia Baldine, “Multicast routing with end-to-end
delay and delay variation constraints,” IEEE Journal on Selected Areas
in Communications, Vol. 15, No. 3, April 1997.

[6] Bill Fenner, Mark Handley, Hugh Holbrook, and Isidor Kouvelas,
“Protocol independent multicast - sparse mode (PIM-SM),” Internet
Engineering Task Force (IETF), RFC-4601, August 2006.

[7] Weijia Jia, Wei Zhao, Dong Xuan, and Gaochao Xu, “An efficient
fault-tolerant multicast routing protocol with core- based tree
techniques,” IEEE Trans. on Parallel and Distributed Systems, Vol.10,
No.10, pages.984-1000, October1999.

[8] Sindoora Koneru, Bidyut Gupta, Shahram Rahimi, and Ziping Liu,
“Hierarchical pruning to improve bandwidth utilization of rpf-based
broadcasting,” IEEE Symposium on Computers and Communications
(ISCC), Split, Croatia, pp. 96-100, July 2013.

[9] Sindoora Koneru, Bidyut Gupta, and Narayan Debnath, “A novel DVR
based multicast routing protocol with hierarchical pruning,”
International Journal of Computers and Their Applications (IJCA), Vol.
20, No. 3, pages 184 – 191, September 2013.

[10] Sindoora Koneru, Bidyut Gupta, Shahram Rahimi, Ziping Liu, and
Narayan Debnath, “A highly efficient rpf-based broadcast protocol using
a new two-level pruning mechanism,” Journal of Computational Science
(JOCS), Vol. 5, No. 3, March 2014.
SpringerLink, Vol. 2345, pages.1045-1056, Berlin, Heidelberg, 2002.

Case 1: N m
 Number of extra single-packet multicasts by C0:
 (N-1)
Case 2: N > m
 Number of extra single-packet multicasts by C0:
 k(m-1) + (n'-1)

LSM-cast2

Sender Sinew (executed by each new sender)

1. Sends the 1st multicast packet to C0
2. Receives the message ‘continue with core Cj’
3. Sends rest of the packets to Cj

Primary core C0 (executed by the primary core)

1. Receives the 1st multicast packet from Sinew
2. Selects the core Cj = N mod m

 3. Unicasts the packet to Cj
4. Unicasts ‘continue with core Cj’ to Sinew
5. N = N + 1

Core Cj

 1. Multicasts the packet received from Co
 2. Multicasts the packets received from Sinew

Case 1: N m
 Number of unicasts by C0 to other cores: (N-1)
Case 2: N > m
 Number of unicasts by C0 to other cores:
 k(m-1) + (n'-1)

[11] Hwa-Chun Lin and Shou-Chuan Lai, “A simple and effective core
placement method for the core based tree multicast routing architecture,”
Proc. IEEE Int. Conf. Performance, Computing, and Communications,
pages. 215-219, February 2000.

[12] Tom Pusateri, “Distance vector multicast routing protocol,” Juniper
Networks, Internet Engineering Task Force (IETF), draft-ietf-idmr-
dvmrp-v3-
 11.txt, October 2003.

[13] Young-Chul Shim and Shin-Kyu Kang, “New center location
algorithms for shared multicast trees,” Lecture Notes in Computer
Science, SpringerLink, Vol. 2345, pages.1045-1056, Berlin, Heidelberg,
2002.

[14] David G. Thaler and Chinya V. Ravishankar. “Distributed center-
location algorithms,” IEEE Journal on Selected Areas in
Communication, vol. 15, no. 3, pages. 291- 303, April 1997.

[15] David Waitzman, Craig Partridge and Stephen E. Deering “Distance
vector multicast routing protocol (DVMRP),” Internet Engineering Task
Force (IETF), RFC 1075, November 1988.

[16] W. Jia, W. Tu, W. Zhao and G. Xu, “Multi-shared-trees based multicast
routing control protocol using anycast selection,” The International
Journal of Parallel, Emergent and Distributed Systems, Taylor &
Francis, vol. 20(4), pp. 69–84, March 2005.

[17] C. Shields, J.J. Garcia-Luna-Acevez, “The ordered core based tree
protocol”, Proc. IEEE INFOCOM’97.

[18] D. Zappala, A. Fabbri, and V. Lo, “An evaluation of shared multicast
trees with multiple active cores,” Journal of Telecommunication
Systems, March 2002.

[19] Deborah Estrin, Mark Handley, Ahmed Helmy, and Polly Huang, “A
dynamic bootstrap mechanism for rendezvous-based multicast routing,”
Proc. IEEE INFOCOM, 1999

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

