
SentiCR: A Customized Sentiment Analysis Tool
for Code Review Interactions

Toufique Ahmed†, Amiangshu Bosu‡, Anindya Iqbal†, Shahram Rahimi‡
Department of Computer Science & Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh†

Department of Computer Science, Southern Illinois University Carbondale, IL, USA‡
{toufiqueahmed, anindya}@cse.buet.ac.bd†, {abosu, rahimi}@cs.siu.edu‡

Abstract—Sentiment Analysis tools, developed for analyzing
social media text or product reviews, work poorly on a Software
Engineering (SE) dataset. Since prior studies have found devel-
opers expressing sentiments during various SE activities, there
is a need for a customized sentiment analysis tool for the SE
domain. On this goal, we manually labeled 2000 review comments
to build a training dataset and used our dataset to evaluate
seven popular sentiment analysis tools. The poor performances
of the existing sentiment analysis tools motivated us to build
SentiCR, a sentiment analysis tool especially designed for code
review comments. We evaluated SentiCR using one hundred 10-
fold cross-validations of eight supervised learning algorithms.
We found a model, trained using the Gradient Boosting Tree
(GBT) algorithm, providing the highest mean accuracy (83%),
the highest mean precision (67.8%), and the highest mean recall
(58.4%) in identifying negative review comments.

I. INTRODUCTION

A person’s sentiment (i.e., positive or negative attitude)

towards another person, entity, or event significantly influences

his/her decision-making process such as forming relationships,

choosing candidates in a local election, selecting commercial

products, reviewing movies, or predicting financial condition

of a stock market [24]. Sentiments not only influence the

quality of relationship between two persons but also have high

impacts on productivity, task quality, task synchronization,

and job satisfaction of collaborative activities [8] such as

software development [14]. Due to the limited availability of

face-to-face communications, OSS developers primarily use

various text-based tools such as mailing lists, forums, source

code repositories, code reviews, and issue tracking tools to

manage their collaborations [42]. Prior Software Engineer-

ing (SE) studies found developers expressing sentiments in

commit messages [14], issue tracking systems [19], [27],

project artifacts [27], and mailing-lists [15], [47]. Yet, the

lack of a reliable sentiment analysis (SA) tool [20], [47] for

the SE domain has hindered evaluating the impacts of those

sentiments.

Most of the prior research on SA techniques have focused

on analyzing social media posts, product reviews or movie

reviews. Although existing SA tools work well on social

media posts or product reviews, those perform poorly on

a SE dataset [20], [47]. The text of SE communications

often differ from articles, books, or even spoken language

as those often include technical jargons, word contractions,

emoticons, URLs, and code snippets. Since SA tools need to

be customized for each domain [23], the poor performances

of existing SA tools on a SE dataset is not surprising.

To validate the need for a customized SA tool for the SE

domain, we built a sentiment oracle by manually labeling 2000

randomly selected review comments from 20 popular OSS

projects. Using our oracle, we evaluated the performances of

seven commonly used SA tools. The poor performances of

existing SA tools on our dataset motivated us to implement

SentiCR, a supervised learning based SA tool for code reviews.

We evaluated eight commonly used supervised learning algo-

rithms based on hundred 10-fold cross-validations. We found a

model, trained using the Gradient Boosting Tree (GBT) [36]

algorithm, providing the highest mean accuracy (83%), the

highest mean precision (67.8%), and the highest mean recall

(58.4%) in identifying review comments expressing negative

sentiments.

In summary, the primary contributions of this study are:

• An empirically built sentiment oracle for the SE domain.

• SentiCR: A supervised sentiment analysis tool for code

review comments. Both SentiCR and our sentiment oracle

are publicly available at:

https://github.com/senticr/SentiCR/

• A comparative analysis of existing sentiment analysis

tools on a SE dataset.

The remainder of the paper is organized as follows. Section

II provides background about code review and sentiment anal-

ysis. Section III evaluates existing sentiment analysis tools.

Section V describes the threats to validity of our findings.

Finally, Section VI provides some directions for future work

and concludes the paper.

II. BACKGROUND

This section presents a brief background on two topics

relevant to this study: peer code review and sentiment analysis.

A. Code Review

Code review is the practice where a developer submits

his/her code change to a peer to judge its eligibility to be

included into the main project code-base [6]. Compared with

the traditional heavy-weight inspection process, peer code

review is more informal, tool-based, and used regularly in

978-1-5386-2684-9/17/$31.00 c© 2017 IEEE ASE 2017, Urbana-Champaign, IL, USA
Technical Research - New Ideas

106



practice [2]. Because the peer code review process has been

established to be effective, many OSS projects have adopted

it into their development process [2].

B. Sentiment Analysis

Sentiment Analysis is a natural language processing tech-

nique that analyzes the attitude of a speaker or an author of

a body of text towards entities such as products, services,

organizations, individuals, issues, or events [32]. Sentiment

analysis techniques aim to identify polarity (i.e., positive,

negative, or neutral) in a sentence or a paragraph.

Researchers have primarily used two types of sentiment

analysis techniques. Supervised learning based techniques,

which are able to adapt and create trained models for spe-

cific purposes and contexts, can be used in conjunction with

any of the existing supervised learning methods (e.g., Naı̈ve

Bayes, and SVM) [30]. Instead of using standard supervised

techniques, researchers have also proposed several custom

techniques specifically for sentiment classification tasks that

can take into account the contexts of words expressing senti-

ments [24]. However, supervised learning techniques require

a labeled training dataset, which might be costly or even

prohibitive.

On the other hand, lexicon-based analyzers, which do not

require a training dataset, identify the sentiment for a docu-

ment from the semantic orientations of words or phrases in

the document [48]. Although lexical methods do not rely on a

labeled dataset, it is hard to create a unique lexicon-based

dictionary suitable for different contexts and often require

customizations of the dictionary for each domain [43].

III. EVALUATION OF SENTIMENT ANALYSIS TOOLS

Most of the prior SE studies used either SentiStrength [45]

(a lexicon-based analyzer) [14], [15], [37] or NLTK [5]

(a supervised learning based classifier) trained on movie

reviews [12], [39]. However, a recent study [20] observed

not only poor accuracies but also significant disagreements

between these two tools; which could potentially lead to

contradictory conclusions. To use in our study, an evaluation

of the existing tools on a SE dataset is necessary. Since

no labeled sentiment dataset exists in the SE domain, we

built a sentiment dataset using randomly selected code review

comments. Following sections describe our dataset generation

process and an evaluation of seven popular sentiment analysis

tools.

A. Training Dataset Generation

We adopted following eight-step approach to build a labeled

sentiment dataset from code review comments.

1) We used our Gerrit-Miner [6] tool to mine the code re-

view repositories of 20 popular OSS projects.Our project

selection was based on two criteria: i) an open source

project actively using Gerrit; and ii) each project has

performed at least 10,000 code reviews.

2) A manual inspection of the comments posted by some

accounts (e.g., ‘Qt Sanity Bot’ or ‘BuildBot’) suggested

Fig. 1. Web app to manually label the review comments

that those accounts were automated bots rather than

humans. These accounts typically contain one of the

following keywords: ‘bot’, ‘auto’, ‘CI’, ‘Jenkins’, ‘inte-

gration’, ‘build’, ‘hook’, ‘recheck’, ‘travis’, or ‘verifier’.

Because we wanted only code review comments from

actual reviewers, we excluded these bot accounts after a

manual inspection had confirmed that the comments were

automatically generated.

3) We randomly selected total 2000 review comments each

having at least 50 characters from the selected twenty

projects (100 comments from each project). The random-

ness of our selection process ensures that all types of

review comments are included in our dataset. We did

not adopt a proportionate selection as some of the large

projects (e.g., Android, Chromium OS, and OpenStack)

had significantly higher number of code reviews than the

others. A proportionate selection would have biased our

dataset in favor of the vocabulary of those large projects.

4) We developed a web-app (Figure 1) to manually label

the selected review comments. Three of the authors

independently labeled each of the review comment as

‘positive’, ‘negative’ or ‘neutral’ based on what s/he

would personally perceive if s/he was the recipient of a

review comment. To eliminate potential biases, the raters

could not view the ratings provided by others.

5) The three raters had consensus on 1,239 comments

(62.5%) in their initial independent ratings. We used

Fleiss’ Kappa [11] (useful for more than two raters)

to measure the level of agreement among the three

raters. κ = 0.408 (p < 0.001), indicates a “moderate

agreement” [21] for our initial ratings. The perception of

sentiment from a text varies across different persons [31].

While it was possible to achieve higher consensus among

our initial ratings with a prior discussed rating strategy,

such a rubrics would have prevented us from capturing a

real-world sentiment perception.

6) For the 771 comments, where one of the raters disagreed,

we had discussion sessions to determine the final ratings.

7) The final distribution of the labeled comments were: 7.7%

(‘positive’), 19.9% (‘negative’), and 72.4% (‘neutral’).

To improve the performances of sentiment classifiers, we

converted our three-class dataset into a two-class dataset

by relabeling both ‘positive’ and ‘neutral’ comments as

‘non-negative’.

107



TABLE I
PERFORMANCES OF SEVEN SENTIMENT ANALYSIS TOOLS

Precision Recall F-measure Accuracy

Afinn [29] 35.9% 36.2% 0.36 68.6%
NLTK (Hu and Liu) [16] 41.6% 35.7% 0.38 72.1%
SentiStrength [45] 37.5% 37.9% 0.38 69.4%
TextBlog [26] 45.5% 40.7% 0.43 73.6%
USent [34] 47.1% 30.4% 0.37 74.7%
NLTK Vader [17] 51.7% 14.8% 0.23 75.8%
Vivekn [28] 33.2% 84.7% 0.47 43.5%

8) Since the labeled dataset is highly imbalanced, we used

undersampling (i.e., randomly excluding a subset of the

majority class) [9], [25] to exclude 400 neutral comments.

We use this dataset of 1,600 labeled comments as an

‘oracle’ for all the subsequent analyses in this study. Our

dataset satisfies Thewall’s recommendation of minimum

1000 labeled text for sentiment training [44].

B. Evaluation Results

We evaluated seven popular sentiment analysis tools (five

lexicon-based [16], [17], [29], [34], [45] and two supervised

learning based [26], [28]) using our oracle. We measure the

performances of the tools based on four measures: precision,

recall, f-measure, and accuracy. Table I shows the perfor-

mances of the seven tools. Each of the tools performed poorly

in identifying negative review comments with the highest

precision of only 52% (NLTK Vader). Although, Vivekn had

the highest recall (84.7%), it had the lowest precision(33.2%).

None of the tools achieved a f-measure above 0.5, validating

the need for a customized sentiment analysis tool for code

review comments. Since these tools are not trained using a SE

dataset, their inaccuracies are not surprising. A reliable senti-

ment analyzer for the SE domain requires either a supervised

model trained on a SE dataset or a customized lexicon-based

SE dictionary.

IV. SENTICR: A SENTIMENT ANALYSIS TOOL FOR CODE

REVIEWS

The poor performances of existing sentiment analysis tools

motivated us to implement SentiCR, a supervised learning

based sentiment analysis tool for code review comments.

We wrote SentiCR in Python using NLTK [5] for language

preprocessing and scikit-learn [35] for supervised learning

algorithms. In the following subsections, we describe the data

preprocessing steps and evaluation of SentiCR.

A. Data Preprocessing

The text of a review comment differs from articles, books,

or even spoken language. For example, review comments

often contain word contractions, emoticons, URLs, and code

snippets. Therefore, we implemented an eight step data pre-

processing as follows.

1) Expansion of Contractions: Contractions, which are

shortened form of one or two words, are widely used in

informal written communications. Some commonly used con-

tractions and their expanded forms include: I’m → I am,

doesn’t → does not, and don’t → do not. By creating two

different lexicons of the same term, contractions increase

the number of unique lexicons and misrepresent the real

characteristics of a dataset. We replaced the commonly used

124 contractions, each with its expanded version.
2) URL Removal: A review comment may include URL

references (e.g., StackOverflow) supporting the reviewer’s

suggestion. While URLs do not contribute to sentiments, those

can increase the number of features for supervised classifiers.

We used a regular expression matcher to identify and remove

all URLs from our dataset.
3) Special Handling for Emoticons: Emoticons are widely

used in informal written communications and are very influ-

ential in expressing sentiments. Similar to Agarwal et al. [1],

we replaced each of the emoticons with a word representing

its sentiment polarity by looking up an emoticon dictionary.

For example, both the happy face emoticon - ‘:)’ and laughing

emoticon - ‘:D’ were replaced with the word ‘PositiveEmoti-
con’. Similarly, both crying - ‘:(’ and annoyed - ‘:s’ were

replaced with the word ‘NegativeEmoticon’.
4) Negation Preprocessing: Similar to prior studies, we

also observed higher misclassifications for comments includ-

ing negation words (e.g., ‘not’, ‘never’, ‘neither’, ‘nothing’,

and ‘nobody’). Since supervised learning based classifiers

operate on bag-of-words representations, those classifiers often

fail to identify negated opinions. For example, ‘I like your
changes’ expresses a positive sentiment but ‘I do not like
your changes’ expresses a negative sentiment. To differentiate

words in negated contexts from the same words in non-

negated contexts, prior supervised learning based sentiment

analysis tools [33] adopted a simple approach of prepending

‘not ’ with the succeeding words. For example, ‘I do not
like your changes’ will become ‘I do not not like not your
not changes’. However, for a complex sentence such as the

following review comment in our dataset, this approach will

overestimate the scope of negation and inaccurately negate

additional words.
“Generally dropping these tables from the build is almost

never worth it, since most OSes expect something there.”
Moreover, negations usually impact verbs, adjectives, and

adverbs but do not alter nouns, determiners, articles, adpo-

sitions, and particles [10]. We use NLTK universal parts-of-

speech (POS) tagger to attach POS tags with each word. Then,

we use chunking, a process of dividing a text into syntactically

correlated parts of words (also know as ‘shallow parsing’) [46]

to precisely determine the scope of negations. We developed

following chunk grammar (i.e., rules indicating how sentences

should be chunked) for NLTK RegexpChunkParser to

identify negation phrases.

〈NegP〉 ::= {〈VERB〉?〈ADV〉+{〈VERB〉|〈ADJ〉}?
{〈PRT〉|〈ADV〉〈VERB〉}}

| {〈VERB〉?〈ADV〉+{〈VERB〉|〈ADJ〉}*
{〈ADP〉|〈DET〉}?〈ADJ〉?〈NOUN〉?〈ADV〉?}

Our chunk grammar had 96.5% recall in identifying nega-

tion phrases on our oracle. Since we had a second stage

108



TABLE II
WORDS REMOVED FROM FEATURE VECTOR

Stopwords Programming keywords
i, me, my, myself, we, our,
ourselves, you, your, yourself,
he, him, his, himself, she, her,
herself, it, itself, they, them,
their, themselves, this, that, these,
those, am, is, are, was, were, be,
been, being, have, has, had, hav-
ing, do, does, did, doing, a, an,
the, and, if, or, as, until, while,
of, at, by, for, between, into,
through, during, to, from, in, out,
on, off, then, once, here, there,
all, any, both, each, few, more,
other, some, such, than, too, very,
s, t, can, will, don, should, now

abstract, and, assert, bool, boolean,
break, byte, case, catch, char, class,
clone, const, continue, def, default, dele-
gate, delete, do, double, each, echo, elif,
else, elseif, endfor, endforeach, endif,
endwhile, enum, event, except, explicit,
export, extends, fi, final, finally, float,
for, foreach, function, get, global, goto,
if, implements, import, in, include, in-
stanceof, int, interface, lambda, long,
namespace, native, new, null, or, out,
override, package, print, private, pro-
tected, public, raise, readonly, require,
return, set, short, signed, static, struct,
super, switch, synchronized, than, this,
throw, throws, try, union, var, virtual,
void, with, yield

filtering (Algorithm 1-line 9), we consider only recall to

measure the performance of our grammar. We modified all the

verbs, adjectives, and adverbs in a negation phrase as identified

by the chunker by prepending ‘not ’. Algorithm 1 describes

our negation preprocessing.

Algorithm 1 Negation Preprocessing

1: procedure HANDLE NEGATION(text) � Input: A code review comment.
2: sentences ← sentence tokenize(text) � Tokenize the sentences

3: for all sent in sentences do
4: words ← word tokenize(sent) � Tokenize sentence into words
5: if words contain negation words then
6: tagged words ← pos tag(words)
7: chunk phrases ← regex chunk parse(tagged words)
8: for all phrase in chunk phrases do
9: if phrase contain negation words then

10: for all word in phrase do
11: if pos(word) in [ADJ, ADV, VERB] then
12: � Modify the original word by prepending ‘not ’
13: word ← prepend not(word)
14: end if
15: end for
16: end if
17: end for
18: end if
19: end for

return modified text

20: end procedure

5) Word Stemming: We used NLTK word tokenizer to parse

each text into a list of words. Next, we applied Snowball

Stemmer [38] to convert each word to its stem.

6) Stop-Word Removal: Many stopwords (usually non-

semantic words such as articles, prepositions, conjunctions,

and pronouns) do not play significant roles to express sen-

timents. Popular natural language processing tools, such as

NLTK and Stanford CoreNLP provide lists of stop-words.

However, some of the words (e.g., ‘no’, ‘not’, ‘why’, and

‘what’) from those lists are influential in the particular context

of expressing sentiments. Hence, we used a customized stop-

word list (Table II- column stopwords) and removed words

belonging to that list from the review comments.

7) Code Snippet Removal: Code review comments often

include improvement suggestions as code snippets. Since code

snippets do not express sentiments, SeintCR removes those.

Whereas we could have used an approach similar to Bacchelli

et al. [3] to separate code snippets from comments, we

observed that a simpler solution worked in our case. Code

snippets primarily include keywords, identifiers, and punctu-

ation characters. We prepared a list of keywords (Table II-

second column) from the popular programming languages

(e.g., Java, C, C++, Python, JavaScript, and PHP) and added

those to our stopword list for removal. As popular open source

projects use descriptive variable names, we did not observe

same identifier present in more than two comments in our

oracle. Therefore, the exclusion of words present in less than

three comments removes all the identifiers. We did not require

any preprocessing for punctuation marks as the tokenization

step discards those.

8) Feature Vector Generation: Similar to prior sentiment

analysis studies [18], [22], we computed TF-IDF (Term Fre-

quency - Inverse Document Frequency) to extract the features

for classification. In this step, we excluded the words that are

present in less than three code review comments in our oracle.

We use this feature vector to train our classifiers.

B. Evaluation of SentiCR

Using the feature vector generated after the data preprocess-

ing steps, we evaluated following eight supervised algorithms,

which are commonly used for sentiment analysis.

1) Adaptive Boosting (ADB) [41],

2) Decision Tree (DT) [4],

3) Gradient Boosting Tree (GBT) [36],

4) Naı̈ve Bayes (NB) [30],

5) Random Forest (RF) [13],

6) Multilayer Perceptron (MLPC) [40],

7) Support Vector Machine with Stochastic Gradient De-

scent (SGD) [4], and

8) Linear Support Vector Machine (SVC) [30].

We have used the Scikit-learn [35] implementations of those

algorithms. We validated each of the algorithms using 10-fold

cross-validations, where the dataset was randomly divided into

10 groups and each of the ten groups was used as test dataset

once, while the remaining nine groups were used to train

the classifier. Since our training dataset is imbalanced (i.e.,

almost 75% comments were ‘non-negative’ in the oracle of

1600 comments), we observed higher classification errors for

the negative comments. We used SMOTE (synthetic minority

over-sampling technique) [7] to improve the ratio of ‘negative’

to ‘non-negative’ comments to 0.5 in the training samples. We

repeated this process over hundred times and computed the

mean performances of the classifiers. Following subsections

discuss the two questions to evaluate SentiCR.

1) Which Supervised Learning Algorithm Provides the Best
Performance on Our Oracle?: Both Table III and Figure 2

shows the performances (i.e., precision, recall, accuracy, and

f-measure) of the eight supervised learning algorithms based

on one hundred 10-fold cross-validations. The results suggest

that the traditional methods (i.e., Naı̈ve Bayes and DT) did not

perform well on our oracle. GBT performed the best among

the supervised ensemble learning methods (i.e., AdaBoost,

109



Precision Recall Accuracy

60.4 %

54.4 %

67.8 %

61.4 %

52.9 %

60.1 %

63.3 %
65 %

53.9 %
56.1 %

58.4 %
57 %

39.5 %

55.1 % 54.4 %
56.1 %

80.1 %
77.8 %

83 %
80.7 %

76.6 %

80.1 % 79.9 %
81.9 %

40%

50%

60%

70%

80%

ADB DT GBT MLPC NB RF SGD SVC ADB DT GBT MLPC NB RF SGD SVC ADB DT GBT MLPC NB RF SGD SVC

Fig. 2. Performances of the eight supervised algorithms during one hundred ten-fold cross-validations

TABLE III
PERFORMANCE OF SENTICR ON EIGHT SUPERVISED LEARNING

ALGORITHMS WITH AND WITHOUT NEGATION PREPROCESSING

Algo. With negation preprocessing Without negation preprocessing
P R F Accuracy P R F Accuracy

ADB 60.39% 53.94% 0.57 80.10% 59.03% 52.77% 0.55 79.50%

DT 54.39% 56.06% 0.55 77.70% 51.94% 54.20% 0.53 76.52%

GBT 67.84% 58.35% 0.62 83.03% 66.17% 56.19% 0.60 82.27%

MLPC 61.35% 56.96% 0.59 80.69% 57.32% 54.12% 0.55 78.90%

NB 52.92% 39.48% 0.45 76.61% 47.37% 33.65% 0.39 74.66%

RF 60.14% 55.06% 0.57 80.05% 57.76% 47.80% 0.52 78.69%

SGD 63.34% 54.43% 0.56 79.90% 59.05% 52.45% 0.53 78.16%

SVC 65.01% 56.12% 0.60 81.88% 59.76% 52.71% 0.56 79.77%

GBT, and RandomForest).The boxplots in Figure 2 shows the

variations in performances over 100 runs, where ‘X’ denotes

the mean. The narrow boxplots of GBT also indicates a stable

performance over the one hundred runs.

Prior research on natural language processing indicates that

even human raters can achieve at most 80% accuracies in

predicting sentiments [31]. Since five out of the eight models

achieve human level accuracy (as defined by Thelwall [45]).

2) Does Our Negation Preprocessing Improve the Perfor-
mances of the Supervised Models?: We repeated our hundred

10-fold cross validations without negation preprocessing. Ta-

ble III includes the performances of each of the eight algo-

rithms with and without negation preprocessing. The results

suggest that each of the eight models had improved their

precisions between 1% to 5%, with SVC and NB models

gaining the most. Similarly, each of the eight models also

had improved recalls, improved accuracies, and improved

f-measures. Therefore, the negation preprocessing steps are

useful in improving the performances of our classifiers.

V. THREATS TO VALIDITY

We included 20 publicly accessible OSS projects that prac-

tice tool-based code reviews supported by the same tool (i.e.,

Gerrit). Though, it is possible that projects supported by

other code review tools (e.g., ReviewBoard, Github pull-based

reviews, and Phabricator) could have behaved differently,

sentiments expressed in review comments may not depend on

any feature that is exclusive to Gerrit only.

Overfitting is a potential threat for any supervised learning

based model. To combat overfitting, we employed hundred

ten-fold cross validations of our models. We included only

those words that are present in at least three comments. To

further validate our classifier, we randomly selected 200 review

comments that the model had not seen before and manually

classified them. Against our manual classification, the model

had 86% accuracy, suggesting no performance degradation.

To extend this analysis, we manually rated 300 more review

comments from 5 professional developers (60 each). For

this cross-validation, SentiCR was 82% accurate (consistent

with our cross-validation results). Since we adopted several

measures to mitigate overfitting, we do believe that SentCRs

accuracy should not degrade on a large dataset.

VI. FUTURE WORKS AND CONCLUSION

In this study, we empirically built and validated a sentiment

oracle from 2000 randomly selected code review comments.

We have implemented SentiCR, a sentiment analysis tool for

the SE domain. In the future, We plan to use SentiCR to

find out the impact of negative review comments on project

outcomes.

REFERENCES

[1] A. Agarwal, B. Xie, I. Vovsha, O. Rambow, and R. Passonneau,
“Sentiment analysis of twitter data,” in Proceedings of the workshop on
languages in social media. Association for Computational Linguistics,
2011, pp. 30–38.

[2] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in Proceedings of the 2013 International
Conference on Software Engineering. San Francisco, CA, USA: IEEE
Press, 2013, pp. 712–721.

[3] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails and source
code artifacts,” in Proceedings of the 32Nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ser. ICSE ’10, 2010.

[4] A. Bifet and E. Frank, “Sentiment knowledge discovery in twitter
streaming data,” in International Conference on Discovery Science.
Springer, 2010, pp. 1–15.

[5] S. Bird, “NLTK: The Natural Language Toolkit,” in Proceedings of the
COLING/ACL on Interactive presentation sessions. Association for
Computational Linguistics, 2006, pp. 69–72.

110



[6] A. Bosu and J. C. Carver, “Impact of peer code review on peer impres-
sion formation: A survey,” in 2013 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement. IEEE, 2013, pp.
133–142.

[7] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[8] M. De Choudhury and S. Counts, “Understanding affect in the workplace
via social media,” in Proceedings of the 2013 conference on Computer
supported cooperative work. ACM, 2013, pp. 303–316.

[9] C. Drummond, R. C. Holte et al., “C4. 5, class imbalance, and cost
sensitivity: why under-sampling beats over-sampling,” in Workshop on
learning from imbalanced datasets II, vol. 11. Citeseer, 2003.

[10] X. Fang and J. Zhan, “Sentiment analysis using product review data,”
Journal of Big Data, vol. 2, no. 1, p. 5, 2015.

[11] J. L. Fleiss, “Measuring nominal scale agreement among many raters.”
Psychological bulletin, vol. 76, no. 5, p. 378, 1971.

[12] D. Garcia, M. S. Zanetti, and F. Schweitzer, “The role of emotions in
contributors activity: A case study on the Gentoo community,” in Cloud
and Green Computing (CGC), 2013 Third International Conference on.
IEEE, 2013, pp. 410–417.

[13] A. Gupte, S. Joshi, P. Gadgul, A. Kadam, and A. Gupte, “Comparative
study of classification algorithms used in sentiment analysis,” Inter-
national Journal of Computer Science and Information Technologies,
vol. 5, no. 5, pp. 6261–6264, 2014.

[14] E. Guzman, D. Azócar, and Y. Li, “Sentiment analysis of commit
comments in github: an empirical study,” in Proceedings of the 11th
Working Conference on Mining Software Repositories. ACM, 2014,
pp. 352–355.

[15] E. Guzman and B. Bruegge, “Towards emotional awareness in software
development teams,” in Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE 2013, 2013, pp.
671–674.

[16] M. Hu and B. Liu, “Mining and summarizing customer reviews,” in
Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2004, pp. 168–177.

[17] C. J. Hutto and E. Gilbert, “Vader: A parsimonious rule-based model for
sentiment analysis of social media text,” in Eighth International AAAI
Conference on Weblogs and Social Media, 2014.

[18] D. Isa, L. H. Lee, V. Kallimani, and R. Rajkumar, “Text document
preprocessing with the bayes formula for classification using the support
vector machine,” IEEE Transactions on Knowledge and Data engineer-
ing, vol. 20, no. 9, pp. 1264–1272, 2008.

[19] M. R. Islam and M. F. Zibran, “Leveraging automated sentiment analysis
in software engineering,” in Proceedings of the 14th International
Conference on Mining Software Repositories. IEEE Press, 2017, pp.
203–214.

[20] R. Jongeling, S. Datta, and A. Serebrenik, “Choosing your weapons:
On sentiment analysis tools for software engineering research,” in
Software Maintenance and Evolution (ICSME), 2015 IEEE International
Conference on. IEEE, 2015, pp. 531–535.

[21] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” biometrics, pp. 159–174, 1977.

[22] L. H. Lee, C. H. Wan, R. Rajkumar, and D. Isa, “An enhanced support
vector machine classification framework by using euclidean distance
function for text document categorization,” Applied Intelligence, vol. 37,
no. 1, pp. 80–99, 2012.

[23] B. Liu, “Sentiment analysis and opinion mining,” Synthesis lectures on
human language technologies, vol. 5, no. 1, pp. 1–167, 2012.

[24] B. Liu and L. Zhang, “A survey of opinion mining and sentiment
analysis,” in Mining text data. Springer, 2012, pp. 415–463.

[25] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling for
class-imbalance learning,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), vol. 39, no. 2, pp. 539–550, 2009.

[26] S. Loria, “Textblob: simplified text processing,” Secondary TextBlob:
Simplified Text Processing, 2014.

[27] A. Murgia, P. Tourani, B. Adams, and M. Ortu, “Do developers feel
emotions? an exploratory analysis of emotions in software artifacts,”
in Proceedings of the 11th Working Conference on Mining Software
Repositories. ACM, 2014, pp. 262–271.

[28] V. Narayanan, I. Arora, and A. Bhatia, “Fast and accurate sentiment
classification using an enhanced naive bayes model,” in International
Conference on Intelligent Data Engineering and Automated Learning.
Springer, 2013, pp. 194–201.

[29] F. Å. Nielsen, “A new anew: Evaluation of a word list for sentiment
analysis in microblogs,” arXiv preprint arXiv:1103.2903, 2011.

[30] B. Pang and L. Lee, “A sentimental education: Sentiment analysis using
subjectivity summarization based on minimum cuts,” in Proceedings of
the 42nd annual meeting on Association for Computational Linguistics.
Association for Computational Linguistics, 2004, p. 271.

[31] ——, “Seeing stars: Exploiting class relationships for sentiment catego-
rization with respect to rating scales,” in Proceedings of the 43rd annual
meeting on association for computational linguistics. Association for
Computational Linguistics, 2005, pp. 115–124.

[32] ——, “Opinion mining and sentiment analysis,” Foundations and trends
in information retrieval, vol. 2, no. 1-2, pp. 1–135, 2008.

[33] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up?: sentiment classifi-
cation using machine learning techniques,” in Proceedings of the ACL-
02 conference on Empirical methods in natural language processing-
Volume 10. Association for Computational Linguistics, 2002, pp. 79–
86.

[34] N. Pappas, G. Katsimpras, and E. Stamatatos, “Distinguishing the
popularity between topics: A system for up-to-date opinion retrieval and
mining in the web,” in Computational Linguistics and Intelligent Text
Processing, 2013, vol. 7817, pp. 197–209.

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine Learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[36] M. Pennacchiotti and A.-M. Popescu, “Democrats, republicans and
starbucks afficionados: user classification in twitter,” in Proceedings
of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2011, pp. 430–438.

[37] D. Pletea, B. Vasilescu, and A. Serebrenik, “Security and emotion:
sentiment analysis of security discussions on github,” in Proceedings of
the 11th Working Conference on Mining Software Repositories. ACM,
2014, pp. 348–351.

[38] M. F. Porter, “Snowball: A language for stemming algorithms,” 2001.
[39] A.-I. Rousinopoulos, G. Robles, and J. M. González-Barahona, “Senti-

ment analysis of free/open source developers: Preliminary findings from
a case study.” Revista Eletrônica de Sistemas de Informação, vol. 13,
no. 2, 2014.

[40] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning represen-
tations by back-propagating errors,” Cognitive modeling, vol. 5, no. 3,
p. 1, 1988.

[41] N. F. F. d. Silva, E. R. Hruschka, E. R. Hruschka Junior et al., “Bio-
com usp: tweet sentiment analysis with adaptive boosting ensemble,”
in International Workshop on Semantic Evaluation, 8th. ACL Special
Interest Group on the Lexicon-SIGLEX, 2014.

[42] M.-A. Storey, C. Treude, A. van Deursen, and L.-T. Cheng, “The impact
of social media on software engineering practices and tools,” in Pro-
ceedings of the FSE/SDP workshop on Future of software engineering
research. ACM, 2010, pp. 359–364.

[43] M. Taboada, J. Brooke, M. Tofiloski, K. Voll, and M. Stede, “Lexicon-
based methods for sentiment analysis,” Computational linguistics,
vol. 37, no. 2, pp. 267–307, 2011.

[44] M. Thelwall, “Heart and soul: Sentiment strength detection in the social
web with sentistrength,” Proceedings of the CyberEmotions, pp. 1–14,
2013.

[45] M. Thelwall, K. Buckley, G. Paltoglou, D. Cai, and A. Kappas, “Senti-
ment strength detection in short informal text,” Journal of the American
Society for Information Science and Technology, vol. 61, no. 12, pp.
2544–2558, 2010.

[46] E. F. Tjong Kim Sang and S. Buchholz, “Introduction to the conll-
2000 shared task: Chunking,” in Proceedings of the 2nd workshop on
Learning language in logic and the 4th conference on Computational
natural language learning-Volume 7. Association for Computational
Linguistics, 2000, pp. 127–132.

[47] P. Tourani, Y. Jiang, and B. Adams, “Monitoring sentiment in open
source mailing lists: exploratory study on the apache ecosystem,”
in Proceedings of 24th annual international conference on computer
science and software engineering. IBM Corp., 2014, pp. 34–44.

[48] P. D. Turney, “Thumbs up or thumbs down?: semantic orientation
applied to unsupervised classification of reviews,” in Proceedings of
the 40th annual meeting on association for computational linguistics.

Association for Computational Linguistics, 2002, pp. 417–424.

111



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


