Design of Very Efficient Lookup Algorithms for a Low Diameter Hierarchical Structured Peerto-Peer Network

Bidyut Gupta
Department of Computer Science
Southern Illinois University
Carbondale, IL 62901, USA
bidyut@cs.siu.edu

Nick Rahimi

Department of Computer Science

Southern Illinois University

Carbondale, IL 62901, USA

nick@cs.siu.edu

Koushik Maddali
Department of Computer Science
Southern Illinois University
Carbondale, IL 62901, USA
koushik@siu.edu

Henry Hexmoor

Department of Computer Science

Southern Illinois University

Carbondale, IL 62901, USA

hexmoor@cs.siu.edu

Gongzhu Hu Department of Computer Science Central Michigan University Mount Pleasant, MI 48859, USA (hu1g@cmich.edu) Shahram Rahimi

Department of Computer Science

Southern Illinois University

Carbondale, IL 62901, USA

rahimi@cs.siu.edu

Abstract—In this work, we have considered a new hierarchical non-DHT based architecture for Peer-to-Peer (P2P) networks in which at each level of the hierarchy existing networks are all structured and each such network has the diameter of 1 overlay hop. Such low diameters have immense importance in designing very efficient data lookup algorithms. The mathematical model based on the Chinese Remainder Theorem has been used to define the neighborhood relations among peers to obtain the above-mentioned diameters. In this work, we present very efficient intra-group as well as inter-group data look up algorithms with O(1) time complexity exploiting the above mentioned low diameter features of the P2P system. Besides, we present very efficient algorithms related to peers joining with new and existing resource types.

Keywords: Structured P2P networks, Chinese Remainder Theorem, Network Diameter, Data Lookup

1 INTRODUCTION

Peer-to-Peer (P2P) overlay networks are prevalent in distributed systems. Unstructured and structured constitute two classes of P2P networks. In unstructured systems [1], [2] peers are organized into arbitrary topology. Flooding is commonly used for data look up. *Churn* is the problem where peers frequently join and leave the system. *Churn* is handled effectively in unstructured systems. However, it compromises with the efficiency of data query and the coveted flexibility. On the other hand, properly designed structured architectures can offer efficient, flexible, and robust service [3] - [5], [7], [8]. Such overlay networks use distributed hash tables (DHTs) to achieve efficient data insertion, lookup etc. However, maintaining DHTs is a complex task and it needs huge effort to manage the problem

of churn. Therefore, the major challenge for architecture design is easing churn management while still providing an efficient data query service. There are notable approaches that have considered hybrid systems [6] with the aim of incorporating the advantages of both structured and unstructured architectures. However, these works have their own pros and cons.

Our Contribution

In this work, we have considered interest-based P2P systems [6], [9], [10], [11]. We have conceived a non-DHT based hierarchical P2P architecture in which each level of the network hierarchy is structured and diameter of each network is 1 overlay hop. Preliminary findings have been reported in [12]. To the best of our knowledge, it is the first time that a successful attempt has been made to design structured hierarchical P2P networks with its entire constituent subnetworks possessing the diameter of 1 overlay hop only. Note that low diameters play significant role in designing very efficient data lookup algorithms. The proposed architecture uses a mathematical model based on the Chinese Remainder Theorem (CRT) to define the neighborhood relations among the peers to obtain small diameters.

In this work, we present very efficient intra-group as well as inter-group data look up algorithms with O(1) time complexity exploiting the above mentioned low diameter features of the P2P system. In addition, we present algorithms related to peers joining with new and existing resource types.

The paper is organized as follows. In Section II, we state in detail the proposed architecture and the mathematical foundation used in the design phase. In Section III, we present the data lookup algorithms.

In addition, an analytical comparison with some notable works has been presented. In Section IV, we present the algorithms for peer joining.

II. PROPOSED ARCHITECTURE

In this section, we present a structured architecture for interest-based peer-to-peer system [6], [10], [11], [14] and the required mathematical basis supporting the architecture. As mentioned earlier that some related preliminary findings have been reported in [12]. We use the following notations along with their interpretations while we define the architecture.

We define a resource as a tuple $< R_i, V>$, where R_i denotes the type of a resource and V is the value of the resource. A resource can have many values. For example, let R_i denote the resource type 'songs' and V' denote a particular singer. Thus $< R_i, V$ '> represents songs (some or all) sung by a particular singer V'. In the proposed model for interest-based P2P systems, we assume that no two peers with the same resource type R_i can have the same tuple; that is, two peers with the same resource type R_i must have tuples $< R_i, V$ '> and $< R_i, V$ "> such that V? $\neq V$ ".

We define the following. Let S be the set of all peers in a peer-to-peer system. Then $S=\{P^{Ri}\},\ 0\leq i\leq r\text{-}1.$ Here P^{Ri} denotes the subset consisting of all peers with the same resource type R_i and no two peers in P^{Ri} have the same value for R_i and the number of distinct resource types present in the system is r. Also for each subset $P^{Ri},\ P_i$ is the first peer among the peers in P^{Ri} to join the system. However, this constraint can easily be relaxed.

We now propose the following architecture suitable for interest-based peer-to-peer system. We assume that no peer can have more than one resource type.

A. Two Level Hierarchy

We propose a two level overlay architecture and at each level, structured networks of peers exist. It is explained in detail below.

At level 1, we have a network of peers such that peers are directly connected (logically) to each other. In graph theoretic term, the network at level 1 is a complete graph. Hence, the network diameter is $\underline{1}$ overlay hop. The periphery of this network appears as a ring network and we name it as $\underline{transit\ ring\ network}$. This network consists of the peers P_i ($0 \le i \le r-1$).

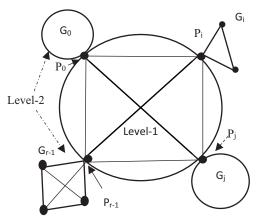


Fig. 1 A two-level structured P2P architecture with r distinct resource types

Therefore, number of peers on the ring is r and we have assumed that this number represents the number of distinct resource types of the P2P system. Each of these r peers will be termed as a group head. The periphery of this network as well as the direct links connecting any two peers in this network can be used for efficient data lookup.

At level-2, there are r numbers of completely connected networks of peers. Each such network, say N_i is formed by the peers of the subset P^{Ri} , $(0 \le i \le r-1)$, such that all peers $(\in P^{Ri})$ are directly connected (logically) to each other, resulting in the network diameter of 1 overlay hop.

Each such N_i is connected to the transit ring network via the peer P_i , the group-head of network N_i . From now on network N_i will be called as group_i (in short as G_i) with P_i as its group-head. Sometimes N_i will be referred to as the i^{th} cluster as well. The proposed architecture is shown in Fig. 1.

In any structured P2P system, the mathematical model used to build the architecture defines neighborhood relations among peers. The mathematical model is intimately related to the efficiency of different data lookup schemes used in a given structured P2P system. We now state a brief sketch of the mathematical model used in our approach to realize the architecture. We shall determine a simultaneous solution (a positive integer) of a given system of linear congruencies and then determine some more solutions as needed to form the architecture, which are congruent to the simultaneous solution. For this, we shall take help of the Chinese Remainder Theorem (CRT). Each such solution will become the logical address of a group head uniquely. At the same time, we will determine

separately the solutions of each linear congruence as needed and these solutions will represent the logical addresses of the peers present in a group. The following interesting structural facts will be revealed.

- (a) The neighborhood relationships among the group heads based on the logical addresses assigned to them will be shown to form the network at level 1 with diameter 1 overlay hop. In graph theoretic term, each G_i is a complete graph.
- (b) Assignment of logical addresses to peers in a subnet P^{Ri} (i.e. group G_i) based on the solutions of an individual linear congruence used in the CRT will guarantee that all peers in G_i are directly connected to each other (logically) forming an overlay network of diameter 1.
- (c) Assignment of logical code to a distinct resource type will be the same as the corresponding group head's logical address. That is, the resource R_i will have the code that is identical to the logical address of the group head P_i of group G_i.

Below we give a short overview of Chinese Remainder Theorem.

B. Chinese Remainder Theorem

Chinese Remainder Theorem (CRT) states the following:

Suppose m_0 , m_1 , m_2 ..., m_{r-1} are r integers such that no two of which have a common factor other than 1.

Let $M=m_0\ m_1\ m_2\ ...\ m_{r-1}$. Also suppose that a_0,a_1,a_2,a_{r-1} are integers such that gcd $(a_i,m_i)=1$ for each i. Then the r congruencies given as

 $a_i x \equiv b_i \pmod{m_i}, \ 0 \le i \le r-1$ have a simultaneous solution X that is unique modulo M and is given as

$$X = c_o n_1 n_1^{\sim} + c_2 n_2 n_2^{\sim} + ... + c_{r-1} n_{r-1} n_{r-1}^{\sim}$$

where $n_i = M/m_i$ and gcd $(n_i, m_i) = 1$; that is, $n_i n_i^{\sim} \equiv 1 \pmod{m_i}$; and c_i is the least positive integer such that

$$a_i c_i \equiv b_i \pmod{m_i}$$
, for $0 \le i \le r-1$

Also, note that each congruence, $a_i x \equiv b_i \pmod{m_i}$ has a solution x_i , which is unique modulo m_i because any solution x_i' of it is congruent to x_i modulo m_i . The reason for this is that $gcd(a_i, m_i) = 1$ for each i.

An example:
$$x \equiv 2 \pmod{3}$$
 (1)

$$x \equiv 3 \pmod{5} \tag{2}$$

$$x \equiv 2 \pmod{7} \tag{3}$$

These three congruencies satisfy all restrictions of CRT.

We see that
$$a_1 = a_2 = a_3 = 1$$
 and $c_1 = 2$, $c_2 = 3$, $c_3 = 2$; $M = 105$; also $n_1^{\sim} = 2$, $n_2^{\sim} = 1$, $n_3^{\sim} = 1$

Therefore, the simultaneous solution satisfying all these three congruencies is 23 (the least positive solution) and all solutions are congruent to 23 (mod 105). That is, all solutions of the form 23+k.105 (k is an integer) are mutually congruent as well since 'congruence' is an 'equivalence' relation.

C. Construction of the Architecture

Let us consider the construction of the architecture for r distinct resource types. We consider r linear congruencies,

 $a_ix\equiv b_i\ (mod\ m_i),\ 0\leq i\leq r\text{-}1,$ which satisfy the CRT's requirements as mentioned earlier. Each such congruence is also known as linear Diophantine equation (LDE) and note that each congruence, $a_ix\equiv b_i\ (mod\ m_i)$ has a solution x_i , which is unique modulo m_i . As mentioned earlier, the P2P architecture will be a 2-level structured one such that at each level, network(s) will have a diameter of one overlay hop. It will greatly enhance the speed of data lookup algorithms.

To start with, we first construct the network at Level-1, so we need to define the neighborhood relations among the peers at this level, which in effect will create the necessary logical links among the peers. These neighborhood relations will be defined via the logical address assignments and for this purpose, we use the CRT as the mathematical base. We determine a simultaneous solution X of the r different LDEs; the simultaneous solution X is unique modulo M; M is the product of all r moduli used in the r LDEs. The address assignment goes as follows.

<u>Level-1</u> address assignment and neighborhood <u>relations</u>: Suppose that P_0 is the first peer to join the system with resource type R_0 . Therefore, P_0 is considered as the group head of group G_0 that has currently only one peer, namely, P_0 . We assign the logical address X (the simultaneous solution X). Later when other peers with the same resource type join, they are placed in the group G_0 . We will explain a little later how to assign their logical addresses and how they are linked. Next, suppose that peer P_1 is the first to join the system with resource type R_1 among all other peers that have the same resource type.

Therefore, P_1 becomes the group head of group G_1 . It will get the logical address (X + M). Observe that the solutions X and (X + M) are mutually congruent. The process of assigning logical addresses to group heads implies that group head P_i with resource type R_i joins the system before the group head P_{i+1} with resource type R_{i+1}. Hence, for assigning logical addresses to group heads, the sequence of their arrivals is used; therefore, in general, the logical address of a group head P_i becomes (X + iM). Observe that all these addresses are mutually congruent. Besides, the resource type R_i of P_i gets the code [X + iM]. In this architecture, we use the relation 'congruence' to create links between any two peers. That is, two peers Pi and Pi are linked together if their logical addresses are mutually congruent. Therefore, because of the 'equivalence' property of 'congruence' relation, all logical addresses are mutually congruent. Hence, we link each P_i directly with any other P_j , $j \neq i$. Observe that such overlay links among the peers have created a network (a complete graph) of r peers at Level 1. That is, diameter is 1 overlay hop. Observe that the periphery of this network appears as a ring network (transit ring network) consisting of the peers P_i ($0 \le i \le r-1$). The above addressing scheme leads to the following observation.

Observation 1. Any insertion of a group head P_1 always takes place between the current last group head P_{1-1} and the first group head P_0 along the transit ring network.

Note that a recently inserted group head P_1 has direct logical connections to each existing P_i ; however according to the *transit ring network*, its predecessor is P_{l-1} and successor is P_0 . This idea will help in designing inter-group data look up algorithm with *anonymity*. In addition, use of (CRT) allows a grouphead address to be identical to the code given to a resource type owned by the group; for example, logical code for resource type r_i owned by group head P_i is (X + iM). It will have a positive impact on the efficiency of data lookup algorithms.

Lemma 1. Diameter of the Level-1 network is 1 overlay hop.

Proof: A logical link exists between two group heads P_i and P_j if their addresses are mutually congruent. Since all addresses assigned to Level-1 peers are congruent to each other because congruence relation

is an equivalence relation, hence, every P_i is directly connected to every other P_j . Hence, the network is a complete network of diameter 1 overlay hop. \bullet

In this architecture, each Pi maintains a table of 'information tuples', called as Global Resource Table (GRT). The table grows dynamically in size with the arrivals of new group heads. Therefore, the size of the table can be at most r. In other words, maximum number of the tuples in the table can be r, the number of distinct resource types. In this context, note that number of distinct resource types is usually very small compared to the number of peers in a P2P system [13]. The ith tuple appears as < resource name R_i , resource $code/group\ head\ P_i$'s address $code,\ P_i$'s $IP\ address>$. A new tuple is created in the table when a recent group head arrives; therefore, the ith tuple is created before the (i+1)th tuple and hence, based on the resource code/group head's address (i.e. based on the arrival sequence of the group heads) the table remains always sorted. Observe that every Pi in the GRT is an immediate neighbor of every other Pi in the GRT because all group heads are logically linked to each other directly.

<u>Level-2</u> <u>address</u> <u>assignment</u> <u>and neighborhood</u> <u>relations</u>: We have to use the r congruencies to assign addresses to the members of the different groups. Without any loss of generality, let us consider an already existing group head, say G_i headed by P_i that has the resource type R_i .

We consider the i^{th} congruence, viz., $a_ix\equiv b_i$ (mod $m_i)$ for address assignments for peers in $G_i.$ Note that this congruence has a solution $x_i,$ which is unique modulo $m_i.$ any solution x_i' of it is congruent to x_i modulo $m_i.$ In addition,

all solutions of the form $[x_i + k.m_i]$, where k is an integer, are mutually congruent since 'congruence relation' is an 'equivalence relation'. We assign $\underline{x_i}$ as the Level-2 address for the group head P_i . Later based on the sequence of arrivals of peers possessing the same resource type, peer p_j (\in G_i) will get the address $(x_i + j.m_i)$ and p_{j+1} (\in G_i) will get address $[x_i + (j+1).m_i]$ assuming that p_{j+1} joins after p_j , and so on. As before, based on our mathematical model two peers are neighbors if their logical addresses are mutually congruent; meaning thereby that two peers in a group are directly linked if their logical addresses are mutually congruent. Therefore, because of the

equivalence relation, each peer in G_i is logically connected to every other; hence, the diameter of the group G_i (i.e. the cluster N_i) is 1 overlay hop, making the cluster a complete graph. In a group each member maintains a list of the other peers which are also its immediate neighbors.

Lemma 2. Diameter of a Level-2 group (cluster) is 1 overlay hop.

Proof. Two peers in a group (cluster) are directly linked together if their logical addresses are mutually congruent. Address assignments of peers in a Level-2 cluster are based on the mutually congruent solutions of an LDE. Since all these solutions (addresses) form an equivalence class, hence, each peer in a cluster is directly linked to each other. Therefore, the diameter of any cluster at Level-2 is 1 overlay hop. •

Theorem 1. Diameter of the hierarchical two-level structured architecture is 3 overlay hops.

Proof. Level 2 clusters have diameter 1 each and the Level-1 network has the diameter 1. Therefore, the maximum distance between any two peers belonging to two different clusters is 3. Hence, the proof follows. ●

Remark 1. There are infinite number of solutions which are congruent to the one mutually congruent solution of any LDE considered in CRT, hence, size of a cluster at Level-2 can be made very large (theoretically unlimited), yet the diameter remains 1.

Observation 2. Each group head has two different logical addresses; one from Level-1 assignment and one from Level 2 assignment.

It has important implication related to intra-group and inter-group data lookup queries. Level 1 assigned addresses are used to move the query from one group (cluster) to another for inter-group lookup and also for data lookup with anonymity (not considered in this paper); Level 2 assigned addresses are used to answer intra-group query.

Observation 3. Different group heads may get identical Level 2 assigned addresses.

It will not affect any intra-cluster lookup query in a cluster, as this address is local to this cluster only.

```
1 node p_a (\epsilon G_i) broadcasts in G_i for \langle R_i, V_b \rangle

// one-hop communication since G_i is a complete graph

2 if p_b with \langle R_i, V_b \rangle then

3 p_b unicasts \langle R_i, V_b \rangle to node p_a

4 else

5 search for \langle R_i, V_b \rangle fails

6 end
```

Fig. 2 Algorithm 1: Intra-Group-Lookup

III. DATA LOOKUP

In this section, we show how the structural properties of CRT-based P2P architecture help in designing very efficient resource query algorithms - both for intragroup as well as inter-group resource lookups.

A. Intra-Group Data Lookup

Without any loss of generality, let us consider data lookup in group G_i by a peer p_a possessing $\langle R_i, V_a \rangle$ and requesting for resource $\langle R_i, V_b \rangle$. The algorithm for intra-group data lookup appears in Fig. 2. The time complexity is O(1).

B. Inter-Group Data Lookup

In the proposed architecture, any communication between a node $p_i \in G_i$ and $p_j \in G_j$ takes place only via the respective group-heads P_i and P_j . Without any loss of generality let a peer $p_i \in G_i$ request for a resource $\langle R_j, V^* \rangle$; where R_j denotes a resource type and V^* denotes an instance of R_j . As is evident from the architecture that peer p_i knows that $R_j \notin G_i$. We denote the IP address of a node P_m as $IP(P_m)$. The algorithm appears in Fig. 3. The time complexity of the algorithm is O(1). It needs a maximum of six overlay hops irrespective of in which groups the requesters and the corresponding responders reside.

C. Data Lookup Complexity Comparison

In Table 1, we have stated the complexities of the presented data lookup approaches along with those of some other noteworthy structured approaches.

Table 1 Data Lookup Complexity Comparison

	CAN[15]	Chord [5]	Pastry [4]	Our Work
Architecture	DHT-based	DHT-based	DHT-based	CRT-based
Lookup Protocol	{Key, value} pairs to map a point P in the coordinate space using uniform hash function.	Matching key and NodeID.	Matching key and prefix in NodeID.	Inter-Group: Routing through Group-heads; Intra-group: Inside a Graph.
Parameters	N-number of peers in network; d-number of dimensions.	N-number of peers in network.	N-number of peers in network; b-number of bits (B = 2 ^b) used for the base of the chosen identifier.	 r - Number of distinct resource types; N-number of peers in network. r << N
Lookup Performance	O(d N ^{1/d})	<i>O</i> (log N)	O(log _B N)	Intra-group: $O(1)$ Inter-group: $O(1)$

```
1 Node p_a (\epsilon G_i) unicasts request for \langle R_j, V^* \rangle to
   group-head Pi
2 P_i determines IP(P_i) from GRT
3 P_i unicasts the query to P_i // P_i is directly linked
   with P_i
4 if P_j possesses \langle R_j, V^* \rangle then
5
          P_j unicasts \langle R_j, V^* \rangle to P_i
          P_i unicasts \langle R_j, V^* \rangle to p_a
6
7 else
       P_i broadcasts the request for \langle R_i, V^* \rangle in group G_i
8
          // one-hop communication since G_i is a
            complete graph
9
         if p_b (\epsilon G_i) with \langle R_i, V^* \rangle then
10
               p_b unicasts \langle R_j, V^* \rangle to P_j
11
               P_j unicasts \langle R_j, V^* \rangle to P_i
               P_i unicasts \langle R_j, V^* \rangle to p_a
12
13
```

Fig. 3 Algorithm 2: Inter-Group-Lookup

IV. PEERS JOINING THE SYSTEM

We consider the following two situations in this paper:

- 1 A new node possessing an existing resource type wishes to join.
- 2 A new node with a new resource type wishes to join.

We assume that any new node p wishing to join the system contacts a well-known server that sends the IP

- 1 New peer p_i with resource type R_k unicasts its join request to P_0
- 2 P_0 determines the group G_k for p_i from its GRT
- 3 P_0 unicasts $IP(p_i)$ to P_k

// Group head of Gk

- 4 P_k assigns p_i with the next available address $[x_k + i.m_k]$
 - $// x_k$ is the Level-2 address for the group head P_k
- 5 P_k includes p_i in its list of neighbors in G_k
- 6 P_k asks all members of G_k to include p_i in their lists
- 7 P_k sends the updated list of neighbors in G_k to p_i
- 8 p_i establishes direct logical links to all members of G_k

// Level-2 network is a complete graph

Fig. 4 Algorithm 3: Join-Existing

address of the group-head P_{θ} of the first created group G_{θ} in the P2P network. In fact, this IP address is also the address of the first peer to join the system. The IP address of the server can be obtained by a DNS-like public service. New node p then sends a join request to P0. All join requests are processed sequentially by P0 by putting arriving requests in a queue. After a requesting new node p joins the P2P network successfully, it sends an ACK to P0. P0 then starts processing the next request from its queue.

- 1 New peer p with resource type R_l unicasts its join request to P_0
- 2 P_0 assigns its logical address as [X + l.M]

// It is the Level-1 address for p

- p becomes the group head P_l of group G_l and code $(R_l) = logical$ address of P_l
- 4 P_0 includes the tuple for P_l in its GRT
 - // Tuple for $P_l \rightarrow <$ resource name R_l , resource code/group head P_l 's address code: [X + l.M], $IP(P_l) >$
- 5 P_0 sends a copy of the updated GRT to P_1
- 6 P_0 asks all group heads P_i , $0 \le i \le l-1$ to include the tuple for P_l in their GRTs
- 7 $p(P_l)$ establishes direct logical links to all group heads
 - // Level-1 network is a complete graph

Fig. 5 Algorithm 4: Join-New

In the proposed scheme, for the case of new peers joining with existing resource type, every group member adds the new peer in its list of neighbors in the group. In case of peers joining with new resource type, a new tuple is created in the GRT when a new group head arrives and every group head updates its GRT with the new entry. Note that the ith tuple is created before the (i+1)th tuple and hence, based on the arrival sequence of the group heads the table remains always sorted.

A. New Peer with Existing Resource Type

The method of joining for a new node with an existing resource type is quite simple and is described in Algorithm *Join-Existing* (Fig. 4). In this algorithm, p_i is a new node (t^h arrival in group G_k) having an existing resource type R_k . Peer p_i is assumed to have already obtained the IP address of P_0 .

B. New Peer with New Resource Type

Let p be a new peer, which wishes to join the overlay P2P network with a new resource type R_l . Let $S_R = R_i$, $0 \le i \le l-1$, be the set of the existing resource types in the system. By following the logical address assignment process the code for the resource type R_l will be [X+1.M] and this code will also be the new logical address of the joining node p, also the group-head (P_l) of a new group G_i in the system. The join process is described in detail in the algorithm Join-New (Fig. 5).

V. CONCLUSION

In this work, we have presented a novel two level hierarchical P2P network architecture in which diameter of each cluster at Level-2 is just 1 overlay hop and diameter of the network at Level-1 is also 1 overlay hop. This is a significant improvement over our recently designed highly efficient two level hierarchical architecture [9], [10], [11]. The noteworthy

features of the architecture are: (1) the hierarchical P2P structure's diameter is only 3 overlay

hops and (2) the multiple logical addresses assigned to some particular peers. Because of such low diameters the time complexity of each of the data lookup algorithms is O(1). Such an architecture has been possible because of the use of a mathematical model based on the Chinese Remainder Theorem. To the best of our knowledge it is the first time that neighborhood relations among peers in an overlay network has been defined using such a mathematical model. 'Work in progress' includes anonymity and security considerations in communication protocols, fault-tolerance, and design of effective P2P Federation.

REFERENCES

- [1] P. Ganesan, Q.Sun, and H. Garcia-Molina, "Yappers: A peer-to-peer lookup service over arbitrary topology," in Proceedings of the IEEE Infocom 2003, San Francisco, USA, March 30 April 1 2003.
- [2] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker, "Making gnutella-like p2p systems scalable," in Proceedings of the ACM SIGCOMM, Karlsruhe, Germany, August 25-29 2003.
- [3] B. Y. Zhao, L. Huang, S. C. Rhea, J. Stribling, A. Zoseph, and J. D. Kubiatowicz, "Tapestry: A Global-Scale Overlay for Rapid Service Deployment", IEEE J-SAC, vol. 22, no. 1, pp. 41-53, Jan. 2004.
- [4] A. Rowstron and P. Druschel, "Pastry: Scalable, Distributed Object Location and Routing for Large Scale Peer-to-Peer Systems", Proc. IFIP/ACM Intl. Conf. Distributed Systems Platforms (Middleware), pp. 329-350, 2001.
- [5] I. Stocia, R. Morris, D. Liben-Nowell, D. R. Karger, M. Kaashoek, F. Dabek, and H. Balakrishnan, "Chord: A Scalable Peer-to-Peer Lookup Protocol For Internet Applications", IEEE/ACM Tran. Networking, vol. 11, No. 1, pp. 17-32, Feb. 2003.
- [6] M. Yang and Y. Yang, "An Efficient Hybrid Peer-to-Peer System for Distributed Data Sharing", IEEE Trans. Computers, vol. 59, no. 9, pp. 1158-1171, Sep. 2010.
- [7] M. Xu, S. Zhou, and J. Guan, "A New and Effective Hierarchical Overlay Structure for Peer-to-Peer Networks", Computer Communications, Elsevier, vol. 34, pp. 862-874, 2011.
- [8] D. Korzun and A. Gurtov,"Hierarchical Architectures in Structured Peer-to-Peer Overlay Networks", Peer-to-Peer Networking and Applications, Springer, pp. 1-37, March 2013.
- [9] Bidyut Gupta, Shahram Rahimi, Ziping Liu, and Sindoora Koneru,

- "Design of Structured Peer-to-Peer Networks Using Linear Diophantine Equation", Proc. CAINE 2014, pp. 147-151, New Orleans, Oct., 2014.
- [10] N. Rahimi, K. Sinha, B. Gupta, and S. Rahimi, "LDEPTH: A low diameter hierarchical p2p network architecture," Proc. 2016 IEEE Int. Conf. on Industrial Informatics (IEEE INDIN'16), Poitiers, France, July, 2016.
- [11] Bidyut Gupta, Nick Rahimi, Shahram Rahimi, and Ashraf Alyanbaawi, "Efficient Data Lookup in Non-DHT Based Low Diameter Structured P2P Network", Proc. IEEE 15th Int. Conf. Industrial Informatics (IEEE INDIN'17), July 2017, Emden, Germany.
- [12] Bidyut Gupta, Nick Rahimi, Henry Hexmoor, and Koushik Maddali, "Design of a New Hierarchical Structured Peer-to-Peer Network Based On Chinese Remainder Theorem", to appear in the Proc. The 33rd International Conference on Computers and Their Applications (CATA), March 2018, Las Vegas, USA.
- [13] J. Cheng and R. Donahue, "The Pirate Bay Torrent Analysis and Visualization", Int. J. Science, Engineering, and Computer Technology, 3(2), 38, 2013.
- [14] Z. Peng, Z. Duan, J.J. Qi, Y. Cao, and E. Lv, "HP2P: a Hybrid Hierarchical P2P Network", Proc. Intl. Conf. Digital Society, 2007.
- [15] Ratnasamy, S., Francis, P., Handley, M., Karp, R., & Shenker, S. (2001). *A scalable content-addressable network* (Vol. 31, No. 4, pp. 161-172). ACM.