Active Text Drawing Styles for Outdoor Augmented Reality: A User-Based Study and Design Implications

Joseph L. Gabbard\(^1\) \quad J. Edward Swan II\(^2\) \quad Deborah Hix\(^3\)
Center for Human-Computer Interaction \quad Computer Science & Engineering \quad Center for Human-Computer Interaction
Virginia Tech \quad Mississippi State University \quad Virginia Tech
Si-Jung Kim\(^4\) \quad Greg Fitch\(^5\)
Industrial Systems Engineering \quad Industrial Systems Engineering
Virginia Tech \quad Virginia Tech

Abstract

A challenge in presenting augmenting information in outdoor augmented reality (AR) settings lies in the broad range of uncontrollable environmental conditions that may be present, specifically large-scale fluctuations in natural lighting and wide variations in likely backgrounds or objects in the scene. In this paper, we present a active AR testbed that samples the user’s field of view, and collects outdoor illuminance values at the participant’s position. The main contribution presented herein is a user-based study (conducted using the testbed) that examined the effects on user performance of four outdoor background textures, four text colors, three text drawing styles, and two text drawing style algorithms for a text identification task using an optical, see-through AR system. We report significant effects for all these variables, and discuss design guidelines and ideas for future work.

CR Categories: H.5 [Information Interfaces and Presentation]: H.5.1: Multimedia Information Systems — Artificial, Augmented, and Virtual Realities; H.5.2: User Interfaces — Ergonomics, Evaluation / Methodology, Screen Design, Style Guides

Keywords: Outdoor Augmented Reality, Optical See-Through Display, Text Drawing Styles, Text Legibility, Empirical Study

1 Introduction

Presenting legible augmenting information in the outdoors is problematic, due mostly to uncontrollable environmental conditions such as large-scale fluctuations in natural lighting and the various types of backgrounds on which the augmenting information is overlaid. There are often cases where the color and/or brightness of a real-world background visually and perceptually conflicts with the color and/or contrast of graphical user interface (GUI) elements such as text, resulting in poor or nearly-impossible legibility. This issue is particularly true when using optical see-through display hardware.

Several recent studies in AR have begun to experimentally confirm that which was anecdotal known amongst outdoor AR practitioners, but not yet documented — namely, that text legibility is significantly affected by environmental conditions, such as color and texture of the background environment as well as natural illuminance at both the user’s and background’s position [1; 2; 3; 4; 5].

One strategy to mitigate this problem is for visual AR representations to actively adapt, in real-time, to varying conditions of the outdoor environment. Following this premise, we created a working testbed to investigate interactions among real-world backgrounds, outdoor lighting, and visual perception of augmenting text. This testbed senses the condition of the environment using a real-time video camera and lightmeter. Based on these inputs, we apply active algorithms to GUI text strings, which alter their visual presentation and create greater contrast between the text and the real-world backgrounds, ultimately supporting better legibility and thus user performance. This concept easily generalizes beyond text strings to general GUI elements.

This paper presents a direct follow-on study to our user-based study presented at VR 2005 [2]. Since that time, we have evolved our testbed to the point where we can conduct outdoor studies using real-world backgrounds (as opposed to static posters used in the prior study) and any number of active algorithms.

In our previous study [2; 1], we altered the color of the text itself (under active drawing conditions) to increase contrast between the text and the real-world background. A problem with this approach is that the rendered text color can potentially be very different from the GUI designer’s intended text color. Since color is widely used to encode semantics (e.g., in military systems blue is used to indicate friendly entities while red is used to indicate enemy entities), we are interested in researching active text drawing techniques that maintain the intended text color of GUI elements while employing real-time sensors in the environment to visually enhance the GUI elements to achieve greater legibility. This can be done, for example, by applying a lightweight outline of the text, whose color is actively determined to optimize contrast, and thus, legibility.

The focus of the work reported here is studying the effect of environmental conditions on AR text legibility, with a motivation of designing active text drawing styles that are optimal for dynamic environmental conditions. This paper describes work related to the study, our concept of visually active AR user interfaces, our visually active AR testbed (updated since our previous study [2]), and a new user-based study conducted using the updated testbed. We also present results of the user-based study, including a general discussion, and resulting design implications.

2 Related Work

Much of the HCI work that has examined user performance on text legibility tasks has occurred in static settings (e.g., 2D desktop or application settings), where text color and background color do not necessarily change in real-time, and more often than not, can be defined a priori by user interface designers. More recently, work in both the 2D realm as well as in the VR and AR fields has examined methods for optimizing text legibility. Some of the methods studied employ real-time, or active,
algorithms to increase legibility, while others rely on perceptual design principals.

One of the more common (and important) aspects of AR text legibility that has been examined is that of label placement within an AR scene. These techniques seek to place labels so that (1) labels are associated with object(s) being labeled, while (2) optimizing legibility by reducing clutter and/or overlapping of labels [4; 6]. These techniques can also be considered “active” in the sense that they use information about the real-world scene and make real-time adjustments (via placement algorithms) to the user interface to support improved user performance.

In [1] and [2] we presented results of an experiment that examined the effects of text drawing styles, background textures, and natural lighting on text legibility in outdoor AR. Our work provided clear empirical evidence that user performance on a text legibility task is significantly affected by background texture, text drawing style, and text color. We also showed that the real-world background may affect the amount of ambient illuminance at the user’s position and that the combination of this illuminance and text drawing style ultimately affects user performance.

Leykin and Tuceryan [3] present an approach to automatically determine if overlaid AR text will be readable or unreadable, given dynamic and widely varying textured-background conditions. Their approach employed a real-time classifier that used text features, as well as texture features of the background image, to determine the legibility of overlaid text. They conducted a series of experiments in which participants categorized overlaid text as “readable” vs. “unreadable”, and used their experimental results to train the classification system.

A few studies have produced methods for optimizing transparent text overlaid on 2D GUI backgrounds — a perceptual usage scenario that is similar to that of optical see-through AR. For example, Paley [7] describes techniques such as the use of outline and color variations to increase legibility of overlaid text; in this paper we also report a text drawing style that uses both character outlining and alternate color schemes for the outline. Harrison and Vicente [8] describe a similar technique used to overlay transparent text (such as drop down menus) onto 2D GUI backgrounds. They present an “anti-interference” font, which uses an outline technique similar to that presented herein. They also describe an empirical evaluation of the effect of varying transparency levels, the visual interference produced by different types of background content, and the performance of anti-interference fonts on text menu selection tasks.

3 VISUALLY ACTIVE AR USER INTERFACES

As mentioned, our general approach to a visually active AR user interface employs real-time sensors (e.g., video camera and/or illuminance meter) to capture information about a user’s visual field of view to optimize text (or other graphics’) legibility. The intent of such a system is to maintain a highly usable, flexible user interface given constantly dynamic changes in lighting and background occurring in outdoor usage contexts. A simple example of an active change would be to increase the intensity of all user interface graphics under sunny or bright environmental conditions, and to automatically dim those graphics under nighttime conditions. A slightly more advanced example, which we utilized in our user-based study, uses this information in real time to determine a legible color for an augmenting text label given the current background color (e.g., light sky or dark green foliage). The components of our visually active AR user interface testbed are presented conceptually in Figure 1.

Assuming an AR system that employs sufficiently accurate tracking, and given the geometry of a camera’s lens, it is possible to know where the user’s head is looking. Eye-trackers could even indicate the user’s specific point of regard. Cameras could then sample the entire scene or, alternatively, using a zoom function, sample a part of the scene (e.g., an object or area of interest) to obtain information specific to the user task or simply specific to the direction of a user’s gaze.

A suite of image processing tools, algorithms, and techniques can be used to further digest the scene, including, for example, feature identification and recognition. Once a scene is divided into features (e.g., sky, trees, grass, etc.), the active AR user interface can perform detailed application-specific operations on the feature region to compute appropriate changes to user interface augmentations.

4 THE EMPIRICAL USER-BASED STUDY

We conducted a study that examined the effects on user performance of outdoor background textures, text colors, text drawing styles and text drawing style algorithms for a text identification task. We captured user error and user response time. Table 1 summarizes the variables we examined.

4.1 Our Visually Active AR Testbed

Our recent instantiation of a visually active AR user interface serves as a testbed for empirically studying different text drawing styles and active text drawing algorithms under a wide range of outdoor background and illuminance conditions. Figure 2 shows our testbed, which employs a real-time video camera to capture a user’s visual field of view and to specifically sample the portion of the real-world background on which a specific
user interface element (e.g., text) is overlaid. It also employs a real-time lightmeter (connected via RS232) to provide real-time natural illuminance information to the active system. The user study reported in this paper only actively uses the camera information; the testbed recorded lightmeter information but did not use it to drive the active algorithms. We anticipate developing algorithms that are actively driven by the lightmeter in the future.

As shown in Figure 2, the AR display, camera and lightmeter sensor are mounted on a rig, which in turn is mounted on a tripod (not shown in the figure). Participants sit in an adjustable-height chair so that head positions are consistent across all participants. At this time, our testbed does not use a motion tracking system. For this experiment, we fixed the participants' field-of-view on different backgrounds by repositioning the rig between background conditions. We used previously captured camera images of backgrounds to assist in the positioning procedure and to ensure that each participant's FOV is the same for each background.

Our testbed uses the text's screen location and font characteristics to compute a screen-aligned bounding box for each text string. It then computes the average color of this bounding box, and uses this color to drive the active text drawing algorithms – which in turn determine a text drawing style color. For example, if using a billboard drawing style (see Figure 5), the active text drawing algorithm uses the sampled background color as an input to determine what color to draw the billboard. The specific text drawing styles and text drawing style algorithms are discussed in more detail below.

Our testbed was implemented as a component of the BARS system [9], and uses an optical see-through display, a real-time video camera, a lightmeter, and a mobile laptop computer equipped with a 3D graphics card. The optical see-through display was a Sony Glasstron LDJ–100B biocular optical see-through display, with SVGA resolution and a 28° horizontal field of view in each eye. We used a UniBrain Fire-i firewire camera (with settings of YUV 4:2:2 format, 640 X 480 resolution, 30Hz, and automatic gain control and exposure timing). The lightmeter is an Extech 407026 Heavy Duty Light Meter with RS232 interface to measure illuminance at the user's position. Our laptop system (and image generator) was a Pentium M 1.7 GHz computer with 2 gigabytes of RAM and an NVidia GeForce4 4200 Go graphics card generating monoscopic images, running under Windows 2000. We used this same computer to collect user data. Figure 2 shows the HMD, camera, and lightmeter components.

4.2 Task and Experimental Setup

We designed a task that abstracted the kind of short reading tasks, such as reading labels, which are prevalent in many proposed AR applications. For this study, we purposefully designed the experimental task to be a low-level visual identification task. That is, we were not concerned with participants' semantic interpretation of the data, but simply whether or not they could quickly and accurately read information. Moreover, the experimental task was designed to force participants to carefully discern a series of random letters, so that task performance was based strictly on legibility. The task was a relatively low-level cognitive task consisting of visual perception of characters, scanning, recognition, memory, decision-making, and motor response.

As shown in Figure 3, participants viewed random letters arranged in two different blocks. The upper block consisted of three different strings of alternating upper and lower case letters, while the lower block consisted of three strings of upper case letters. The participant was first instructed to locate a target letter from the upper block; this was a pair of identical letters, one of which was upper case and the other lower case (e.g., “Vv” in Figure 3). Placement of the target letter pair in the upper block was randomized, which forced participants to carefully scan through the block. We considered several other visual cues such as underlining, larger font size, and bold text for designating the target letter; however, we realized that this would result in a “pop-out” phenomenon wherein the participant would locate the target without scanning the distracting letters.

We used the restricted alphabet “C, K, M, O, P, S, U, V, W, X, Z” to minimize variations in task time due to the varying difficulty associated with identifying two identical letters whose upper and lower case appearance may or may not be similar. A post-hoc analysis showed an effect size of \(d = .07 \) error for letter, which is small when compared to the other effect sizes reported in this paper.
between-subjects illumination variation, which represents differ-
ences in the weather and time of day, was much larger than the
variation between different levels of experimental variables.
Therefore, we do not report any effects of illumination in this
paper.

4.3 Independent Variables

Outdoor Background Texture: We chose four outdoor back-
ground textures to be representative of commonly-found objects
in urban settings: brick, building, sidewalk, and sky. Note that
three of these backgrounds (all but building) were used in our
previous study [2; 1], but at that time were presented to the par-
ticipant as large posters showing a high-resolution photograph of
each background texture. In this new study, we used actual real-
world backgrounds, as shown in Figure 4 (these images repre-
sent the participant’s entire field of view when looking through
the AR display). Stimulus strings were positioned so that they
were completely contained within each background (Figure 3).

We kept the brick and sidewalk backgrounds covered when
not in use, so that their condition remained constant throughout
the study. The sky background varied depending upon cloud
cover, haze, etc., and in some (rare) cases would vary widely as
cumulus clouds wandered by. We considered including a grass
background, but were concerned that the color and condition of
the grass would vary during the months of April and May, mov-
ing from a dormant green-brown color to a bright green color.

Text Color: We used four text colors commonly used in com-
puter-based systems: white, red, green, and cyan. We chose
white because it is often used in AR to create labels and because
it is the brightest color presentable on an optical see-through
display. Our choice of red and green was based on the physio-
logical fact that cones in the human eye are most sensitive to
certain shades of red and green [11; 12]. These two text colors
were also used in our first study. We chose cyan to represent
the color blue. We chose not to use a “true” blue (0, 0, 255 in RGB
color space), because it is a dark color and is not easily visible in
optical see-through displays.
Text Drawing Style: We chose four text drawing styles (Figure 5): *none*, *billboard*, *drop shadow*, and *outline*. These are based on previous research in typography, color theory, and human-computer interaction text design. *None* means that text is drawn “as is”, without any surrounding drawing style. We included the *billboard* style because it is commonly used in AR applications and in other fields where text annotations are overlaid onto photographs or video images; arguably it is one of the de-factor drawing styles used for AR labels. We used billboard in our previous study [2]. We included *drop shadow* because it is commonly used in print and television media to offset text from backgrounds. And, we included *outline* as a variant on drop shadow that is visually more salient yet imposes only a slightly larger visual footprint. Also, the outline style is similar to the “anti-interference” font described by Harrison and Vicente [8]. Another motivation for choosing these drawing styles was to compare text drawing styles with small visual footprints (*drop shadow*) and one with a large visual footprint (*billboard*).

Text Drawing Style Algorithm: We used two active algorithms to determine the color of the text drawing style: *maximum HSV complement*, and *maximum brightness contrast*. These were the best active algorithms from our previous study [2]. As discussed above, the input to these algorithms is the average color of the screen-aligned bounding box of the augmenting text (Figure 3). We designed the *maximum HSV complement* algorithm with the following goals: retain the notion of employing color complements, account for the fact that optical see-through AR displays cannot present the color black, and use the HSV color model [13] so we could easily and independently modify saturation. We designed the *maximum brightness contrast* algorithm to maximize the perceived brightness contrast between text drawing styles and outdoor background textures. This algorithm is based on MacIntyre’s maximum luminance contrast technique [14; 15]. These algorithms are described in detail in [2].

Repetition: We presented each combination of levels of independent variables three times.

4.4 Dependent Variables

Also as summarized in Table 1, we collected values for two dependent variables: response time and error. For each trial, our custom software recorded the participant’s four-alternative forced choice (0, 1, 2, or 3) and the participant’s response time. For each trial, we also recorded the ambient illuminance at that moment in time, the average background color sampled by the camera, as well as the color computed by the text drawing style algorithm. This additional information will allow us to calculate (post-hoc) pair-wise contrast values between text color, text drawing style color, and background color; however, at this time we have not yet completed these analyses. In this paper we report an analysis of the error and response time data.

4.5 Experimental Design and Participants

We used a factorial nesting of independent variables for our experimental design, which varied in the order they are listed in Table 1, from slowest (participant) to fastest (repetition). We collected a total of 24 (participant) × 4 (background) × 4 (color) × 1 (drawing style = *none*) + 3 (remaining drawing styles) × 2 (algorithm) × 3 (repetition) = 8064 response times and errors. We counterbalanced presentation of independent variables using a combination of Latin Squares and random permutations. Each participant saw all levels of each independent variable, so all variables were within-participant.

Twenty-four participants participated, twelve males and twelve females, ranging in age from 18 to 34. All participants volunteered and received no monetary compensation; some received a small amount of course credit for participating in the experiment. We screened all participants, via self-reporting, for color blindness and visual acuity. Participants did not appear to have any difficulty learning the task or completing the experiment.

4.6 Hypotheses

Prior to conducting the study, we made the following hypotheses:

1. The brick background will result in slower and less accurate task performance because it is the most visually complex.
2. The building background will result in faster and more accurate task performance because the building wall faced north and was therefore shaded at all times.
3. Because the white text is brightest, it will result in the fastest and most accurate task performance.
4. The billboard text drawing style will result in the fastest and most accurate task performance since it has the largest visual footprint, and thus best separates the text from the outdoor background texture.
5. Since the text drawing styles are designed to create visual contrast between the text and the background, the presence of active text drawing styles will result in faster and more accurate task performance than the *none* condition.

5 Results

For error analysis we created an error metric *e* that ranged from 0 to 3:

$$e = \begin{cases}
|c - p| & \text{if } p \in \{1, 2, 3\} \\
3 & \text{if } p = 0
\end{cases},$$

where *e* = 0 to 2 was computed by taking the absolute value of *c*, the correct number of target letters, minus *p*, the participant’s response. *e* = 0 indicates a correct response, and *e* = 1 or 2 indicates that the participant miscounted the number of target letters in the stimulus string. *e* = 3 is used for trials where users pressed the “0” key (indicating they found the text illegible). Our rationale is that not being able to read the text at all warranted the largest error score, since it gave the participant no opportunity to perform the task. Our error analysis revealed a 14.9% error rate across all participants and all 8064 trials. This error rate is composed of 5.2% for *e* = 1, 0.5% for *e* = 2, and 9.2% for *e* = 3.

For response time analysis, we removed all repetitions of all trials when participants indicated that the text was illegible (*e* = 3), since these times were not representative of tasks performed under readable conditions. This resulted in 7324 response time trials (~91% of 8054 trials). Overall, we observed a mean response time of 5780.6 milliseconds (msec), with a standard deviation of 3147.0 msec.

We used repeated-measures Analysis of Variance (ANOVA) to analyze the error and response time data. For this ANOVA, the *participant* variable was considered a random variable while all other independent variables were fixed. Because our design was unbalanced (the text drawing style *none* had no drawing
ever, when we examined the subset of trials where drawing style
was 5.16, response time (min)
color on either error (for the lower errors and faster response times.
larance reflecting off the brick background, and we hypothe-
Similarly, we hypothesize that the lack of reflected
text color over all of the data, these findings suggest that our active drawing styles may enable more consistent par-
participated performed less accurately and more slowly with the bill-
was equivalent (d = .051 error, d = 118 msec). These findings are contrary to hy-
The result may be due to the luminance limitations of the Glasstron display, resulting in less luminance contrast for red
text as compared to cyan, green, and white text. This result is
consistent with the finding in our pervious study that red per-
formed poorly [2, 1], and provides further design guidance that
pure red text should be avoided in see-through AR displays used
in outdoor settings. Furthermore, together with the lack of an
effect of text color over all of the data, these findings suggest that our active drawing styles may enable more consistent par-
ticipant performance across all text colors, which would allow
AR user interface designers to use text color to encode interface
elements.

5.1 Main Effects

Figure 6 shows the main effect of background on both error
(F(3, 69) = 23.03, p < .000, d = .353 error) and response time
(F(3, 69) = 2.56, p = .062, d = 471 msec). Participants per-
formed most accurately on the building background, and made
the most errors on the brick background. A similar trend was
found for response time. These findings are consistent with
hypothesis 1 and hypothesis 2.

There was little difference in error under sidewalk and sky
conditions (d = .089 error), and similar results for response time
(d = 225 msec). We observed a relatively large amount of illu-
minance reflecting off the brick background, and we hypothe-
size that this illumiance, as well as the complexity of the brick
background texture, explain why brick resulted in poor perform-
ance. Similarly, we hypothesize that the lack of reflected
sunlight and homogeneity of the building background account
for the lower errors and faster response times.

Contrary to hypothesis 3, there was no main effect of text
color on either error (F(3, 69) = 2.34, p = .081, d = .075 error) or
response time (F(3, 69) = 1.81, p = .154, d = 253 msec). How-
ever, when we examined the subset of trials where drawing style
was none, we found significant main effects of both error (F(3, 69)
= 5.16, p = .003, d = .313 error) and response time (F(3, 69)
= 8.49, p < .000, d = 1062 msec). As shown in right-hand column
of Figure 8, participants performed less accurately and more
slowly with red text, while performance with the other text col-
ors (cyan, green, white) was equivalent (d = .063 error, d = 166
msec). This result may be due to the luminance limitations of the Glasstron display, resulting in less luminance contrast for red
text as compared to cyan, green, and white text. This result is
consistent with the finding in our previous study that red per-
formed poorly [2, 1], and provides further design guidance that
pure red text should be avoided in see-through AR displays used
in outdoor settings. Furthermore, together with the lack of an
effect of text color over all of the data, these findings suggest that our active drawing styles may enable more consistent par-
ticipant performance across all text colors, which would allow
AR user interface designers to use text color to encode interface
elements.

Figure 7 shows the main effect of text drawing style on both error
(F(3, 69) = 152, p < .000, d = .711 error) and response time
(F(3, 69) = 11.6, p < .000, d = 797 msec). In both cases, parti-
cipants performed less accurately and more slowly with the bill-
board text drawing style, while performance across the other text
drawing styles (drop shadow, outline, none) was equivalent (d =
.051 error, d = 118 msec). These findings are contrary to hy-
thesis 4. As explained in Section 4.3, our active text drawing
style algorithms use the average background color as an input to
determine a drawing style color that creates a good contrast
between the drawing style and the background. Furthermore,
the drawing style is a graphical element that surrounds the text,
either as a billboard, drop shadow, or outline. A limitation of
this approach is that it does not consider the contrast between
the text color and the surrounding graphic. Both drop shadow
and outline follow the shape of the text letters, while billboard
has a large visual footprint (Figure 5). Therefore, it is likely that
in the billboard case, the contrast between text color and the
billboard color is more important than the contrast between bill-
board color and background color, while the opposite is likely
true for the drop shadow and outline styles. These findings are
consistent with this hypothesis.

Additionally, we propose that there are (at least) two contrast
ratios of interest when designing active text drawing styles for
outdoor AR: that between the text and the drawing style, and
that between the text drawing style and the background. Both

the size of the text drawing style and whether or not it follows
the shape of the letters likely determines which of these two
contrast ratios is more important.

Since our billboard style was not compatible with our back-
ground-based drawing style algorithms, and because it exhibits a
large effect size, we removed the billboard drawing style and
performed additional analysis on the remaining data set.

Figure 8 shows that drawing style interacted with text color
using this subset of data, on both error (F(6, 138) = 2.96, p =
.009, d = .313 error) and response time (F(6, 138) = 2.95, p =
.010, d = 1062 msec). The effect size of text color was the
smallest with the maximum brightness contrast algorithm (d =
.040 error, d = 221 msec), followed by the maximum HSV com-
plement algorithm (d = .129 error, d = 589 msec), and followed
by text drawn with no drawing style and hence no algorithm (d =
.313 error, d = 1062 msec). Figure 9 shows that drawing style
algorithm also had a small but significant main effect on error
(F(2, 46) = 3.46, p = 0.04, d = .074 error). Participants were
most accurate when reading text drawn with the maximum brightness
contrast algorithm, followed by the maximum HSV complement
algorithm, and followed text drawn with no algo-

6 DISCUSSION AND RESULTING IMPLICATIONS FOR DESIGN
We’ve successfully implemented an active AR user interface
tested that is capable of demonstrating the utility of active text
drawing styles. Our empirical findings suggest that the presence
of active drawing styles effects user performance for text legibil-
ity, and that as we continue to research and design active draw-
ing styles, we should take into account at least two kinds of
contrast ratios: the contrast ratio between the text and the draw-
ing styles. Our empirical findings suggest that the presence
of active drawing styles effects user performance for text legibil-
ity, and as we continue to research and design active draw-
ing styles, we should take into account at least two kinds of
contrast ratios: the contrast ratio between the text and the draw-
ing styles. Our empirical findings suggest that the presence
of active drawing styles effects user performance for text legibil-
ity, and as we continue to research and design active draw-
ing styles, we should take into account at least two kinds of
contrast ratios: the contrast ratio between the text and the draw-
ing styles. Our empirical findings suggest that the presence
of active drawing styles effects user performance for text legibil-
ity, and as we continue to research and design active draw-
ing styles, we should take into account at least two kinds of
contrast ratios: the contrast ratio between the text and the draw-
ing styles. Our empirical findings suggest that the presence
of active drawing styles effects user performance for text legibil-
ity, and as we continue to research and design active draw-
ing styles, we should take into account at least two kinds of
contrast ratios: the contrast ratio between the text and the draw-
ing styles. Our empirical findings suggest that the presence
of active drawing styles effects user performance for text legibil-
ity, and as we continue to research and design active draw-
ing styles, we should take into account at least two kinds of
contrast ratios: the contrast ratio between the text and the draw-
ing styles. Our empirical findings suggest that the presence
of active drawing styles effects user performance for text legibil-
ity, and as we continue to research and design active draw-
ing styles, we should take into account at least two kinds of
contrast ratios: the contrast ratio between the text and the draw-
ing styles. Our empirical findings suggest that the presence
of active drawing styles effects user performance for text legibil-
ity, and as we continue to research and design active draw-
ing styles, we should take into account at least two kinds of
contrast ratios: the contrast ratio between the text and the draw-

A finding consistent with our previous study [1], is clear
empirical evidence that user performance on a visual search
task, which we believe is representative of a wide variety of
imagined and realized AR applications, is significantly affected
by background texture (Figure 6), text drawing style (Figure 7),
text color (Figure 8), and active drawing style algorithm (Fig-
ures 8 and 9). These findings suggest that more research is
needed to understand how text and background color interact,
and how to best design active systems to mitigate performance differences.

One limitation of our study was that we did not use any “control” colors for our three text drawing styles. That is, every time a text drawing style was drawn, it used an active color determined via the drawing style algorithm. Including a control drawing style color (e.g., white) would have allowed us to verify the benefit of drawing styles independent of whether or not the styles were active or not. This limitation did not preclude us however, from comparing the drop shadow to the outline drawing style.

In terms of design implications, our error analyses suggest the color red should not be used without an accompanying text drawing style color (e.g., white) would have allowed us to verify the benefit of drawing styles independent of whether or not the styles were active or not. This limitation did not preclude us however, from comparing the drop shadow to the outline drawing style.

The camera.

Lastly, we plan to upgrade some testbed components, specifically the AR optical see-through display and the real-time camera.

Acknowledgements

Our work on active drawing styles for outdoor AR has been supported by the Office of Naval Research (ONR) and the Naval Research Lab, under Program Managers Dr. Behzad Kamgar-Parsi and Dr. Larry Rosenblum. We’d also like to thank Mark Livingston of the Naval Research Lab, as well as Dr. Steve Feiner of Columbia University for loaning us the Glasstron AR display, without which this work could not have happened. We’d like to thank Dr. Woodrow Winchester III for supporting this research as part of an ISE6614 class project. Lastly, we thank Mr. Phil Keating, Dr. Llyod Hipkins, and Mr. Claude Kenley for supporting our research and allowing us to conduct the user-based study described herein at their “Virginia Tech Weed Science – Turfgrass Noncrop Aquatics” facilities.

References

