1. Use the square and multiply algorithm to evaluate $234^{231} \mod 535$. Show all steps.

2. Illustrate RSA encryption and decryption for the choice of $p=7$, $q=13$
 i. What is $\phi(n)$?
 ii. Assuming that the minimum possible encryption exponent is chosen, what is the encryption exponent e?
 iii. What is the corresponding decryption exponent d?
 iv. Illustrate RSA encryption and decryption with the above choices of e and d for
 (a) $P = 6$
 (b) $P = 7$.
 v. It was discussed in the class that the working of RSA rests on the generalized Euler-Fermat theorem which states that $a^\phi(n) \equiv 1 \mod n$ only for $(a, n) = 1$, where k is any integer. In the second example ($P = 7$) this requirement is not satisfied as 7 is not relatively prime to n. Nevertheless, RSA encryption / decryption still works! Can you explain?

3. Illustrate Diffie-Helman Key exchange when Alice and Bob choose $p=41$, $g=3$.
 • Assume that Alice chooses a secret $a=13$ and Bob chooses $b=4$. What is the common secret computed by Alice and Bob?

4. Alice chooses an El Gamal encryption scheme with $p=41$ and $g=3$. Alice chooses a private key $a=21$.
 i. What is Alice's public key?
 ii. Bob desires to send the message $P=11$ to Alice such that no one except Alice can decrypt the value. Illustrate how Bob will send the message to Alice (assume that Bob chooses $k=5$ for masking).
 iii. Illustrate how Alice can sign a message which has a hash of $h=21$ (for a choice of $k=7$).