1. (15 points) If \(g = \gcd(a, b) \) then
 - show that \(g = ka + lb \), where \(k \) and \(l \) are integers.
 - List an algorithm which takes \(a \) and \(b \) as input and outputs \(g, k, l \) (such an algorithm goes by the name “extended euclidean” algorithm).
 - show that if \(g_1 = ua + vb, g_1 \neq 0 \), where \(u \) and \(v \) are integers, then \(|g_1| > |g| \).

2. (5 points) If \(a \equiv b \mod m \) and \(a \equiv b \mod n \) and \(\gcd(m, n) = 1 \), show that \(a \equiv b \mod mn \).

3. (5 points) Show that if \(\gcd(a, m) > 1 \), that \(a \) has no inverse mod \(m \).

4. (5 points) In the class we proved Fermats Little Theorem \(a^{p-1} \equiv 1 \mod p \). Give an alternate proof by induction on \(a \) (trivial for \(a = 1 \), prove that it is true for \(a + 1 \) if it is true for some \(a \)).