Trust

- The “fabric” of life!
- Holds civilizations together
- Develops by a natural process
- Advancement of technology results in faster evolution of societies
 - Weakening the natural bonds of trust
 - From time to time artificial mechanisms need to be introduced – eg – photo ids
- Cryptography is a “trust building mechanism”
- We are at a point (or about to arrive at a point) where cryptography needs to be part of our day-to-day lives
At the crux of cryptography is the assumption that

TRUST = SHARED SECRET

How do we leverage shared secret to build trust?

Components of Trust

- Secrecy, Authentication, Non-repudiation, Integrity, Identity

Cryptographic Primitives

- Encryption/Decryption, Digital Signatures, Hash (one-way) functions, random sequence generators
Cryptography

• Encryption and Decryption

```
Plain Text  Encryption  Cipher Text

Cipher Text  Decryption  Plain Text
```

• Two ways
 - Symmetric Cryptography (shared key)
 - Asymmetric Cryptography (two-key / public-key)
An Analogy - Shared Secret as a Key

- Alice and Bob share a key to a lock
- Handling messages
 - Put them in a box
 - Secure the box with the lock
- Alice knows only Bob has a key (and vice-versa)
- Shared key enables trust
- Modern cryptography uses bits and computer programs – not locks and keys!
Asymmetric Key Cryptography

- Encrypt with **public** key
- Decrypt with **private** key
- Private key is secret, public key is not (could be entered in some on-line public directory)
- Used for
 - Secrecy and Digital Signatures
Asymmetric Key Cryptography

- Alice, Bob and Oscar - have never met before – no shared secret
- Alice announces her public key to Bob (Oscar also listens)
- Bob chooses a secret randomly and encrypts it with Alice's public key
- Alice can decrypt Bob's message and determine Bob's chosen secret – Oscar cannot (he does not have access to Alice's Private key)
- Now Alice and Bob have a shared secret!
- Notion of Public key cryptography is definitely not intuitive!
Illustration of Asymmetric Key Cryptography

- Simple box with a lock won't work; need a more sophisticated contraption!
- Message box (locker) with trapdoors
- Encryption and Digital Signatures
- “Front door” opened with public key to drop messages for Alice and collect documents signed by Alice
- “Back door” can be opened only by Alice with her private key.
- Only an analogy.
- Need “trapdoor one-way” functions to realize asymmetric cryptography.
Paper and Pencil Cryptography

- Read Sections 2.1 through 2.3 of text
- Evolution of Cryptography
- First documented use by Julius Caesar
- Caesar Cipher (Enciphering and Deciphering)
 - MEET YOU TOMORROW (Plain Text)
 - RJJY DTZ YTRTWWTB (Cipher Text)
- 26 possible keys – (0-25, key 5 used in example above)
- Vignere Cipher (26 x m keys)
 - MEET Y O U T O M O R R O W
 - DOGD OGD OGD OGD OGD OGD OGD OGD
 - PSK W M UXHU PCX UCC
 - (4,15,7), m=3
More P&P Ciphers

- Auto-key Vignere Cipher
 - MEET YOU TOMORROW (Plain Text)
 - HIYA (key)
- Extended key
 - HIYAMEETYOUTOMO
- Cipher
 - MEETYOUTOMORROW
 - HIYAMEETYOUTOMO
 - TMCTKSYMMAIKFAK
Even More Ciphers!

- A more complex substitution Cipher
 - Each letter substituted by an arbitrary letter
 - Full Vignere.

- Key generation
 - NETWORKSECURITY ANDCRYPTOGRAPHYBIZ
 - NETWORKSCU IYA DPGHBZFJ LMQVX
 - ABCD EFGHI J KLMNOPQRSTU VWXYZ
 - 26! (403291461126605635584000000) keys

- Permutation Ciphers
 - Text length M AND -> (2,3,1) -> NDA
 - M! possible permutations

- Combination of substitution and permutation

- Repeated application – many rounds
Let's do some math!

- Mathematics is a language!
- Often when we “develop mathematical tools” we lose perspective...
- Not just about “numbers”
- Language – consists of statements
- A statement is an expression of TRUTH
- Numbers
 - Whole Numbers
 - Zero
 - Integers - Zero + Whole Numbers + Negative Whole Numbers
 - Rational numbers
 - Real numbers
 - Complex numbers
Modular Arithmetic
(Read Sections 4.1 thro 4.4)

- Set of all integers \(Z = \{ -\infty, ..., -3, -2, -1, 0, 1, 2, 3, ..., \infty \} \)
- Set of positive integers less than \(m \)
 \[Z_m = \{ 0, 1, 2, 3, ..., m - 1 \} \]
- We want to perform arithmetic in \(Z_m \)
- Equivalence Classes \(a \equiv b \mod m \Rightarrow a = b + cm; a, b, c, m \in \mathbb{Z} \)
- Say \(m = 5 \)
 - EC of 0 \{ ...-15, -10, -5, 0, 5, 10, ... \}
 \[-15 \equiv -10 \equiv -5 \equiv 0 \equiv 5 \mod m \]
 - EC of 1 \{ ...-14, -9, -4, 1, 6, 11, ... \}
 - EC of 2 \{ ...-13, -8, -3, 2, 7, 12, ... \}
 - EC of 3 \{ ...-12, -7, -2, 3, 8, 13, ... \}
 - EC of 4 \{ ...-11, -6, -1, 4, 9, 14, ... \}
Addition mod m

\[a \equiv b \mod m \Rightarrow a = b + km \]
\[c \equiv d \mod m \Rightarrow c = d + lm \]
\[(a + c) \equiv (c + a) \mod m \]
\[(a + c) \equiv (b + d) \equiv (a + d) \equiv (b + c) \mod m \]
\[(a + c) = b + d + (k + l)m = (b + d) + jm \]
Multiplication mod m

\[a \equiv b \mod m \Rightarrow a = b + km \]
\[c \equiv d \mod m \Rightarrow c = d + lm \]
\[ac = (b + km)(d + lm) = bd + (bl + kd + klm)m \]
\[ac \equiv bd \mod m \]
What about division?

- Is division possible in \(\mathbb{Z} \)?
- Group, Abelian Group, Ring and Field
 - Group
 - Addition is closed, associative
 - Existence of additive identity, additive inverse
 - Abelian group – addition is also commutative
 - Ring
 - Multiplication is closed, associative, commutative, multiplicative identity, distributive
- Field – every element except “additive identity” has multiplicative inverse
Multiplicative Inverse

- Additive identity is 0
- Multiplicative identity is 1
- Consider $m = 5$
 - $2 \to$ multiplicative inverse is 3 as $2 \times 3 \equiv 1 \mod 5$
 - $3 \to 2$
 - $4 \to 4$ \quad $4 \times 4 \equiv 1 \mod 5$
 - Obviously 1 is its own inverse
- Now $m = 6$
 - $5 \to$ inverse is 5 as \quad $5 \times 5 \equiv 1 \mod 6$
 - What about 2, 3 and 4? No inverses - why?
Basic Theorems of Arithmetic

- Let p_i represent the i^{th} prime

$$n = \prod_{i=1}^{\infty} p_i^{e_i}, e_i > 0$$

$$n = \prod_{i=1}^{\infty} p_i^{n_i}$$

$$m = \prod_{i=1}^{\infty} p_i^{m_i}$$

$$\text{lcm}(m, n) = \prod_{i=1}^{\infty} p_i^{\max(n_i, m_i)}$$

$$\text{gcd}(m, n) = \prod_{i=1}^{\infty} p_i^{\min(n_i, m_i)}$$
Preliminaries

- \(\text{gcd}(m,n) \) is usually represented as \((m,n)\)
- If \(n = km \), (and \(k \) is an integer) we say \(m \mid n \)
 (\(m \) divides \(n \))
- The number \(s = (m,n) \) is the largest positive integer such that \(s \mid m \) and \(s \mid n \)
- If \((m,n)=1 \), and if \(m \mid a \) and \(n \mid a \) then \(mn \mid a \)
Algorithm for GCD

- **Basic idea** - if \(a = qb + c\) then \((a,b) = (b,c)\)
 - Let \(s = (a,b)\) and \(t = (b,c)\)
 - \(s|a, s|b, t|b, t|c\)
 - \(c = a - qb = s(a_1 - qb_1)\) or \(s|c\)
 - As \(s|b\) and \(s|c\) and \(t\) is the largest integer that divides both \(b\) and \(c\), \(s \leq t\)
 - \(a = qb + c = t(qb_2 + c_2)\) or \(t|a\)
 - As \(t|b\) and \(t|a\) and \(s\) is the largest integer that divides both \(a\) and \(b\), \(t \leq s\)

 \(t=s\) or \((a,b) = (b,c)\) if \(a = qb + c\)
Euclidean Algorithm

\[(a_0, a_1), a_0 > a_1\]
\[a_0 = q_1 a_1 + a_2 \Rightarrow (a_0, a_1) = (a_1, a_2)\]
\[a_1 = q_2 a_2 + a_3 \Rightarrow (a_1, a_2) = (a_2, a_3)\]
\[\vdots\]
\[a_{i-1} = q_i a_i + a_{i+1} \Rightarrow (a_{i-1}, a_i) = (a_i, a_{i+1})\]
\[\vdots\]
\[a_{r-2} = q_{r-1} a_{r-1} + a_r\]
\[a_{r-1} = q_r a_r + 0 \Rightarrow (a_{r-1}, a_r) = a_r = (a_{r-2}, a_{r-1}) = \cdots = (a_0, a_1)\]
Euclidean Algorithm

- \((457, 283)\)
Euclidean Algorithm

- $(457, 283)$
- $457 = 1 \times 283 + 174$
Euclidean Algorithm

- $(457, 283)$
- $457 = 1 \times 283 + 174$
- $283 = 1 \times 174 + 109$
- $174 = 1 \times 109 + 65$
- $109 = 1 \times 65 + 44$
- $65 = 1 \times 44 + 21$
- $44 = 2 \times 21 + 2$
- $21 = 10 \times 2 + 1$
Euclidean Algorithm

- \((457, 283)\)
- \(457 = 1 \times 283 + 174\)
- \(283 = 1 \times 174 + 109\)
- \(174 = 1 \times 109 + 65\)
- \(109 = 1 \times 65 + 44\)
- \(65 = 1 \times 44 + 21\)
- \(44 = 2 \times 21 + 2\)
- \(21 = 10 \times 2 + 1\)
- \(2 = 2 \times 1 + 0\) \quad \text{or} \quad (457, 283) = (2, 1) = 1
Euclidean Algorithm

- $(457, 283)$
- $457 = 1 \times 283 + 174$
- $283 = 1 \times 174 + 109$
- $174 = 1 \times 109 + 65$
- $109 = 1 \times 65 + 44$
- $65 = 1 \times 44 + 21$
- $44 = 2 \times 21 + 2$
- $21 = 10 \times 2 + 1$
- $1 = 21 - 10 \times 2$
- $2 = 2 \times 1 + 0$ or $(457, 283) = (2, 1) = 1$

Euclidean Algorithm

- \((457, 283)\)
- \(457 = 1 \times 283 + 174\)
- \(283 = 1 \times 174 + 109\)
- \(174 = 1 \times 109 + 65\)
- \(109 = 1 \times 65 + 44\)
- \(65 = 1 \times 44 + 21\)
- \(44 = 2 \times 21 + 2\)
- \(21 = 10 \times 2 + 1\)
- \(2 = 2 \times 1 + 0\)

or \((457, 283) = (2,1) = 1\)
Euclidean Algorithm (Extended)

- \((457, 283)\)
- \(457 = 1*283 + 174\) \(1 = 135*457 + (-218)*283\)
- \(283 = 1*174 + 109\)
- \(174 = 1*109 + 65\)
- \(109 = 1*65 + 44\)
- \(65 = 1*44 + 21\)
- \(44 = 2*21 + 2\) \(1 = 21-10*(44-2*21)\)
- \(21 = 10*2 + 1\) \(1 = 21-10*2\)
- \(2 = 2*1 + 0\) or \((457,283) = (2,1) = 1\)
Bezout's Representation

- $s = (a, b) = ia + jb$
- s is the *smallest strictly positive integer* that can be written as a combination of a and b
- If coins are minted in only two denominations a and b can we accomplish any transaction?
- How can you mark 1 foot with two scales – one 9 feet long and the other 7 feet long?
Modular Inverse

Does inverse of \(a \mod m \) exist?

\[aa^{-1} \equiv 1 \mod m \]

Let \(b = a^{-1} \)

\[ab \equiv 1 \mod m \Rightarrow ab = 1 + km \Rightarrow 1 = (-b)a + km \]

\((a, m) = 1 \)

Inverse exists only if \((a, m) = 1 \)

If \((a, m) = 1 \) then \(a \) is “relatively prime” to \(m \)

No wonder we couldn't find inverses for 2, 3 and 4 in mod 6

Note that \((5, 6) = 1 \) (so 5 has an inverse in mod 6)
Euclidean Algorithm (Extended)

- \((457, 283)\)
- \(457 = 1 \times 283 + 174\) \quad \(1 = 135 \times 457 + (-218) \times 283\)
- \(283 = 1 \times 174 + 109\)
- \(174 = 1 \times 109 + 65\)
- \(109 = 1 \times 65 + 44\)
- \(65 = 1 \times 44 + 21\)
- \(44 = 2 \times 21 + 2\) \quad \(1 = 21 - 10 \times (44 - 2 \times 21)\)
- \(21 = 10 \times 2 + 1\) \quad \(1 = 21 - 10 \times 2\)
- \(2 = 2 \times 1 + 0\) \quad \text{or} \quad (457, 283) = (2, 1) = 1
Euclidean Algorithm (Extended)

- \((457, 283)\)
- \(457 = 1 \times 283 + 174\) \(1 = 135 \times 457 + (-218) \times 283\)
- \(283 = 1 \times 174 + 109\) \((-218 \times 283) = 1 + (-135) \times 457\)
- \(174 = 1 \times 109 + 65\) \((-218 \times 283) \equiv 1 \mod 457\)
- \(109 = 1 \times 65 + 44\) \(-218 \equiv 239 \mod 457\)
- \(65 = 1 \times 44 + 21\) \((239 \times 283) \equiv 1 \mod 457\)
- \(44 = 2 \times 21 + 2\)
- \(21 = 10 \times 2 + 1\) \(1 = 21 - 10 \times 2\)
- \(2 = 2 \times 1 + 0\) \(\text{or } (457, 283) = (2, 1) = 1\)
Euclidean Algorithm (Extended)

- \((457, 283)\)
- \(457 = 1 \times 283 + 174\) \(\Rightarrow 1 = 135 \times 457 + (-218) \times 283\)
- \(283 = 1 \times 174 + 109\) \((-218 \times 283) = 1 + (-135) \times 457\)
- \(174 = 1 \times 109 + 65\) \((-218 \times 283) \equiv 1 \mod 457\)
- \(109 = 1 \times 65 + 44\) \(-218 \equiv 239 \mod 457\)
- \(65 = 1 \times 44 + 21\) \((239 \times 283) \equiv 1 \mod 457\)
- **239 is the inverse of 283 mod 457**
- \(239 \times 283 = 67637 = 1 + 148 \times 457\)
Prime Modulus

- What if \(m \) is prime?
- We have \(\mathbb{Z}_m = \{0,1,2,...,m-1\} \)
- Every number is relatively prime to a prime number!
- So every number 1 ... m-1 has an inverse!
- \(\mathbb{Z}_m \) forms a FIELD
- Normally referred to as prime field \(\mathbb{Z}_p \)
Why prime modulus?

- It is a field
 - Almost all mathematical operations are supported.
 - Crunch away!
- Cannot decipher "patterns"
 - Deterministic mathematical functions – yet the results seem random!
 - Good for cryptography!
How about Exponentiation?

- Just repeated multiplication!
- Let's choose a large prime p and a generator g – both are public
- Choose some number a, and calculate
 - $A \equiv g^a \mod p$
 - There is a simple algorithm for exponentiation involving repeated squaring - complexity $O(\log(a))$
 - No algorithm for determining a from $A!$ (complexity $O(p)$!!
 - Why is this feature useful?
Diffie-Helman Key Exchange!
(Sneak Peak)

- Alice and Bob agree on a large prime p and a generator g
- Alice chooses a secret a, and calculates
 - $A \equiv g^a \mod p$ – A is Alice's public key
- Bob chooses a secret b, and calculates
 - $B \equiv g^b \mod p$ – B is Bob's public key
- Alice and Bob exchange A and B in public
 - Alice calculates $S \equiv B^a \mod p \equiv g^{ba} \mod p$
 - Bob calculates $S \equiv A^b \mod p \equiv g^{ab} \mod p$
- Nobody else can calculate S
 - even if they know A, B, g and p!
 - only $g^{a+b} \mod p$ (or g^{a-b}) – not very useful!
RECAP

- \(Z_m = \{0,1,2,...,m-1\} \)
 - \(Z_m \) is a ring – addition, multiplication...
 - Multiplicative inverse of \(a \) in \(Z_m \) exists only if
 - \((a,m)=1; \)
 - GCD – Euclidean algo
 - Multiplicative Inverse – Extended Euclidean Algorithm
- If \(m = p \) (a prime) then \(Z_p \) is a field
 - Supports all regular operations – addition, subtraction, multiplication and multiplicative inverses
 - All elements of the field (except additive identity) has a multiplicative inverse.
Matrix Operations in a Field

\[
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 7 \\
8 & 6 & 4
\end{bmatrix} \mod 11
\]

\[
A^{-1} \equiv \det(A)^{-1} \adj(A) \mod 11
\]

\[
\det(A) \equiv 10 \mod 11; \inv(10) \mod 11 \equiv 10 \mod 11
\]

\[
\adj(A) \equiv \begin{bmatrix}
(20-42) & -(16-56) & (24-40) \\
-(8-18) & (4-24) & -(6-16) \\
(14-15) & -(7-12) & (5-8)
\end{bmatrix}^T \mod 11
\]

\[
\adj(A) \equiv \begin{bmatrix}
-22 & 40 & -16 \\
10 & -20 & 10 \\
-1 & 5 & -3
\end{bmatrix}^T \mod 11 \equiv \begin{bmatrix}
0 & 7 & 6 \\
10 & 2 & 10 \\
10 & 5 & 8
\end{bmatrix}^T
\]

\[
A^{-1} \equiv 10 \cdot \begin{bmatrix}
0 & 10 & 10 \\
7 & 2 & 5 \\
6 & 10 & 8
\end{bmatrix} \equiv \begin{bmatrix}
0 & 1 & 1 \\
4 & 9 & 6 \\
5 & 1 & 3
\end{bmatrix} \mod 11
\]
Matrix Operations in a Ring

\[
A \equiv \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 7 \\ 8 & 6 & 4 \end{bmatrix} \mod 26
\]

\[
A^{-1} \equiv \text{det}(A)^{-1} \text{adj}(A) \mod 26
\]

\[
\text{det}(A) \equiv 10 \mod 26
\]

\[
\text{inv}(10) \mod 26 \equiv ???
\]

\[
(10,26) \neq 1
\]

Not Invertible?

Not necessarily

No unique inverse
Hill Cipher

\[
K = \begin{bmatrix} 17 & 17 & 5 \\ 21 & 18 & 21 \\ 2 & 2 & 7 \end{bmatrix} \mod 26
\]

\[
\text{det}(K)^{-1} \equiv 11 \mod 26
\]

\[
K^{-1} = \begin{bmatrix} 10 & 9 & 3 \\ 7 & 17 & 22 \\ 10 & 0 & 19 \end{bmatrix} \mod 26
\]

\[
P = \begin{bmatrix} 4 \\ 3 \\ 5 \end{bmatrix} \mod 26; C = KP = \begin{bmatrix} 17 & 17 & 5 \\ 21 & 18 & 21 \\ 2 & 2 & 7 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \\ 5 \end{bmatrix} \equiv \begin{bmatrix} 14 \\ 9 \\ 23 \end{bmatrix} \mod 26
\]

\[
K^{-1}C = \begin{bmatrix} 10 & 9 & 3 \\ 7 & 17 & 22 \\ 10 & 0 & 19 \end{bmatrix} \begin{bmatrix} 14 \\ 9 \\ 23 \end{bmatrix} \equiv \begin{bmatrix} 4 \\ 3 \\ 5 \end{bmatrix}
\]
In Hill cipher the encoding key is K and the decoding key is K^{-1} – does this mean Hill cipher is an “asymmetric” cipher? Why?

For a 3x3 Hill cipher there are 9 “secrets.” How many known plain-text cipher-text pairs do we need to break the secret?
ATTACK ON HILL CIPHER

\[K \equiv \begin{bmatrix} 17 & 17 & 5 \\ 21 & 18 & 21 \\ 2 & 2 & 7 \end{bmatrix} \mod 26; K^{-1} \equiv \begin{bmatrix} 10 & 9 & 3 \\ 7 & 17 & 22 \\ 10 & 0 & 19 \end{bmatrix} \mod 26 \]

\[P_1 \equiv \begin{bmatrix} 4 \\ 3 \\ 5 \end{bmatrix} \mod 26; P_2 \equiv \begin{bmatrix} 4 \\ 21 \\ 18 \end{bmatrix} \mod 26; P_2 \equiv \begin{bmatrix} 7 \\ 16 \\ 8 \end{bmatrix} \mod 26 \]

\[C_1 \equiv KP_1 \equiv \begin{bmatrix} 14 \\ 9 \\ 23 \end{bmatrix} \mod 26; C_2 \equiv \begin{bmatrix} 21 \\ 8 \\ 20 \end{bmatrix} \mod 26; C_3 \equiv \begin{bmatrix} 15 \\ 5 \\ 24 \end{bmatrix} \mod 26; \]

\[\begin{bmatrix} 14 & 21 & 15 \\ 9 & 8 & 5 \\ 23 & 20 & 24 \end{bmatrix} \equiv K \begin{bmatrix} 4 & 4 & 7 \\ 3 & 21 & 16 \\ 5 & 18 & 8 \end{bmatrix} \text{ or } P \equiv KC \mod 26 \]

\[K \equiv PC^{-1} \mod 26 \]
Find K in mod 79.
Brute-force Attacks on Ciphers

- $C = E(P,K)$. We have P
- Try every possible key K
- $P_i = D(C,K_i)$
- How do we know when to stop? Under any key there will be a corresponding P_i
- How do we know that a particular P_i is the correct plaintext?
- Does this mean brute force attacks are not possible?
Entropy of Plain Text

- Think of all possible 100 character strings that “make sense”
- For example, say a billion books, each with 1 billion “strings that make sense” - still makes it only 10^{18} possible phrases!
- How many total strings of length 100?
 - 26^{100}. That is more than 3×10^{141}!
- Say we encrypt a meaningful string with a 64 bit key,
 - the ciphertext is decrypted with another key
 - What is the probability that the wrong key results in a string that makes sense?
 - $2^{64} \times 10^{18}/(3 \times 10^{141}) < 6 \times 10^{-105}$
 - Which is good news for the attacker...
Vernam Cipher
The Ultimate Cipher?

• What if we make the number of possible keys the same as the number of possible plain text messages?

• One-time pad – Vernam Cipher

• Cannot try out keys any more! There is always a key which maps cipher text to every possible plain text

• No way an attacker can eliminate any message – all messages are equally likely
 - The attacker learns NOTHING!
 - Perfect Secrecy