

UNIVERSITÀ DEGLI STUDI DI

ROMA

"TOR VERGATA"

DOTTORATO DI RICERCA IN

Computer Science, Control and GeoInformation

CICLO DEL CORSO DI DOTTORATO
XXV

MOSES: a QoS-driven Autonomic Framework

for Service Oriented Systems

Stefano Iannucci

A.A. 2013/14

Docente Guida/Tutor: Prof. Valeria Cardellini

Coordinatore: Prof. Giovanni Schiavon

I am convinced that I would never have been able to finish my Ph.D.

studies without the support of my advisor Prof. Valeria Cardellini.

Her exceptional culture, her character and her availability encouraged

me to pursue this important goal. She is an absolute certainty.

This thesis is dedicated to my parents

and to my beautiful beans.

Thank you!

Abstract

Service Oriented Systems (SOSs) based on the SOA paradigm are becoming popular

thanks to a widely deployed internetworking infrastructure. They are composed by a

possibly large number of heterogeneous third-party subsystems and usually operate in

a highly varying execution environment, that make challenging to provide applications

with Quality of Service (QoS) guarantees. A well-established approach to face the

heterogeneous and varying operating environment is to design a SOS as a runtime self-

adaptable software system, so that a prospective enterprise willing to realize a SOA ap-

plication can dynamically choose the component services that best fit its requirements

and the environment in which the application operates. These SOSs are commonly

architected as self-adaptive systems following the MAPE-K (Monitor, Analyze, Plan,

Execute, and Knowledge) reference model for autonomic computing.

In this thesis we will first present a taxonomy of self-adaptive SOSs and then we

will present the methodology, the design and architecture, and the performance eval-

uation of MOSES: a QoS-driven autonomic framework for service oriented systems.

This framework, which is freely available with an opensource license at

http://uniroma2-moses.sourceforge.net, fully implements the MAPE-

K reference model by providing a platform for developing, testing and running different

adaptation mechanisms exploited by autonomic SOSs. Specifically, we will focus on

the methodologies at the core of the Plan phase that support QoS-driven adaptation.

To this end, we will propose two policies that follow a different perspective in the re-

quest management, by optimizing either each single request or a flow of requests. The

design and architecture of MOSES will be discussed according to the layered view of

the Cloud Computing stack: we will start from the design and realization of an Infras-

tructure as a Service (IaaS) on which we deployed the Platform as a Service (PaaS)

which acts as a container for MOSES, that in its turn resides at the Software as a Ser-

i

vice (SaaS) layer. Finally, we will present the results of an extensive performance

evaluation, which takes into account both the effectiveness of the proposed QoS-driven

adaptation methodologies and the scalability of the framework. Thanks to the modu-

lar architecture of MOSES, we are confident that its public release will allow the ex-

perimentation of alternative approaches to QoS-driven adaptation of Service Oriented

Systems.

ii

Publications

Parts of the work presented in this thesis have been published in the following book

chapters, conference, journal and workshop papers.

Journals

J1 V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci, F. Lo Presti, R. Mirandola,

“MOSES: a framework for QoS driven runtime adaptation of service-oriented

systems”, IEEE Transactions on Software Engineering, Vol. 38, No. 5, pp.

1138-1159, Sept./Oct. 2012. doi: 10.1109/TSE.2011.68

J2. V. Cardellini, V. Di Valerio, V. Grassi, S. Iannucci, F. Lo Presti, “QoS driven

per-request load-aware service selection in service oriented architectures”, Inter-

national Journal of Software and Informatics, Special Issue on Service Oriented

Systems Engineering, Vol. 7, No. 2, pp. 195-220, 2013.

Book Chapters

BC1. V. Cardellini, V. Di Valerio, S. Iannucci, F. Lo Presti, “Service-oriented systems

for adaptive management of service composition”, Adaptive Web Services for

Modular and Reusable Software Development: Tactics and Solutions, G. Ortiz

and X. Cubo (eds.), IGI Global, pp. 161–195, 2013. doi: 10.4018/978-1-4666-2089-6.ch006

Proceedings of International Conferences and Workshops

IC1. V. Cardellini, S. Iannucci, “Designing a broker for QoS driven runtime adapta-

tion of SOA applications”, Proceedings of the IEEE International Conference

on Web Services (ICWS 2010), Applications and Industry Track, Miami, FL, pp.

504–511, July 2010. doi: 10.1109/ICWS.2010.77 (acceptance rate: 17.5%)

iii

IC2. A. Bellucci, V. Cardellini, V. Di Valerio, S. Iannucci, “A scalable and highly

available brokering service for SLA-based composite services”, Proceedings of

the 8th International Conference on Service Oriented Computing (ICSOC 2010),

San Francisco, CA, Lecture Notes in Computer Science Vol. 6470, Springer,

pp. 527–541, Dec. 2010. doi: 10.1007/978-3-642-17358-5 36 (acceptance rate:

36/234 = 15.4%)

IC3. V. Cardellini, V. Di Valerio, V. Grassi, S. Iannucci, F. Lo Presti, “A performance

comparison of QoS-driven service selection approaches”, Proceedings of the 4th

European ServiceWave Conference (ServiceWave 2011), Poznam, Poland, Lec-

ture Notes in Computer Science Vol. 6994, Springer, pp. 167–178, Oct. 2011.

doi: 10.1007/978-3-642-24755-2 16

IC4. V. Cardellini, V. Di Valerio, V. Grassi, S. Iannucci, F. Lo Presti, “A new ap-

proach to QoS driven service selection in service oriented architectures”, Pro-

ceedings of the IEEE 6th International Symposium on Service-Oriented System

Engineering (IEEE SOSE 2011), Irvine, CA, pp. 102-113, Dec. 2011. doi:

10.1109/SOSE.2011.6139098 (acceptance rate: 33%) Best paper award

IC5. V. Cardellini, S. Iannucci, “Designing a flexible and modular architecture for a

private cloud: a case study”, Proceedings of the 6th International Workshop on

Virtualization Technologies in Distributed Computing (VTDC 2012) (in conjunc-

tion with the 21st International ACM Symposium on High-Performance Parallel

and Distributed Computing), Delft, The Netherlands, pp. 37-44, June 2012. doi:

10.1145/2287056.2287067

IC6. E. Casalicchio, S. Iannucci, L. Silvestri, “Cloud Desktop Workload: a Character-

iv

ization Study”, Proceedings of the IEEE 3rd International Conference on Cloud

Engineering, Tempe, AZ, March 2015.

Posters and National Conferences

P1. V. Cardellini, S. Iannucci, “Improving SOA applications response time with ser-

vice overload detection”, 21st International ACM Symposium on High-Performance

Parallel and Distributed Computing (HPDC 2012), poster presentation, Delft,

The Netherlands, June 2012.

NC1. A. Bellucci, V. Cardellini, V. Di Valerio, S. Iannucci, “A scalable and dependable

system for QoS-aware SOA applications”, Workshop Informatica Quantitativa

2010 (InfQ 2010), Pisa, July 2010.

NC2. S. Iannucci, V. Cardellini, “Designing a system architecture for a private cloud

provider”, V Conferenza Italiana sul Software Libero (ConfSL 2011), Milano,

June 2011.

NC3. E. Casalicchio, S. Iannucci, L. Silvestri, “Characterization of CPU and disk load

for Cloud Desktop Providers” Workshop Informatica Quantitativa 2014 (InfQ

2014), Torino, November 2014.

Under preparation

UP1 V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci, F. Lo Presti, R. Miran-

dola, “MOSES: a platform for experimenting QoS-driven self-adaptation poli-

cies for service oriented systems”, book chapter in Software Engineering for

Self-Adaptive Systems: Assurances, LNCS, Springer, 2015.

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Definition . 6

1.3 Key Research Issues . 8

1.4 Contributions . 9

1.5 Thesis Outline . 11

2 Autonomic Service Oriented Systems 13

2.1 SOA Fundamentals . 14

2.2 Fundamentals of Autonomic Systems 16

2.3 Dimensions of Self-Adaptation for Service Oriented Systems 18

2.4 Dimensions of Self-Adaptation for MAPE-K based Service Oriented

Systems . 24

2.4.1 Monitor Taxonomy . 24

2.4.2 Analyze Taxonomy . 27

2.4.3 Plan Taxonomy . 30

2.4.4 Execute Taxonomy . 38

3 MOSES: a Framework for QoS Driven Runtime Adaptation of Service-

Oriented Systems 43

3.1 Overview of MOSES . 44

3.1.1 A Comparison of Frameworks for Self-Adaptation of SOSs . 45

3.2 Plan Phase . 51

3.2.1 Composite Service Model 52

3.2.2 Adaptation Actions . 55

vii

CONTENTS

3.2.2.1 Adaptation Actions for Stateless and Stateful Services 57

3.2.3 SLA Model . 58

3.2.4 Adaptation Policy Model . 59

3.2.5 QoS Model . 60

3.2.5.1 Task QoS Attributes 62

3.2.6 Optimization Policies . 64

3.2.6.1 Per-Request Optimization 64

3.2.6.2 Per-Flow Optimization 68

3.2.6.3 Load-Aware Per-Request Optimization 75

3.3 Monitor Phase . 82

3.3.1 Monitoring the Concrete Services 83

3.4 Analyze Phase . 83

4 Case Study: Design and Implementation of MOSES 89

4.1 IaaS Layer . 90

4.1.1 Back-End Subnet . 91

4.1.1.1 Redundant Network Topology 91

4.1.1.2 Redundant Storage 94

4.1.1.3 Volumes Management 97

4.1.1.4 Complete Storage Architecture 98

4.1.2 Choosing the IaaS Management Platform 101

4.1.3 Front-End Subnet . 104

4.2 PaaS Layer . 105

4.3 SaaS Layer . 107

4.3.1 Overview of the MOSES Architecture 107

viii

CONTENTS

4.3.2 MOSES Design within OpenESB 111

4.3.3 MOSES Components . 113

4.3.4 MOSES Clustered Architecture 114

4.3.5 MOSES Overheads . 116

5 Performance Evaluation 119

5.1 Testing Environment . 121

5.2 Workload Generator . 121

5.3 Performance Evaluation . 123

5.3.1 Runtime Binding Overhead Analysis 123

5.3.2 Performance of MOSES ESB Clustered 125

5.4 Effectiveness Evaluation . 126

5.4.1 Effectiveness of Per-Flow Adaptation Policy 126

5.4.1.1 Maximization of the Average Reliability 129

5.4.1.2 Minimization of the Average Cost 131

5.4.1.3 Adaptation Policy Computational Cost 133

5.4.2 Improving Reliability through Web Service Monitoring 136

5.4.2.1 Baseline Scenario 138

5.4.2.2 Graceful Failure and Join of Concrete Services . . . 140

5.4.2.3 Undetected Failure/Join of Web Services 141

5.4.2.4 Detection of Web Service Failures to Improve Reli-

ability . 142

5.4.3 Comparison of Per-Request and Per-Flow Approaches 142

5.4.3.1 Per-Request and Per-Flow Optimization Time Com-

parison . 145

ix

CONTENTS

5.4.3.2 Per-Request and Per-Flow Execution Time Compar-

ison . 146

5.4.4 Comparison of Per-Request and Load-Aware Per-Request Ap-

proaches . 151

5.4.4.1 Per-Request Approach 154

5.4.4.2 Comparison between Per-Request and Load-Aware

Per-Request Approaches 155

5.4.4.3 Scalability of Load-Aware Per-Request Approach . 157

5.4.4.4 Effectiveness of Load-Aware Per-Request Approach 157

5.4.4.5 Effectiveness of the Adaptive Cusum Algorithm . . 159

6 Conclusions 167

6.1 Summary . 167

6.2 Future Work . 169

x

List of Tables

3.1 Main notation adopted in the thesis. 53

3.2 Workflow composition rules. 54

3.3 Coordination patterns. 56

3.4 Recursive rules to calculate the average value of the QoS attributes of

a composite service according to the per-flow workflow model. 71

5.1 Operation SLA parameters. 128

5.2 Class SLA parameters. 129

5.3 Measured values for SLA parameters (mean and 95% confidence inter-

val). 132

5.4 Operation SLA parameters. 139

5.5 Average reliability and 95% confidence interval for the baseline exper-

iment . 139

5.6 Average reliability and 95% confidence interval for experiment with

graceful failures . 140

5.7 Comparison of the average reliability and 95% confidence interval for

the experiments with and without the WS Monitor 143

5.8 SLA parameters for candidate operations (top) and service classes (bot-

tom) . 148

5.9 Performance comparison with the per-flow approach of [11] and per-

request approaches of [6, 12] (time measured in seconds). 149

5.10 SLA parameters for candidate operations 152

5.11 SLA parameters for service classes 153

5.12 Average response times of the load-aware per-request policy for all

service classes under light and heavy loads 158

xi

List of Figures

2.1 Workflow of the composite service managed by MOSES 15

2.2 MAPE-K control loop. 17

2.3 Taxonomy of self-adaptation for SOA. 19

2.4 Conceptual model of the SOA domain. 21

2.5 Monitor taxonomy. 25

2.6 Analyze taxonomy. 28

2.7 Plan taxonomy. 31

2.8 Execute taxonomy. 38

3.1 The MOSES approach. 45

3.2 MOSES within the self-adaptable SOS taxonomy. 46

3.3 MOSES within the Plan taxonomy 51

3.4 A MOSES-compliant workflow. 54

3.5 Implementation of the MOSES adaptation policy for a single task. . . 60

3.6 Composite service labeled tree. 70

3.7 MOSES within the monitor taxonomy 86

3.8 MOSES within the analyze taxonomy 87

4.1 Network topology. 93

4.2 Data flow on the storage architecture. 100

4.3 Network stack of the front-end servers. 105

4.4 MOSES high-level architecture. 108

4.5 Typical execution flow in the ESB-based MOSES prototype. 111

4.6 MOSES clustered architecture. 115

5.1 Workflow of the composite service managed by MOSES 122

xiii

LIST OF FIGURES

5.2 MOSES response time. 124

5.3 Throughput in the closed model. 126

5.4 Response time in the open model. 127

5.5 (wd = 1): reliability for all classes over time. 130

5.6 (wd = 1): response time for all classes over time. 131

5.7 (wc = 1): reliability for all classes over time. 133

5.8 Optimization problem execution time for different values of maximal

redundancy: (a) no redundancy (p = 0); (b) at most two concrete ser-

vices using the par or pattern (p = 2) and (c) at most three concrete

services using the par or pattern (p = 3). 134

5.9 Optimization problem execution time as function of the number of ser-

vice classes. 136

5.10 Baseline reliability over time under low request rate 140

5.11 Baseline reliability over time under high request rate 141

5.12 Reliability over time when services are subject to graceful failures un-

der low request rate . 142

5.13 Reliability over time when services are subject to graceful failures un-

der high request rate . 143

5.14 Reliability over time when services are subject to failures, without WS

Monitor under low request rate . 144

5.15 Reliability over time when services are subject to failures, without WS

Monitor under high request rate . 145

5.16 Reliability over time when services are subject to failures, with WS

Monitor under low request rate . 146

xiv

LIST OF FIGURES

5.17 Reliability over time when services are subject to failures, with WS

Monitor under high request rate . 147

5.18 Scenario 1: response time of the composite service for class 1 160

5.19 Scenario 2: response time of the composite service over time for class 1 161

5.20 Response time of the traditional per-request service selection policy . 162

5.21 Response time of the traditional versus load-aware per-request service

selection policies . 162

5.22 CPU usage of the concrete service selected for S1 by the traditional

per-request policy . 163

5.23 CPU usage of the concrete services selected for S1 by the load-aware

per-request policy . 163

5.24 Response time of the load-aware per-request policy under the two sets

of concrete services . 164

5.25 Response time of the load-aware per-request policy for all service classes

over time . 165

5.26 Response time of the load-aware per-request policy under external load

without QoS Monitor . 166

5.27 Response time of the load-aware per-request policy under external load

with QoS Monitor . 166

xv

1
Introduction

Contents

1.1 Motivation . 1

1.2 Problem Definition . 6

1.3 Key Research Issues . 8

1.4 Contributions . 9

1.5 Thesis Outline . 11

1.1 Motivation

In computer science, Service-Oriented Architecture (SOA) is now a mature reference

paradigm for developing network accessible, service-based applications. The main

goal of designing applications following the SOA paradigm is to achieve a better de-

gree of interoperability with respect to legacy distributed applications, which are tied

up by constraints, such as programming languages and specific protocols and tech-

nologies. SOA applications are built up by composing black-box services that can be

discovered and invoked using standard protocols, therefore hiding possibly different

technologies. The service composition is usually described by a workflow represent-

ing the actual business logic of the application, defining both the execution and data

flow. SOA applications have the clear advantage over legacy applications to be easily

reused because they can be published as services in a standard registry, where other

1

Chapter 1. Introduction

applications can discover them for further invocation. As a consequence, the focus

in developing a SOA application is shifted to activities concerning the identification,

selection, and composition of services offered by third parties rather than the classic

in-house development. Systems realized using the SOA paradigm take the name of

Service Oriented Systems (SOSs). They benefit from the SOA flexibility as well as

from the presence of a widely deployed internetworking infrastructure.

The diffusion of systems deployed using the SOA paradigm is leading to the prolif-

eration of service marketplaces (such as SAP Service Marketplace and Windows Azure

Marketplace), where an enterprise can find every component needed to build its SOA

applications. With an ever increasing number of service providers on the global market

scene, it is becoming easy to find multiple providers implementing the same functional-

ity with different quality levels, e.g., different providers can exhibit different response

times or costs for services that present the same logic. Therefore, depending on the

needs of the SOA application, it is possible to dynamically select the services that

best fit its (possibly changing) requirements. However, several problems arise when

a SOA application, which is offered using third party services, needs to fulfill non-

functional requirements, because existing services may disappear or their performance

may quickly fluctuate over time, due to the highly varying execution environment.

The SOA paradigm easily allows to replace services with equivalent ones, but this

task could be very challenging for a human being, especially when several services

must be replaced at the same time. Similarly, when the service composition logic

needs to be partially or even entirely modified in order to account for changes in the

functional requirements, it is hard to manually choose among several alternative work-

flows, considering also the non-functional requirements. In addition, the management

2

1.1. Motivation

complexity of SOSs rapidly grows as the number of services involved in the compo-

sitions increases. To tackle such complexity, to reduce management costs, and to pro-

vide better operativeness, a common and well-established approach is to design SOSs

as runtime self-adaptable software systems [91], that is, software systems able to de-

tect changes in the environment and to properly reconfigure themselves. In the field

of self-adaptable software systems, the main research branches that have been pursued

regard the functional and non-functional requirements of SOA applications. The for-

mer concern the overall application logic to be implemented, while the latter concern

the Quality of Service (QoS) levels that should be guaranteed. In this thesis, we focus

on non-functional requirements expressed as QoS attributes of SOSs.

The adaptation of non-functional requirements can follow either the best effort or

QoS-driven strategy. The former aims to generally improve non-functional attributes

(e.g., response time or reliability) of the overall SOA application, but without ensuring

any kind of guarantee. On the other hand, the latter aims to provide a SOA application

with predictable QoS attributes. In the last years both approaches have been largely

investigated, e.g., [42, 59, 70] for the best effort strategy and [12, 23, 65] for the QoS-

driven strategy. Each solution has its own characteristics and peculiarities in the way

it faces the self-adaptation. In particular, since in the context of SOA applications, the

management, the control, and performance prediction of the QoS characteristics of the

offered service have been identified as the most critical tasks as they ultimately deter-

mine how the system guarantees QoS levels, most of the efforts have focused on and

mostly differ for the different strategies adopted for the aforementioned tasks. Nev-

ertheless, despite their differences, all these approaches follow a more general frame-

work, called MAPE-K.

3

Chapter 1. Introduction

MAPE-K [52] is a conceptual guideline for realizing self-adaptable systems [91]

and is composed of four essential phases: Monitor, Analyze, Plan, and Execute. There

is also a Knowledge layer that support all the phases. The model is based on a feedback-

control loop, that detects changes in the execution environment, analyzes them, plans

the necessary actions to optimize some utility function, and executes these actions.

In literature, the same approach is also referred to as CADA [39], which stands for

Collect, Analyze, Design, and Act.

It is generally possible to distinguish between two families of adaptation strategies,

according to the granularity level they provide to manage the requests to the SOS. With

the per-request grain, the adaptation concerns a single request addressed to a compos-

ite service, and aims at making the system able to fulfill the QoS requirements of that

request, independently of the concurrent requests that may be addressed to the system.

With the per-flow grain, the adaptation concerns an overall flow of requests, and aims

at fulfilling QoS requirements concerning the global properties of that flow. Most of

the proposed methodologies focus on the per-request case (e.g. [6, 12, 22, 104, 105]),

while only a few works have focused on the per-flow granularity (e.g. [11, 23, 24]).

However, both the approaches have been formalized as optimal service selection prob-

lems. An optimal service selection problem aims at finding the optimal combination of

services needed to implement the required abstract functionalities while satisfying the

QoS constraints.

To be able to scale and to optimize resource utilization, SOSs usually exploit infras-

tructures realized with the Cloud Computing [13, 20], which has recently emerged as

a paradigm for delivering computational services over the Internet. Small and medium

organizations are attracted by this computing paradigm because it let them not own

4

1.1. Motivation

an in-house datacenter with the associated risks and costs, but rather just rent what is

effectively needed time after time.

There are different types of cloud deployment models, each with its own benefits

and drawbacks. With public clouds, providers offer their resources as services to the

general public. Key benefits of using public clouds include no initial capital investment

on the infrastructure and risk shifting to cloud providers. Private clouds are instead de-

signed for exclusive use by a single organization. They may be built by the organization

itself or by an external service provider. A private cloud offers the highest degree of

control over performance, reliability, and security. However, it is often criticized for

being similar to traditional proprietary server farms and does not provide benefits such

as no up-front capital costs. Finally, hybrid clouds are in between public and private:

they are primarily based on private clouds, but they can extend their capacity with

public clouds should the need arise.

Cloud providers offer services at three different layers, respectively named: In-

frastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service

(SaaS) [106]. These three levels offer a layered view of the cloud computing stack. The

user of the lowest layer rents from a IaaS provider virtualized resources like computa-

tional power, storage, and network and has the task to manage the rented resources. The

middle layer is the PaaS, in which the cloud user acquires the control over a software

platform, ideally an application server and an application development environment,

where he has to deploy and manage his own applications. At the uppermost layer, i.e.,

the SaaS, the cloud provider offers software applications to its users which might be,

of course, SOSs.

5

Chapter 1. Introduction

1.2 Problem Definition

In this thesis we address the challenging problem of designing and developing a QoS-

aware autonomic broker of SOS.

We suppose to operate in an environment where multiple service providers offer

possible functionally equivalent services with different QoS attributes. Such QoS at-

tributes are formalized by providers into contracts named Service Level Agreements

(SLAs). Each SLA contains both the quality parameters (such as response time and

reliability) and the cost that will be charged for each service invocation. The broker,

which is in charge of executing a QoS-aware service workflow, accepts the SLAs with

service providers and, in turn, proposes its own SLAs to perspective users. The main

task of the broker is therefore to satisfy the SLA established with the users for the entire

workflow, given the ones bargained with the service providers of the single services and

the operating environment. Furthermore, since the broker will operate over the Inter-

net, it might face several issues such as service churn or performance fluctuation with

or without consequent SLA violation. It must therefore be able to adapt the workflow

it serves according to such environmental changes. In particular, it must be able:

• to self-optimize service selection according to the required SLA;

• to self-configure its components according to a possibly changing environment

(for example, it must be able to scale up and down according to the submitted

load in order to avoid itself to be a bottleneck);

• to self-heal its components and the workflow it serves in case of failures.

These three aspects (along with the self-security aspect which will not be addressed by

this thesis) constitute the foundations of an autonomic system.

6

1.2. Problem Definition

Since there are possibly tenths or hundreds of concrete services that might be used

to implement each task of the workflow, the ability to self-optimize is crucial for a

broker of SOSs. Self-optimizing means in this case selecting the best implementing

services, given the current environment. This is a particularly tricky task due to the

definition of best: there could be different optimization goals, possibly conflicting. For

instance, one goal of the broker could be to maximize its revenue; however, to fulfill

the SLAs agreed with the users, it could be forced not to choose the cheapest services.

Self-configuration is a core requirement for the broker. Since there are many com-

ponents working together to realize the final application, it is not arguable to let a

human being manage all this complexity. Furthermore, the system is exposed to In-

ternet and may be subject to sudden load burst and therefore it must be able to easily

scale according to the current load. This is a challenging task because both the broker

and the infrastructure where it resides must be designed and implemented in order to

support automatic component deployment and configuration.

Due to the high number of component involved, it is also fundamental to consider

that some of them could fail over time. Self-healing feature provides the broker with

the ability to detect such a failure and to consequently react. This task is really difficult

because there are different kinds of failures to address. For instance, a component

might completely fail or it could violate its SLA. In the first case we have no choice

and the auto-healing behavior of the broker must detect the problem and replace the

failed component with a functionally equivalent one, but in the second case this rarely

is an easy decision: the alternative services might be more expensive or might not

provide the required QoS attributes. It is therefore needed to use sophisticated analyze

methods in order to actually state that the component should be replaced.

7

Chapter 1. Introduction

1.3 Key Research Issues

The problems identified in Section 1.2 produce the key research issues summarized in

the following.

Service selection The service selection problem has been widely investigated in re-

cent years. We can distinguish among three generations of service selection solutions.

First generation of service selection solutions focused on a local approach [61,105] that

time by time associates each running task of a SOS with the best available service that

implements that task. However, this local approach can guarantee only local QoS con-

straints, for example the response time of a given task lower than a given threshold and

did not solve the problem of having a full workflow compliant with QoS constraints.

To overcome this limitation, second generation service selection solutions shifted

the focus on a global approach, introducing the concept of granularity level of the

adaptation: at the per-request grain [6, 12, 22, 60, 65, 104], the adaptation focuses on

each single request submitted to the system and aims at fulfilling the QoS constraints

of that specific request. On the contrary, the per-flow grain [11, 23, 24, 54] considers

the flow of requests of a user rather than the single request, and the adaptation goal is

to fulfill the QoS constraints that concern the global properties of that flow, e.g., the

average SOS response time or its reliability.

However, the solutions proposed so far for both per-request and per-flow granulari-

ties are not satisfactory, either in terms of QoS guarantees or scalability to user requests.

The per-request grain exhibits scalability problem under a sustained traffic of requests,

because each request is managed independently of all the other concurrent ones. As a

consequence, multiple service requests could be assigned to the same concrete service,

8

1.4. Contributions

that could be overloaded. On the other hand, the per-flow grain is not able to ensure

QoS guarantees to a single request, and the user perceived QoS could be very different

from that stipulated in the SLA.

Design, implementation and performance testing of autonomic SOSs broker Cur-

rently there exist some implementations of frameworks for QoS brokering of Web

services (e.g., [10, 22, 69]). Menascé et al. have proposed a SOA-based broker for

negotiating QoS goals [69] but their broker does not offer a composite service and its

components are not organized as a self-adaptive system. PAWS [10] is a framework for

flexible and adaptive execution of business processes but some of its modules work only

at design time. Proxy-based approaches for the runtime binding to concrete services,

have been previously proposed, either for re-binding purposes [22] or for handling run-

time failures in composite services as in the TRAP/BPEL framework [43]. The SASSY

framework for self-adaptive SOSs has been proposed in [66]. It self-architects at run-

time a SOS to optimize a system utility function. Nonetheless, none of the works in the

SOA field has evaluated the proposed prototype in terms of performance and scalabil-

ity. We believe that such kind of evaluation is needed for any prototype to be adopted

and developed in an industrial environment.

1.4 Contributions

In the following we summarize the main contributions of this thesis.

Contribution 1. Performance-oriented design of an autonomic SOSs broker This

contribution regards the design and implementation of MOSES: an autonomic SOSs

broker. Many effort have been conducted in order to realize an efficient broker with

9

Chapter 1. Introduction

very small overheads with respect to the execution of a SOS with static bindings. We

designed and implemented every aspect of the system: from the underlying private

cloud infrastructure to its the modular architecture based on Enterprise Service Bus

(ESB). Furthermore, we demonstrated how it is possible to realize such a complex

system by using exclusively free software.

Contribution 2. A third generation service selection solution We introduce with

this thesis a third generation service selection solution which overcomes the limits

of existing approaches described in Section 1.3. Specifically, we propose a per-request

service selection solution which is able to balance the load across the available concrete

services: we borrow from the second generation per-request approach the ability to

guarantee QoS levels for each single request, but we also borrow from the per-flow

approach the ability to scale over multiple concrete services. We also contributed to

extend the existing second generation per-flow approach presented in [24, 25].

Contribution 3. Extensive effectiveness and performance testing This contribu-

tion regards an extensive test of the performance and effectiveness of MOSES. Per-

formance tests were conducted in order to show the actual overhead introduced by

the runtime binding as well as the scalability features of the prototype. Thanks to

the modular architecture of MOSES we were able to implement and compare several

existing service selection solutions: for each implementation, effectiveness tests have

been conducted to prove its benefits and limits. Finally, we also implemented and

evaluated the new proposed per-request third generation service selection solution, in

comparison with the second generation one. At the state of the art, none of the existing

brokers [66, 70, 89] with the exception of MOSES have been evaluated both from the

10

1.5. Thesis Outline

point of view of the effectiveness and of the performance, therefore it is unknown if

they can be adopted in a production environment.

Contribution 4. Release to the community of a framework for self-adaptive SOSs

As a last contribution, we release to the community the source code of MOSES. We

believe that this will allow the experimentation of alternative approaches to QoS-driven

adaptation of Service Oriented Systems. To the best of our knowledge, besides MOSES,

the only other broker whose source code is available is VRESCo [70], but it lacks many

features available in MOSES, as described in Section 3.1.1.

1.5 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 provides background

information about the SOA and autonomic computing domains and introduces two

taxonomies for autonomic Service Oriented Systems. The taxonomies are then used

to classify several related works; Chapter 3, which covers Contribution 2, describes

the MOSES methodology according to the phases of the MAPE-K reference model for

autonomic systems; Chapter 4, which covers Contribution 1, describes the design of

MOSES, as well as the design of a private cloud infrastructure. In Chapter 5, which

covers Contribution 3, we show the results of the performance and effectiveness tests.

Finally, Chapter 6 concludes the thesis with a reflection on the contributions and out-

look for future work.

11

2
Autonomic Service Oriented Systems

Contents

2.1 SOA Fundamentals . 14

2.2 Fundamentals of Autonomic Systems 16

2.3 Dimensions of Self-Adaptation for Service Oriented Systems . . 18

2.4 Dimensions of Self-Adaptation for MAPE-K based Service Ori-

ented Systems . 24

2.4.1 Monitor Taxonomy . 24

2.4.2 Analyze Taxonomy . 27

2.4.3 Plan Taxonomy . 30

2.4.4 Execute Taxonomy . 38

In this chapter we will discuss about autonomic systems that use a service orien-

tation approach. First of all, we will introduce the fundamental concepts behind Ser-

vice Oriented Architecture (SOA) and then the MAPE-K reference framework [52] for

building autonomic systems. As major contribution for this chapter, we will provide

a characterization of the problem space for self-adaptive software systems by organiz-

ing it along several dimensions, where each dimension captures one or more related

facets of the problem. Papers addressing this issue have provided somewhat differ-

ent characterizations [8,19,34,48,64,87,91], mainly because of some difference in the

adopted perspective. Overall, they can be considered as possible answers to some basic

questions [91]:

13

Chapter 2. Autonomic Service Oriented Systems

• why the adaptation should be performed (which are its goals);

• when should adaptation actions be applied;

• where the adaptation should occur (in which part of the system) and what ele-

ments should be changed;

• how should adaptation be implemented (by means of which actions);

• who should be involved in the adaptation process.

The answers provided by the papers cited above aim at addressing the whole soft-

ware systems domain. In this chapter we adopt a narrower viewpoint, and propose two

taxonomies that provide possible answers to these questions according to:

• the specific features of the SOA domain with special emphasis on QoS aspects

and

• the specific adaptation methodology provided by the MAPE-K framework.

Our main goal is to analyze the key issues to be tackled in the design of an auto-

nomic SOS while providing specific references to related works for all the considered

aspects of the taxonomies. We do not aim at presenting an exhaustive analysis of the

literature for the SOA domain, for which we refer to [50, 95, 97].

2.1 SOA Fundamentals

The SOA reference model defines the interacting actors and their interaction modes.

Looking over the SOA domain, the main actors are: the service provider, that offers

14

2.1. SOA Fundamentals

a service, and the service requestor, that requests the service. To issue a service invo-

cation, the service requestor has to know a service provider offering the needed func-

tionality. To this end, the service registry holds information about existing services,

which are published by service providers themselves. Figure 2.1a illustrates the SOA

reference model.

Figure 2.1: Workflow of the composite service managed by MOSES

One of the peculiarities of SOA is that is possible to assemble services offered by

several service providers in order to build a service composition. The composition itself

can be in its turn exposed as a service and used by other service compositions.

As an example of service composition, consider a prospective travel planner appli-

cation: it could be composed by several steps such as one or more hotel reservations,

flights reservations, credit card checks and so on. This application follows a flow of

activities described by a business process and every step could involve an invocation to

a different service provider.

The aforementioned business process can be described either using a service or-

chestration, or a service choreography paradigm. The former is shown in Figure 2.1b,

where a centralized entity named service broker is responsible for the execution of the

business logic and for the invocation of the component services. That is, the totality of

15

Chapter 2. Autonomic Service Oriented Systems

the business logic is held by the broker and the component services are completely un-

aware of each other. With the latter approach, instead, the business logic is distributed

across the component services and there is no central coordination. Our focus in this

thesis is on service orchestration.

A common implementation of the SOA reference model is realized by Web ser-

vices. In this thesis we will therefore use the terms service and Web service inter-

changeably.

2.2 Fundamentals of Autonomic Systems

MAPE-K is an architectural framework for realizing self-adaptable applications and,

in a more general way, it can be used to build autonomic applications: the MAPE-K

control loop uses an intelligent agent to perceive the surrounding environment through

sensors and uses the collected information to determine the actions that have to be

performed on the environment itself. In the context of SOA applications, the managed

environment is constituted by (i) a workflow of activities concerning the invocation of

external services, (ii) the external services, and (iii) the network interconnecting these

activities, the clients and the service providers. The managers are software components

which belong to the different MAPE-K phases, namely (i) Monitor, (ii) Analyze, (iii)

Plan, and (iv) Execute.

Figure 2.2 illustrates the MAPE-K control loop: the four steps of the autonomic

manager, the managed element, the sensors, and the actuators. In the context of SOA

the managed element is the SOA application itself, while the autonomic manager is a

(possible complex) software layer supervising the actual SOA application. While the

application runs, the manager goes through the different MAPE-K steps:

16

2.2. Fundamentals of Autonomic Systems

Figure 2.2: MAPE-K control loop.

1. Monitor: this phase monitors the application execution through sensors. In the

SOA context, the sensors are implemented by means of probes over external

services, with the objective of detecting new services as well as the actual quality

attributes like response time, reliability, availability of already known services.

2. Analyze: the Monitor phase output is taken as input by the Analyze phase, which

usually performs statistical computation on the raw data collected by the preced-

ing phase. The data analysis has the objective to decide whether some quality

attribute has violated (or is going to violate) a previously specified internal pol-

icy, usually stated into the Knowledge layer. In the SOA domain, an internal

policy could be the violation of a certain threshold on a quality attribute, e.g.,

the average detected response time for a given service is greater than what estab-

lished in the internal policy, or its reliability is less than what expected.

3. Plan: when the Analyze phase detects some kind of violation of the internal

17

Chapter 2. Autonomic Service Oriented Systems

policies, the Plan phase is activated and an adaptation plan is computed, possibly

using the data elaborated by the Analyze phase together with the Knowledge

layer. In the SOA context, the elaboration of a new execution plan could be

represented by a different service selection, that is, the selection of different

service providers implementing the needed functionalities. Otherwise, it could

be represented by an internal workflow re-arrangement so that internal policies

specifying the application requirements could be satisfied.

4. Execute: the new computed plan has to be executed by the SOA application

controlled by the MAPE-K control loop. Such corrective actions are applied by

means of actuators on the underlying SOA application. In the SOA domain, the

corrective actions could be represented by a different binding of functionalities

to service providers, as well as by application re-deployments.

2.3 Dimensions of Self-Adaptation for Service Oriented

Systems

Figure 2.3 summarizes the main concepts of this characterization. For the sake of

clarity, the class diagram in Figure 2.4 illustrates some elements of the SOA domain

we use in this characterization. A more detailed taxonomy of these elements can be

found, for example, in [18, 36].

Why. The basic goal of adaptation is to make the system able to fulfill its functional

and/or non functional requirements, despite variations in its operating environment,

which are very likely to occur in the SOA domain. Our focus in this thesis is on non

functional requirements concerning the delivered QoS and cost. In the SOA domain,

these requirements are usually the result of a negotiation process engaged between

18

2.3. Dimensions of Self-Adaptation for Service Oriented Systems

Figure 2.3: Taxonomy of self-adaptation for SOA.

the service provider and user, which culminates in the definition of a Service Level

Agreement (SLA) concerning their respective obligations and expectations [67]. In

a stochastic setting, a SLA specifies guarantees about the average value of quality

attributes, or more tough guarantees about the higher moments or percentiles of these

attributes [26, 92].

A completely different approach is described in [58], where the goal of the adapta-

tion is not to optimize the QoS, rather to minimize the cost resulting from SLA viola-

tions, which can occur if financially desirable.

With regard to functional requirements, we just mention that, in the SOA domain,

adaptation may play a relevant role in tackling runtime interoperability issues among

dynamically discovered and selected services (e.g., [35, 73]).

19

Chapter 2. Autonomic Service Oriented Systems

When. Broadly speaking, adaptation can be performed at different stages of the

system lifetime [64]: development time, compile/link time, load time, runtime. In

the SOA domain, the emphasis is on building systems by late composition of running

services. Hence, the focus of adaptation in this domain is on the runtime stage. This

narrower viewpoint of the “when” dimension is also adopted in [91] for the broader

field of self-adaptive software. Within this stage, we may further distinguish reactive

and proactive adaptation. In the reactive mode, the system adapts itself after a change

has been detected. In the proactive mode, the system anticipates the adaptation based

on a prediction of possible future changes.

Where-What. The SOA paradigm emphasizes a compositional approach to soft-

ware systems development, where the units of composition are services. A service

can be considered as a black-box component deployed on some platform, operated by

an independent authority and made accessible through some networking infrastructure

using standard protocols. Hence, the composition of services can be considered as the

basic locus for adaptation in the SOA domain. Looking at service composition, we may

distinguish an abstract composition, where only the required functionalities (tasks) and

their composition logic are specified, and a concrete composition, where the tasks of

an abstract composition are bound to actual implementations, based on the use of op-

erations offered by network accessible concrete services. Based on this distinction,

adaptation in the SOA domain may take place at two different levels:

• services only: the adaptation only involves the concrete composition, acting on

the implementation each task is bound to, leaving unchanged the composition

logic (i.e., the overall abstract composition) [12, 23, 24, 54, 77];

• services and workflow: the adaptation involves both the concrete and abstract

20

2.3. Dimensions of Self-Adaptation for Service Oriented Systems

User

Flow

Task

Abstract
Composition

operation

Concrete
Composition

Service

QoS Class

generates specifies

offers

performs

implements

implements

1..*

1..*

1..*

1..*

1..*

0..*1

1 1

Figure 2.4: Conceptual model of the SOA domain.

composition; in particular, the composition logic can be altered. Several ap-

proaches have been proposed that use aspect oriented programming to inject

fragments of code (e.g. [5, 59]) or that provide extensions to orchestration lan-

guages [32, 56].

We may also look at the where question from the perspective of the adaptation

scope. In this perspective, we may take two different viewpoints: the number of SOSs

operating in the same environment that are directly involved in the adaptation process,

and the granularity level at which adaptation is performed, considering the flow of

requests addressed to a SOS by the same or different users.

We first discuss this issue from the “granularity level” viewpoint in the “scope”

dimension:

21

Chapter 2. Autonomic Service Oriented Systems

• single request: the adaptation concerns a single service request, and aims at

making the system able to fulfill the requirements of that request, irrespective of

whether it belongs to some flow generated by one or more users [6, 12, 22, 104,

105]);

• flow of requests: the adaptation concerns an overall flow of requests, and aims at

fulfilling requirements concerning the global properties of that flow [11, 23, 24].

Let us consider now the “number of SOA systems” viewpoint:

• single system: a single system is explicitly considered as the system to be adapted,

while everything else, including other competing SOA systems, is considered

part of its environment;

• multiple systems: several SOA systems, competing for overlapping sets of ser-

vices in the same environment, are explicitly considered in the adaptation pro-

cess.

How. Possible answers to this question depend on the level of the composition

where adaptation takes place, as discussed above. For adaptations involving only the

services of the composition, adaptation actions could be based on:

• service tuning: the behavior and/or properties of the operations of concrete ser-

vices are changed, depending on the current operating conditions, exploiting

some management interface exposed by the concrete services themselves (e.g.,

based on WSDM MOWS [63]). This kind of action does not change the current

binding between tasks and operations of concrete services;

22

2.3. Dimensions of Self-Adaptation for Service Oriented Systems

• service selection: the goal of this action is to identify and to bind to each task a

corresponding single operation offered by a concrete service, selecting it from a

set of candidates. This kind of action could change the binding between tasks and

operations, if the previous selection is no longer suitable for the new operating

conditions; most of the approaches in literature focus on service selection [50].

Related works about service selection will be presented in Section 2.4.3.

• coordination pattern selection: rather than binding each task to a single oper-

ation, this action binds it to a set of functionally equivalent operations offered

by different concrete services, coordinating them according to some spatial or

temporal redundancy pattern. The coordination pattern is selected within a set

of implementable patterns (e.g., 1-out-of-n parallel redundancy, alternate ser-

vice [25]), that could in general guarantee different QoS and cost levels, for the

same set of coordinated operations. Binding a task to a set of equivalent op-

erations allows to obtain QoS levels (concerning reliability and, in some cases,

performance) that could not be achievable binding it to a single operation. Of

course this advantage should be weighted against the higher cost caused by the

use of multiple concrete services.

Who. This dimension concerns the “authorities” that manage the adaptation pro-

cess and it is related to the “number of SOA systems” dimension discussed above. In

the case of a single system, we may assume that its adaptation is under the control of a

single authority (that must take into account the fact that the constituent services of the

managed system could be operated by third parties). In the case of multiple systems,

their adaptation could be still under the control of a single authority. Alternatively, it

could be under the control of multiple cooperating authorities, that, for example, agree

23

Chapter 2. Autonomic Service Oriented Systems

on some common utility objective. Some works have been recently proposed in this

direction: in [76] the authors propose a decentralized composition mechanism based

on the notion of stigmergy, taking inspiration from the interactions exhibited by social

insects to coordinate their activities. In [4] the authors propose instead an approach

based on the friction concept with the goal of minimizing the waiting time of service

requests.

Finally, the adaptation process could be under the control of multiple non cooper-

ating authorities, that compete in a selfish way for some set of services (e.g. [45]).

2.4 Dimensions of Self-Adaptation for MAPE-K based

Service Oriented Systems

The taxonomy presented in Section 2.3 has been used to provide a high-level classifi-

cation of self-adaptable SOSs. Anyway, most of them are architected according to the

MAPE-K reference framework for autonomic systems. Therefore, in this section we

provide a classification of self-adaptable SOSs according to how they implement each

MAPE-K phase.

2.4.1 Monitor Taxonomy

The taxonomy of the Monitor phase is shown in Figure 2.5.

What We consider the monitoring of QoS parameters, i.e., the set of attributes that

describe the performance of the SOA application, or the hardware/software resources

that support its execution. For example, the attributes concerning the hardware re-

sources could be the CPU utilization or the amount of available memory, while those

24

2.4. Dimensions of Self-Adaptation for MAPE-K based Service Oriented
Systems

Figure 2.5: Monitor taxonomy.

regarding the software resources could be the length of the backlog queues or the num-

ber of threads used by the application server. We can identify two different types of

QoS parameters: (i) client-side parameters, like response time, availability, reliability,

cost and so on which capture how the clients perceive the application QoS; (ii) system-

side parameters, like throughput, cost and reputation which are relevant to the system

managers. Given the large set of QoS parameters, the monitoring typically focuses

only on those that are involved in the adaptation loop. For example, in frameworks

25

Chapter 2. Autonomic Service Oriented Systems

that dynamically adapt the amount of hardware resources used by the SOA applica-

tion [21, 71], the monitoring focuses on the hardware resources utilization in order to

decide whether and when resize the CPU, memory, or disk. In other frameworks, that

do not consider the hardware resource adaptation, other attributes are monitored, such

as response time and reliability [3,9,15,33,66,75,89]. Furthermore, the workload sub-

mitted to the SOA application can also be monitored, for example because the gathered

information can be used to derive some useful metric, like response time. Example of

frameworks that monitor the workload can be found in [11, 15, 21].

Where The monitored data can be collected at various different locations. One pos-

sible approach is to collect the data at the client side of the SOA application, like

in [89], where the client is responsible for detecting the SLA violations. Another ap-

proach is to collect the data at the provider side, for example the Amazon CloudWatch

service: the service provider collects data for itself and makes them available to its

clients. However, the most common solution adopted in the SOA context is to collect

data on the service broker that manages the adaptation of the SOA application, as done

in [9, 15, 21, 33, 66,71, 75].

When The monitoring activity can be accomplished continuously or on-demand. Al-

though the latter seems to be reasonable, for example the planning phase might choose

to start another monitor activity on a different perspective of the system, to the best of

our knowledge the monitoring activity is performed always on a time-continuous base.

The frequency is often determined by the cost of collecting the data itself.

26

2.4. Dimensions of Self-Adaptation for MAPE-K based Service Oriented
Systems

Who Several entities could be interested in the monitoring activity: the client for

example might want to monitor to detect SLA violation, the broker more generally to

detect change in the operational environment and the provider to control the resource

utilization. Furthermore, a third party entity not involved in the SOA application might

collect data in order to offer to some client the monitoring service.

How The monitoring activities differ in the methodology used to collect the moni-

tored data and in the architecture of the monitoring infrastructure. The methodology

can be either active, if the data are collected sending proper inputs to the monitored

entities, or passive, if the data are collected without injecting additional load but rather

observing the system behavior. The latter solution is usually preferred, especially in

the context of the SOA applications, where each service invocation has a cost. For

example, [9, 15, 21, 33, 71, 75, 89] all use the passive approach. The active monitoring

can be used to proactively determine the service availability. For example, in [15] the

framework periodically checks if the used services are available, in order to anticipate

a fault diagnosis, without waiting the failure of a service invocation issued by a client.

2.4.2 Analyze Taxonomy

Figure 2.6 depicts the taxonomy for the Analyze phase of the MAPE-K loop.

What The Analyze phase takes input data from the Monitor phase; therefore, it deals

with the monitored data.

Where The data analysis can be carried out at different places: the client itself, the

broker, and a third-party entity. Client-side analysis is typically carried out in SOA

27

Chapter 2. Autonomic Service Oriented Systems

Figure 2.6: Analyze taxonomy.

architectures that do not include an intermediary broker; in this case, the analysis of

the monitored data is demanded to either: (i) a monitor service under the control of the

client (see [88]), (ii) a third-party (collaborative) monitoring service as in [107]. The

analysis algorithms could be as simple as identifying the violation of a threshold or

as complicated as creating an empirical distribution function fitting the actual QoS pa-

rameters distribution as proposed in [33,88]. Broker-side analysis is usually performed

by broker-based frameworks with the help of self-collected monitored data or using a

third-party monitoring system. Finally, third-party collaborative services usually offer

data analysis as a counterpart for receiving monitored data from SOA executors, as

in [107].

28

2.4. Dimensions of Self-Adaptation for MAPE-K based Service Oriented
Systems

When The frequency at which data analysis is carried out is often determined as a

trade-off between the need to react to critical events and the cost to process the data.

The simplest approach is to periodically analyze the data at fixed interval [15, 33]. We

then have event-driven analysis, which is usually based on the concept of Continuous

Query Processing (CQP), where each monitored data, besides being stored, might ac-

tivate triggers based on usually simple policies like threshold violations [21]. On the

other hand, event-driven analysis can also occur after the execution of a given service,

or a set of services or even the whole workflow [9]. The two approaches, i.e., periodic

and event-driven analysis, can be combined to have a periodic analysis coupled with an

event-driven analysis for critical events detection [21]. Finally, we can also have on-

demand analysis, which is directly requested by a client, depending on its own analysis

policies.

Who The entities interested in the analysis phase coincide with those that will plan

the adaptation actions, that is, the client and the broker. A client is interested in analyz-

ing data when it does not rely on an external service broker; a service broker is instead

always interested in analyzing the monitored data.

How We distinguish between two different aspects of how the analysis can be ac-

complished: methodological aspects and architectural aspects. Analysis policies can

be roughly divided in two macro-categories: online and offline analysis. Since the SOS

operations require the adaptation loop to quickly react to a changing environment, a

fast analysis is often needed to allow for an early detection and reaction to significant

events. As a consequence, we might need to resort to heuristics whenever exact al-

gorithms are too computationally intensive (see [88, 96]), hence not suited to online

29

Chapter 2. Autonomic Service Oriented Systems

operations. Offline analysis still plays a significant role since the collected data is used

to identify suitable models of the complex SOA environment. Online algorithms can be

further divided into reactive and proactive analysis. In reactive approaches, the system

evaluates the collected data and reacts to event as they are detected, e.g., [21, 33, 75].

This implies that the system can only react to events after they occur. Proactive ap-

proaches take advantages of predictive models to actually anticipate the occurrence of

events, thus possibly invoking the adaptation planner before the violation could actu-

ally happen, e.g., [9]. From an architectural point of view, we distinguish between

centralized and decentralized approaches. The former have the well-known quality of

being easily manageable, while the latter have the ability to be more scalable.

2.4.3 Plan Taxonomy

The taxonomy of the Plan phase is shown in Figure 2.7.

What The Planning phase is the pivotal phase around which the entire autonomic

cycle revolves around. The role of planning is to determine and identify the plans and

its constituent adaptations actions to be set forth for the system to attain its goals and/or

maintain its objectives in face of a changing internal and/or external environments.

Planning take different forms depending on whether the adaptation cycle consider the

functional or the non-functional behavior of the SOA application. When the adaptation

concerns the functional behavior, since the core of a SOA application is a workflow

that defines the business logic of the application itself, planning the adaptation of the

functional behavior means evaluating what changes have to be made to the workflow

itself. For example, in [33,71] the interactions between services already involved in the

workflow could be removed, or new ones could be introduced; furthermore, it is also

30

2.4. Dimensions of Self-Adaptation for MAPE-K based Service Oriented
Systems

Figure 2.7: Plan taxonomy.

possible to introduce new services with subsequent interactions. Actually, in [71] the

framework does not plan by itself the necessary changes to the workflow, but rather it

is a client task to submit a set of possible solutions to the new functional requirements;

the framework task is to evaluate the QoS of each solution choosing the most suitable

one with respect to a given utility function. In [33], the behavior of the abstract tasks

can be relaxed or complicated according to the required non-functional attributes: for

instance, an order processing workflow could be re-arranged by excluding the credit

check before conclusion if response time and customer satisfaction are preferred to

risk and cost.

Adaptation of the non-functional requirements has received increasing attention in

the last few years. In most of the existing frameworks, adaptation is typically achieved

31

Chapter 2. Autonomic Service Oriented Systems

by selecting at runtime the service(s) that implements the application itself. In this con-

text, the role of planning entails the discovery, identification, and determination of the

actual services implementing the SOA application as to satisfy non-functional require-

ments while optimizing, at the same time, a suitable utility function. In literature, this

service selection has been considered at two separate granularity levels: per-request [9]

and per-flow [11, 24, 54], introduced in Section 2.3.

In some of these approaches, to satisfy the non-functional requirements the subject

of the plan activity also entails the selection of the service providers with which bar-

gaining a SLA. This provider selection could be done, for example, to build the set of

semantically equivalent services that serve as basis to plan the service selection.

Some frameworks [15,66], consider also the coordination pattern service selection.

These frameworks, rather than just selecting a single service for each functionality

required in the workflow of the SOA application, select a coordination pattern, i.e., a set

of services implementing the same functionality, for example to improve the reliability

of the whole SOA application. An example of coordination pattern is the invocation

in parallel of multiple services in order to improve the reliability, or their sequential

invocation to obtain the same goal but at a lower cost and worse response time.

Other approaches plan the provisioning of the manageable resources, e.g., [21,71],

to adjust the system resources allocated to individual services, for example with the

aim to sustain the submitted workload. However, such strategy is feasible only for the

resources internally administered by the provider of the SOA application, and not for

those services offered by external providers.

Where The planning phase is usually executed on the broker, and this is the solution

adopted in almost all of the frameworks (e.g. [9, 21, 23, 103]). However, it is also

32

2.4. Dimensions of Self-Adaptation for MAPE-K based Service Oriented
Systems

possible to execute the planning on the client, like in [89], in case of a broker-less

architecture.

When Similarly to the Analyze phase, the Planning execution is determined by the

trade-off between the need to react to critical events, as the arrival or departure of

clients or the SLA violations by a service, and the execution time of the service selec-

tion. Planning can be either carried out at fixed time interval or executed whenever the

changes in the environments as detected by the Analyze phase might cause the current

plan to be no longer adequate to guarantee the system requirements. As noted before,

we can combine the two approaches, i.e., a periodic planning coupled with an event-

driven planning activated by the analysis component. Finally, we can have on-demand

planning, which is directly requested by a client depending on its own planning policies

and current perception of the quality attributes of the SOA application.

Who The entities interested in the planning phase are the same that perform the an-

alyze task, that is, client and broker. A client is interested in planning the adaptations

actions when it does not rely on an external service broker; a service broker is instead

always interested in the planning phase to keep the adaptation decisions under its con-

trol.

How The execution of the planning phase can be accomplished using two different

methodologies aimed at computing an optimal or a suboptimal/heuristic policy.

The former type of methodologies determines an optimal solution given a utility

function and some constraints. The optimization problem can be formulated using

linear programming [24, 54], integer programming [6], or even mixed integer linear

33

Chapter 2. Autonomic Service Oriented Systems

programming [12, 33]. The high computational complexity of the optimal service se-

lection policies may limit their use for an online implementation. Various factors affect

the time complexity of the service selection policies, among which the most important

are the number of abstract tasks, the number of concrete services implementing each

abstract task, and the number of QoS constraints that have to be considered. The ser-

vice selection can be modeled as a Multi-choice Multidimensional Knapsack problem

(MMKP), which is known to be NP-hard and therefore the time complexity in finding

an exact solution is expected to be exponential [62].

However, in a real-world scenario, the Plan component of the SOS must be able to

determine in near real-time the optimal service selection under possibly heavy load. To

address this issue, many research efforts have proposed computationally efficient, albeit

suboptimal, solutions to the service selection problem. Since a MMKP problem can

be formally expressed with an IP formulation, a common approach [16, 54] is to relax

the integer restriction on the variables of the IP problem, thus obtaining a LP problem

that can be efficiently solved in polynomial time. The caveat is however that a solu-

tion to the relaxed problem does not necessarily solve the original problem. Therefore,

solutions based on a LP formulation are more suited to address the selection problem

at per-flow granularity level, where the QoS constraints are evaluated in the long-term

and for a flow of requests, rather than the per-request granularity, where individual

executions could violate the constraints. The work in [16] proposes an algorithm for

finding a sub-optimal solution to the original IP problem by enumerating the solutions

of the LP problem in a clever way, until the IP problem constraints are not violated.

The authors show that the proposed heuristic is able to compute close to optimal solu-

tions in a fraction of the time with respect to the exact MIP formulation, e.g., in case of

34

2.4. Dimensions of Self-Adaptation for MAPE-K based Service Oriented
Systems

a SOA application composed by 21 tasks, the heuristic reaches 98.83% of the objective

function value of the optimal solution, but only needs 0.19% of the computation time

to compute it. On the other hand, the proposal in [54] does not try to fit the original IP

problem, but rather to refine the LP solution so that it can be used to guarantee some

QoS constraints for every execution of the SOA application, or at least for a large per-

centage (e.g., 99.9%) of the executions. The authors show that the proposed heuristic

is able to provide less than 3% of deviation from the original IP solution. Another ap-

proach to face the complexity of the IP formulation is to reduce the number of decision

variables of the problem itself, as in [66]. The authors first decompose each global

QoS constraint into a set of local constraints, so that each local constraint serves as a

conservative upper bound such that the satisfaction of every local constraint guarantees

the satisfaction of global constraints. Then, they divide the quality range of each QoS

attribute into a set of discrete quality levels and map each known concrete service to the

appropriate quality level. This approach has two major benefits: first, it allows to dis-

tribute the computational effort among different nodes, because only independent local

optimization problems have to be solved; secondly, since concrete services are replaced

by quality levels, the size of the problem space is reduced. The authors show that their

heuristic can achieve above 96% of optimality when compared to the results obtained

by the global optimization approach. However, since QoS levels are discretized with-

out considering potential correlations among different quality attributes, in scenarios

with relatively strict constraints it is possible to incur in very restrictive decomposi-

tions of the global constraints, which therefore could not be satisfied by any concrete

service even though a solution to the problem exists. A solution to the latter problem is

presented in [7], where the authors propose a different method for QoS level discretiza-

35

Chapter 2. Autonomic Service Oriented Systems

tion: for each abstract task, skyline (dominant) concrete services are first determined.

Subsequently, skyline concrete services are clustered using the k-means algorithm and,

for each cluster, a virtual concrete service is created whose quality level is given by the

worst quality attributes of the concrete services belonging to that cluster. Those virtual

concrete services are then used to discretize QoS levels in a multidimensional fashion.

A completely different approach is proposed by [22], where a Genetic Algorithm (GA)

is used to realize an enumeration of the optimization problem solutions. The search

for the optimal solution starts with an initial population of individuals that are going

to evolve over time: at each algorithm step individuals are evaluated using a fitness

function and then selected through a selection operator. The higher is the fitness value

of an individual, the more is likely that such an individual will be chosen for reproduc-

tion. The reproduction is obtained by applying crossover and mutation operators. The

former produces an offspring recombining parent’s genes, while the latter modifies one

or more genes. The application of a GA in service selection maps a solution of the op-

timization problem to an individual, where each individual is composed by genes and

every gene represents a particular instance of concrete services. A different objective

is pursued by [100], which uses a GA for the service provisioning problem: in their

work the individual is composed by several genes which do not represent a particular

instance of concrete service, but the number of concrete services needed by a given ab-

stract task to fulfill certain QoS constraints. Finally, in [104] the authors compare the

MMKP problem solved through the branch-and-bound technique with several heuris-

tics, based on either a combinatorial or a graph model. The proposed heuristics differ

in the type of considered workflow structure, which can be either only sequential or

more general (a sequential workflow contains neither conditional branches nor forks).

36

2.4. Dimensions of Self-Adaptation for MAPE-K based Service Oriented
Systems

Combinatorial heuristics for both sequential and general workflows are realized as a

walk in the solution space: first, a concrete service is selected for each abstract task

such that a quality attribute (possibly different for each abstract task) is locally maxi-

mized. If the obtained solution is feasible, then the second step tries to improve such a

solution by both feasible and unfeasible upgrades, so that both local and global optima

can be reached. The authors claim that in most cases (more than 98%), the heuristic

finds a feasible solution at the first try, while the time complexity is a polynomial func-

tion. As regards general workflows, an additional heuristic is proposed, which tries

to optimize only the execution route with the highest probability, while finding only

feasible solutions for other routes.

Graph-based heuristics are based on the algorithm of single-source shortest paths in

Directed Acyclic Graphs (DAG) [38]: a DAG is built up from the workflow by replac-

ing every node representing a single abstract task with a set of nodes representing the

concrete services implementing it and by adding edges between two concrete services

if the abstract tasks they implement are connected. Loops, if any, are unfolded. The

proposed heuristic limits the information held by each node: instead of maintaining the

complete list of paths that meet the QoS constraints from the source to the node itself,

only K paths are kept. The authors show that limiting the information to the K best

paths leads to an optimality approximation greater than 90% even for small values of

K , with a gain in terms of time and memory consumption of approximately 500%.

With regards to the architecture of the planner, it is centralized in most of the frame-

works, although some decentralized approach exists, as in [6] where part of the com-

putation is distributed across the network.

37

Chapter 2. Autonomic Service Oriented Systems

Figure 2.8: Execute taxonomy.

2.4.4 Execute Taxonomy

Figure 2.8 shows the taxonomy of the Execute phase of the MAPE-K loop.

What In this taxonomy, the question assumes a trivial meaning: what we are going

to execute is exactly what we have planned in the previous phase.

Where We can apply the adaptation plan computed by the Plan phase at different lay-

ers, ranging from the business process layer to the infrastructure layer. Starting from

the lowest layer, namely the Infrastructure layer, we can choose to run the adaptation

actions on the internal infrastructure [21, 71] or on an external infrastructure. By in-

ternal infrastructure we mean all those physical and virtual resources that are directly

38

2.4. Dimensions of Self-Adaptation for MAPE-K based Service Oriented
Systems

manageable by the SOA application provider, while with external infrastructure we

intend every external physical or virtual resource used to improve or to replace any

internal infrastructure; at this abstraction level we can operate by adding or removing

physical or virtual machines, by improving network connections or storage systems

and so on.

Going up through the abstraction layers, we find that adaptation can take place at

the Platform layer. The latter identifies every software needed to run the service we in-

tend to adapt, thus ranging from the Operating System to any Application Server [21].

Changes on this layer involve everything that goes from kernel reconfiguration to ap-

plication server tuning, but it does not involve any modification on services that take

part in the business process. Such modifications belong to the Service layer, where

we can operate both service re-configuration and service tuning. Finally, at the Busi-

ness process layer, the adaptation actions involve the high-level logic of the business

process [15, 21, 66].

When Most of times the adaptation actions have to be carried out introducing the

lowest possible delay into the business process execution. Depending on the adaptation

actions, the adaptation may happen (i) at run-time or (ii) at deployment-time. Although

it is possible to execute adaptation actions also at development-time or design-time,

we do not consider them because we only focus on those solution that do not require

human intervention, being the latter a requirement for a truly autonomic system. We

include in the deployment-time phase all those approaches that require a (even small)

service interruption in order to apply the adaptation plan. All other approaches can be

classified in the run-time case.

39

Chapter 2. Autonomic Service Oriented Systems

Who The three entities involved in the actuation of an adaptation plan are the client,

the broker, and the service provider. A client managing the entire service orchestration

can apply by its own the adaptation actions previously computed in the planning phase.

A broker could either apply its own computed adaptation plan or it could rely on some

adaptation plan directly provided by the client as in [71]. Finally, the service provider

could modify its behavior according to directives provided by the client or the broker.

For example, it could receive an adaptation request issued by a broker that has detected

a slowdown in the provider performance.

How The adaptation actions that can be taken are all part of a meta-branch called

re-configuration. In particular, we have identified three possible mechanisms to ap-

ply the adaptation plan: run-time binding, Aspect Oriented Programming (AOP), and

parameters modification. The run-time binding is the most leveraged approach, as it

provides the SOA application with the ability to bind at run-time the invocation with

the actual service according to the Plan decision. It is the most suited mechanism to

implement service selection, coordination pattern selection or even a simple load bal-

ancing policy among functionally equivalent services. AOP can be used to inject code

fragments (also known as sub-processes) into the SOA application itself, in order to

have process segments changing at run-time [59] or at deployment-time. This method-

ology is suited for both non-functional and functional adaptation as it can modify the

functional as well as non-functional application behavior. The AOP methodology is

based on the concepts of aspect (cross-cutting concerns, which are turned off and on

at design or run-time), advises (the actual implementation in terms of business logic of

the aspects), joinpoints (points on the business process where advices can potentially

be inserted), and weaving (the process of dynamically inserting advises in joinpoints).

40

2.4. Dimensions of Self-Adaptation for MAPE-K based Service Oriented
Systems

Finally, the parameters modification encompasses all those mechanisms that can be

used to change some operative feature of the SOS.

41

3
MOSES: a Framework for QoS Driven

Runtime Adaptation of Service-Oriented

Systems

Contents

3.1 Overview of MOSES . 44

3.1.1 A Comparison of Frameworks for Self-Adaptation of SOSs 45

3.2 Plan Phase . 51

3.2.1 Composite Service Model 52

3.2.2 Adaptation Actions . 55

3.2.3 SLA Model . 58

3.2.4 Adaptation Policy Model 59

3.2.5 QoS Model . 60

3.2.6 Optimization Policies . 64

3.3 Monitor Phase . 82

3.3.1 Monitoring the Concrete Services 83

3.4 Analyze Phase . 83

In this chapter we will present the main concepts behind the realization of an au-

tonomic QoS-aware service broker for SOSs. We will start by introducing MOSES:

MOdel-driven SElf-adaptation of SOA Systems, a service broker designed according

to the MAPE-K loop (Figure 3.1). We will give an overview on MOSES according

to the taxonomy proposed in Section 2.3 and then we will introduce a comparison

between MOSES and other existing frameworks in Section 3.1.1.

43

Chapter 3. MOSES: a Framework for QoS Driven Runtime Adaptation of
Service-Oriented Systems

The core of the chapter will be the analysis on how MOSES follows each phase

of the MAPE-K reference: Section 3.2 will describe the MOSES Plan phase, which is

the core of the MAPE loop; then we will focus on the MOSES Monitor and Analyze

phases respectively in Sections 3.3 and 3.4. Since the MOSES Execution phase is

purely implementative, we will not describe it in this chapter which focuses on the

design, but rather we will provide an in-depth description in Section 4.3.

3.1 Overview of MOSES

MOSES is a service broker designed according to the MAPE-K loop. Its main task is

to offer to prospective users a SOA application architected as a composite service with

a range of different service classes. To this end, it exploits a set of existing concrete

services, driving the adaptation of the composite service to fulfill the QoS goals of the

different service classes it offers, when changes occur in its operating environment.

The MOSES input consists of the description of the composite service in some

suitable workflow orchestration language (e.g., BPEL [82]), and the set of candidate

concrete services that can be used to implement the required tasks (including the pa-

rameters of their SLAs). MOSES uses this input to build a model which is then used

(and kept up to date) at runtime to determine possible adaptation actions to be per-

formed. Each macro-component in Fig. 3.1 is actually architected as a set of interact-

ing components. We give some details about these components and their functions in

Section 4.3.

Figure 3.2 shows how MOSES fits into the self-adaptive SOSs taxonomy presented

in Section 2.3. Specifically, MOSES does not address adaptation according to func-

tional requirements: it instead supports adaptation based on non-functional require-

44

3.1. Overview of MOSES

,

Monitor

Plan

Execute

K
no

w
le

dg
e

Description of Service
Composition

Monitored
Parameters

Model

Model

Model

Model, Adaptation
Actions

Adaptation Actions

Adaptation Triggers

Analyze
Model, Monitored

Parameters

Model

Operating
Environment

Figure 3.1: The MOSES approach.

ments and can act both on average values and on percentiles. Its reactive behavior

produces adaptation actions which are taken at runtime and consist in service selec-

tion as well as coordination pattern selection. Therefore, the adaptation is carried out

at services only level, thus never modifying the original workflow. From the scope

point of view, MOSES currently supports the management of a single system, that is,

the adaptation policy is centrally computed and enforced. Such a policy supports both

adaptations based on per-request and per-flow strategies.

3.1.1 A Comparison of Frameworks for Self-Adaptation of SOSs

Several solutions have been proposed for the self-adaptation of SOSs (e.g. [4, 6, 9,

11, 12, 16, 47, 54, 58], but very few frameworks and platforms have been realized and

45

Chapter 3. MOSES: a Framework for QoS Driven Runtime Adaptation of
Service-Oriented Systems

Figure 3.2: MOSES within the self-adaptable SOS taxonomy.

evaluated in the scope of self-adaptation of SOSs.

To the best of our knowledge, besides MOSES, realized and evaluated platforms

are: MUSIC [89], SASSY [66, 68], VieDAME [74] and VRESCo [70]. In this section

we review the characteristics and features of the aforementioned brokers according to

the taxonomy presented in Section 2.3 and compare them to MOSES.

Adaptation Goal The adaptation goal of all the considered frameworks is the op-

timization of the quality attributes of the served SOSs. However, with respect to

MOSES, MUSIC, SASSY, and VRESCo only support the strict fulfillment of every

single request. Even if this behavior can be also activated in MOSES, we found that it

leads to an unstable system due to the possible frequent changes of the execution plan.

46

3.1. Overview of MOSES

Stage of System Lifetime All the considered systems work at run-time in a reactive

fashion: once the SOS is ran for the first time, the first step is to compute an optimal

or sub-optimal service selection policy, which is then updated according to the current

state of the environment. However, thanks to its modular architecture, MOSES can be

easily extended to implement a proactive monitoring data analyzer in order to forecast

possible future threats and anticipate them by requesting an early optimization. In

addition to any other framework, VieDAME also supports the possibility to change both

the QoS parameters and QoS model at run-time without service interruption. To this

end, it defines and implements an high-level configuration language named VieDASSL

(Vienna Domain-Specific Service Selection Language), that can be used by domain

expert to define the non-functional behavior of the business application.

Composition Level None of the considered frameworks, neither MOSES, support

adaptation at workflow level: all the approaches are focused on the adaptation of the

services used in the composition.

Scope - Number of SOA Systems MUSIC is the only framework supporting adap-

tation for multiple systems. It explicitly supports two kind of resources: internal and

external. An internal resource is a service that can be locally consumed, while an

external resource is a service that has to be remotely invoked eventually by paying a

fee. In the first case, even if there are possibly no fees to pay, MUSIC must reserve

enough system resources in order to be able to execute the local service respecting the

SLA, therefore acting as a customer with respect to itself; furthermore, MUSIC also

considers the possibility of selling the service to an external MUSIC requestor, there-

fore acting as a service provider. Summarizing, since MUSIC acts both as a service

47

Chapter 3. MOSES: a Framework for QoS Driven Runtime Adaptation of
Service-Oriented Systems

requestor and as a service provider, it should also consider the opportunity cost.

Scope - Granularity MUSIC, SASSY, VieDAME and VRESCo only support the

single request granularity. MOSES is the only platform supporting both single request

and flow of requests granularities.

Adaptation Actions All the considered frameworks support adaptation actions in

terms of service selection. That is, they implement a run-time binding of abstract

services to concrete services which can be exploited to maximize/minimize a given

utility function. However, none of the considered frameworks, with the exception of

MOSES, implement or provide the tool for an optimal service selection strategy.

In detail, the MUSIC optimization strategy, described in [90], is based on an heuris-

tic approach which enumerates existing service plans trying to maximize a given utility

function. Even if this approach could lead to a possible optimal solution in case of a

complete enumeration of all the possible service plans, no detail is provided about their

generation.

The SASSY approach is based on a sub-optimal heuristic presented in [66]. How-

ever, even if in the example that the authors present they manage to increase the system

availability by almost 8.5% at the expense of a service time increased by almost 4.7%

and a cost increased by 134%, they do not provide the comparative results of the opti-

mal service selection strategy, therefore not giving a baseline to compare the effective-

ness of the proposed heuristic. Furthermore, in the discussed example, which consisted

of 5 abstract services implemented by 17 concrete service in total, the sub-optimal so-

lution is computed in 2.25 s. The authors claim that this result demonstrates that the

heuristic can be used to solve the optimization problem in near real-time. However,

48

3.1. Overview of MOSES

we believe that a single example is not enough to generalize the result. In comparison

with MOSES, in [23] we prove that the optimal solution for a LP problem for a process

composed by 10 abstract services, to each of which correspond 10 concrete services,

and considering also coordination patterns can be computed in 0.1 s.

VieDAME does not support strict fulfillment of QoS attributes: it exploits VieDASSL

to define rules that are subsequently used to drive the computation of scores for the

available services. Such scores are then used to build a classification of the services

and the best one is chosen to implement the required functionality. In order not to

overload the best service, a selection post-processor is also implemented: instead of

always using the same best concrete service, a subset of the available services with a

score greater than a threshold is considered.

VRESCo does not propose either optimal or sub-optimal solutions to the service

selection problem: the authors just provide a framework for dynamic binding and a

query language that can be used to retrieve execution plans that must be afterwards

processed by an optimization algorithm. From this point of view, VRESCo provides

an additional feature with respect to MOSES: Service Mediation. In MOSES the input

of the concrete services is the exact input provided by the service requestor because we

suppose that, given an abstract service, all the concrete services implement the same

abstract interface. VRESCo goes one step further, assuming that the there could be

interface differences. To this end, VRESCo accepts from the service requestor a high-

level representation of the data that will be used as input for the concrete services.

These data are then lowered (i.e., transformed from high-level representation into low-

level format) in order to be compatible with the given concrete service. The response

is instead lifted (i.e., transformed from low-level format to high-level representation)

49

Chapter 3. MOSES: a Framework for QoS Driven Runtime Adaptation of
Service-Oriented Systems

in order to be compatible with service requestor expectations. From a performance

perspective, the VRESCo run-time binding adds about 400 ms to the service execution

time, without considering the service mediation. This additional time is due to the

addition of a proxy which, for each service invocation, queries the database in order

to know which service to invoke. In MOSES we managed to reduce this overhead to

about 25 ms (see Section 5.3.1 for more details).

MOSES is the only existing framework which is able to provide out of the box three

different optimization strategies [12, 23, 27] based on LP and MILP. However, thanks

to its modular architecture, MOSES also provides interfaces that can be implemented

with different and new optimal or sub-optimal (heuristic) optimization strategies.

Coordination pattern selection is supported by SASSY and MOSES. In detail,

SASSY supports three coordination patterns named: basic (B), load balancing (LB),

fast fault tolerant (fFT). The B coordination pattern is equivalent to the single pattern

offered by MOSES, while fFT corresponds to the parallel or. Both coordination pat-

terns are described in Section 3.2.2. SASSY provides one more coordination pattern,

that is LB, which dispatches service requests to concrete services using a weighted

round robin rule. However, even if MOSES does not implement the LB coordination

pattern, load balancing can be achieved using the already implemented coordination

patterns with a load-aware service selection policy. Currently, MOSES implements

two load-aware optimization algorithms described in [23, 27].

Management Authority All the considered frameworks with the exception of MU-

SIC are under the control of a single management authority. The latter instead considers

an environment where multiple non-cooperative MUSIC instances can work together.

After having analyzed the frameworks closely related to MOSES, we now focus

50

3.2. Plan Phase

our attention on the MOSES design.

3.2 Plan Phase

Figure 3.3: MOSES within the Plan taxonomy

Figure 3.3 shows how MOSES fits into the taxonomy proposed in Section 2.4.3.

In Section 3.2.1 we present a grammar used to identify all the possible instances of

composite services manageable by MOSES; in Section 3.2.2 we describe how MOSES

can exploit multiple implementations of the same abstract service to increase QoS val-

ues; since MOSES acts both as a client towards concrete services and as a server to-

wards composite service clients, it must establish contracts with both ends. In Section

51

Chapter 3. MOSES: a Framework for QoS Driven Runtime Adaptation of
Service-Oriented Systems

3.2.3 we describe how we model such contracts. The core of the Plan phase is rep-

resented by the optimization problem that determines which concrete implementation

must be bound to each abstract task in order to fulfill the SLAs: in Section 3.2.4 we

describe how we represent such information (i.e. this is the output of the optimization

problem), while in Section 3.2.5 we show how to compute the expected QoS attributes

of a single abstract task. Finally, in Section 3.2.6 we present three service selection

policies: two second generation per-request and per-flow policies and finally a third

generation load-aware per-request policy.

For each presented policy we will illustrate: (i) the workflow model, (ii) the com-

putation of QoS attributes and (iii) the optimization problem.

3.2.1 Composite Service Model

The class of services managed by MOSES consists of all those composite services

whose orchestration logic (i.e., their abstract composition, according to the terminology

of Section 2.3) can be abstractly defined as an instance generated by the following

grammar:

C ::= S|seq(C+)|loop(C)|sel(C+)|par and(C+)

S ::= S1|S2|...|Sm

In this definition, C denotes a composite service, S1, S2, ..., Sm denote tasks (i.e.,

functionalities needed to compose a new added value service), and C+ denotes a list of

one or more services. Hence, MOSES is currently able to manage composite services

consisting either of a single task, or of the orchestration of other services according

to the composition rules: seq, loop, sel, par and. Table 3.2 summarizes the intended

52

3.2. Plan Phase

meaning of these rules and the corresponding BPEL constructs. For the sake of clarity,

in Table 3.1 we summarize the notation used throughout this thesis.

Symbol Description

K Set of classes

k Class index

Rk
max Class k upper bound on the

expected response time

Ck Class k cost

Dk
min Class k lower bound on service reliability

λk
u Class k flow of request rate generated

by user u

Lk Class k flow of request rate

Si Task

i Task index

m Number of tasks

opij Operation/Concrete service

ij Concrete service index

zij , z = r|c|d Operation opij response time, cost

and reliability

Lij Maximum operation opij load

ℑi Set of task i implementations

J Implementation index

Z(Si; J),
Z = R| logD|C Task Si response time, cost

and (log of the) reliability under

implementation J

xk
iJ Fraction of class k requests for task Si

that are bound to implementation J
V k
i Expected number of times task Si

is invoked by a class k user

Zk(x),
Z = R| logD|C Class k response time, cost and (log of the)

reliability under adaptation policy x

wz , z = r|c|d Normalized QoS attribute weight

Table 3.1: Main notation adopted in the thesis.

We point out that the above grammar is purposely abstract, as it intends to succintly

specify only the structure of the considered composite services. Hence, we omit details

53

Chapter 3. MOSES: a Framework for QoS Driven Runtime Adaptation of
Service-Oriented Systems

such as how to express the terminating condition for a loop. A thorough approach to the

modeling of service orchestration is presented in [53], based on the Orc language; [37]

shows how Orc can model the workflow patterns listed in [1]. In this respect, we point

out that the grammar we define does not capture all the possible structured orchestration

patterns, but includes a significant subset1.

Rule Meaning BPEL

seq(C+) sequential execution of services in C+
sequence

loop(C) repeated execution of service C while

sel(C+) conditional selection of one service in C+
switch

par and(C+) concurrent execution of services in C+
flow

(with complete synchronization)

Table 3.2: Workflow composition rules.

Figure 3.4 shows an example of an orchestration pattern described as a UML2

activity diagram, and the corresponding instance generated by the grammar.

Figure 3.4: A MOSES-compliant workflow.

MOSES uses this grammar to check whether the orchestration pattern of an actual

SOS matches the kind of patterns it is able to manage. In the positive case, it uses

the grammar to support the construction of a suitable runtime model to be used for

1In particular, it can be easily realized that our grammar captures the structure of workflow patterns 1,

2+3, 4, 10 (for structured cycles only), 13 and 16 reported in [1].

54

3.2. Plan Phase

adaptation purposes.

3.2.2 Adaptation Actions

MOSES performs adaptation actions that take place at the services only composition

level, as classified in Section 2.3. Their goal is to determine at runtime the most suitable

implementation to be bound to each abstract task Si, selecting it from a set ℑi of

available implementations, built as follows.

We assume that a set CS = {csl} of candidate concrete services have been iden-

tified to build an overall implementation of the composite service. Different csl can

be offered by different providers with different QoS and cost attributes, or even by the

same provider offering differentiated services.

Each csl implements a set OP (csl) of operations. We denote by OP = ∪OP (csl)

the set of all the available operations, and by OP i ⊆ OP the subset of functionally

equivalent operations that implement the task Si.

MOSES exploits the availability of multiple equivalent operations to build imple-

mentations of each Si based on the use of redundancy schemes, to get QoS levels

possibly higher than those guaranteed by each single operation, at the expense of a

higher cost. According to these schemes, a possible implementation of a task Si may

consist of a set of two or more equivalent operations belonging to OP i, coordinated

according to some coordination pattern.

At present, the MOSES framework includes two such coordination patterns, de-

noted as alt and par or, besides the simple single pattern. Table 3.3 summarizes their

intended meaning. We have selected these two coordination patterns as they have com-

plementary characteristics with respect to their QoS and cost, as will be explicitly dis-

55

Chapter 3. MOSES: a Framework for QoS Driven Runtime Adaptation of
Service-Oriented Systems

cussed in Section 3.2.5.1.

Table 3.3: Coordination patterns.

Rule Meaning

single execution of a single operation

alt sequential (alternate) execution of operations

in a list, until either one of them

successfully completes, or the list is exhausted

par or concurrent execution of the operations in

a set (with 1 out of n synchronization)

Hence, the set ℑi of available implementations for each task Si is given by the

union of the following sets:

ℑi = OP i ∪ OPalt
i ∪ OPpar

i

where:

• OP i has been already defined above; selecting an element in this set models the

selection of an implementation of Si based on a single operation;

• OPalt
i is the set of all the ordered lists of at least two elements belonging to

OP i, with no repetitions; selecting an element in this set models the selection of

an implementation of Si based on the alt pattern applied to that list;

• OPpar
i is the set of all the subsets of at least two elements belonging to OP i;

selecting an element in this set models the selection of an implementation of Si

based on the par or pattern applied to that subset.

For a given abstract composition that models the business logic of a SOS, the se-

lection for each Si of different elements in the set ℑi corresponds to different concrete

56

3.2. Plan Phase

configurations of the overall composite service, each characterized by different values

of their overall QoS attributes. We call adaptation policy the runtime selection and

implementation of one of these configurations, to best match the QoS constraints and

objectives in a given operating environment.

3.2.2.1 Adaptation Actions for Stateless and Stateful Services

In the discussion above about the MOSES adaptation actions, we implicitly assume

that tasks can be bound to any concrete service implementing them. Actually, this

holds only for stateless tasks, i.e., tasks that do not require sharing any state informa-

tion with other tasks. In the general case, composite services may include stateful tasks,

i.e., tasks that do need state information to be shared among them; as a consequence,

these tasks need to be implemented by operations of the same concrete service. This

very requirement limits the possibility of exploiting redundancy patterns to implement

stateful tasks. Indeed, the functionally equivalent operations used within these patterns

generally belong to different concrete services. This makes unlikely, or even impos-

sible, the sharing of state information among them, unless we put constraints on the

implementations. To overcome this problem, MOSES currently uses the alt or par or

patterns for the implementation of stateless tasks only, while the implementation of

stateful tasks is restricted to only the single pattern.

We model the presence of stateful tasks by considering a partitionS = {S1, . . . ,Sf}

of the set of tasks {S1, . . . , Sm}. Tasks that need to share some state information be-

long to the same subset Sh ∈ S and need to be implemented by operations of the same

concrete service csl. A stateless task Si is simply modeled by associating it with a

singleton Sh ∈ S.

57

Chapter 3. MOSES: a Framework for QoS Driven Runtime Adaptation of
Service-Oriented Systems

3.2.3 SLA Model

In general, a SLA may include a large set of parameters, referring to different kinds of

functional and non-functional attributes of the service, and different ways of measuring

them. MOSES presently considers the following attributes:

• response time: the interval of time elapsed from the service invocation to its

completion;

• reliability: the probability that the service completes its task when invoked2;

• cost: the price charged for the service invocation.

Other attributes, like reputation or availability, could be easily added.

Our general model for the SLA between the provider and the user of a service

thus consists of a tuple 〈R,C,D,L〉, where: R is the upper bound on the service

response time, C is the service cost per invocation, D is the lower bound on the service

reliability. The provider guarantees that thresholds R and D will hold on average

provided that the request rate generated by the user does not exceed the load threshold

L.

In our framework MOSES performs a two-fold role of service provider towards its

users, and of service user with respect to the providers of the concrete services it uses to

implement the composite service it is managing. Hence, it is involved in two types of

SLAs, corresponding to these two roles, that are both defined using the SLA template.

In the case of the SLAs between the composite service users and MOSES (acting the

provider role), we assume that MOSES offers a set K of service classes. Hence, the

SLA for user u of service class k ∈ K is defined as a tuple 〈Rk
max, C

k, Dk
min, λ

k
u〉. All

2This measure is called successful execution rate in [105].

58

3.2. Plan Phase

these coexisting SLAs (for each u and k) define the QoS objectives that MOSES must

meet.

To meet these objectives, we assume that MOSES (acting the user role) has already

identified for each task Si a pool of concrete services implementing it. The SLA con-

tracted between MOSES and the provider of the operation opij ∈ OP i is defined as

a tuple 〈rij , cij , dij , Lij〉. These SLAs define the constraints within which MOSES

should try to meet its QoS objectives.

3.2.4 Adaptation Policy Model

The MOSES adaptation policy is based on a set of directives used to select at runtime

the “best” implementation of the composite service in a given scenario. The MOSES

adaptation policy consists of determining, for each service class k and each task Si:

• the coordination pattern(s) and the corresponding list of operations to be used

to build concrete implementation(s) for Si (selected among the single, alt and

par or patterns).

• the fraction of requests generated by class k requests for Si that must be switched

and bound to a specific implementation of Si.

We model the MOSES adaptation policy by associating with each class k a vec-

tor x
k = [xk

1 , . . . ,x
k
m], where each entry x

k
i = [xk

iJ], 0 ≤ xk
iJ ≤ 1, J ∈ ℑi,

∑

J∈ℑi
xk
iJ = 1, i = 1, . . . ,m, denotes the adaptation policy for task Si. Here, xk

iJ

denotes the fraction of class k requests for Si to be bound to the implementation de-

noted by J . We denote by x = [xk]k∈K the MOSES adaptation policy vector which

encompasses the adaptation policy of all the service classes.

59

Chapter 3. MOSES: a Framework for QoS Driven Runtime Adaptation of
Service-Oriented Systems

The adaptation policy vector x is used by the Adaptation Manager, a software mod-

ule described in Section 4.3.1, to determine for each and every invocation of a task Si

the coordination pattern to be used and the actual service(es) to implement it. Given

a class k request for the task Si, the Adaptation Manager chooses the implementation

denoted by J with probability xk
iJ , thus possibly giving rise to a randomized parti-

tioning among the implementations in ℑi of the overall class k flow directed to Si.

As an example, consider the case OP i = {opi1, opi2, opi3, opi4} for task Si and as-

sume that the adaptation policy x
k
i for a given class k specifies the following values:

xk
i{opi1}

= xk
i{opi3}

= 0.3, xk
i{opi2,opi3}

= 0.4 and xk
iJ = 0 otherwise. According

to this policy, given a class k request for task Si, the Adaptation Manager binds the

request: with probability 0.3 to operation opi1, with probability 0.3 to operation opi3,

and with probability 0.4 to the pair opi2, opi3 coordinated by the par or pattern (see

Fig. 3.5).

Figure 3.5: Implementation of the MOSES adaptation policy for a single task.

3.2.5 QoS Model

MOSES presently considers the following attributes for each service class k ∈ K:

60

3.2. Plan Phase

• the expected response time Rk, which is the time needed to fulfill a class k

request for the composite service;

• the expected execution cost Ck , which is the price to be paid for a class k invo-

cation of the composite service;

• the expected reliability Dk, which is the probability that the composite service

completes its task for a class k request. As in [105], when writing expressions,

we will work with the logarithm of the reliability rather than the reliability itself,

to obtain linear expressions, when composing the reliability of different services.

For each service class, the overall QoS of a composite service implementation de-

pends on: the usage profile and the composition logic of the composite service tasks;

the adopted adaptation policy; the QoS of the task implementation selected within that

adaptation policy.

In Section 3.2.5.1 we derive the QoS attributes of a task as a function of the selected

implementation, while in Sections 3.2.6.1, 3.2.6.2, 3.2.6.3 we show how MOSES takes

into account task orchestration and usage profile to compute the composite service

QoS.

QoS attributes are calculated based on the following assumptions:

• service invocation is synchronous;

• services fail according to the fail-stop model;

• service cost is charged on a per-invocation basis.

61

Chapter 3. MOSES: a Framework for QoS Driven Runtime Adaptation of
Service-Oriented Systems

3.2.5.1 Task QoS Attributes

Let us first consider a task in isolation. For each class of service, the QoS of a task de-

pends on: 1) the QoS associated with the different set of operations and the associated

coordination pattern that can be bound to the task to build its concrete implementation;

and 2) the probability that a particular coordination pattern and set of operations is

bound to a given request.

Let Zk(Si;x), Z = C|D|R, denote class k QoS attribute of task Si under the

adaptation policyx. Since implementation J is chosen with probability xk
iJ , we readily

have:

Ck(Si;x) =
∑

J∈ℑi

xk
iJC(Si; J) (3.1)

logDk(Si;x) =
∑

J∈ℑi

xk
iJ logD(Si; J) (3.2)

Rk(Si;x) =
∑

J∈ℑi

xk
iJR(Si; J) (3.3)

where R(Si; J), C(Si; J) and D(Si; J) denote the average response time, cost and

reliability of Si, when the implementation of Si corresponds to a given J ∈ ℑi.

We now determine the value of these QoS attributes when Si is implemented ac-

cording to the three different coordination patterns currently considered within MOSES.

We distinguish among the three cases:

• J ∈ OP i: assuming J = {opij}, the QoS attributes coincide with those of the

selected concrete operation opij :

C(Si; J) = cij , D(Si; J) = dij , R(Si; J) = rij (3.4)

• J ∈ OPalt
i : the concrete operations listed in J = [opij1 , . . . , opijl] are tried

62

3.2. Plan Phase

in sequence, starting from the first in the list, until one of them successfully

completes. Hence, the reliability of this pattern is derived from the probability

that at least one operation completes, while the cost and time to completion of

all the elements of the list must be summed, each weighted by the probability

that the invocations of all the preceding elements in the list have failed:

C(Si; J) =

l
∑

h=1

cijh

h−1
∏

s=1

(1− dijs)

D(Si; J) = 1−
l

∏

h=1

(1− dijh) (3.5)

R(Si; J) = D(Si; J)
−1

l
∑

h=1

rijhdijh

h−1
∏

s=1

(1 − dijs)

• J ∈ OPpar
i : in this case, the costs of all the operations in J = {opij1 , . . . , opijl}

must be summed as they are invoked in parallel, while the completion time is the

minimum of the completion times of those operations that successfully complete;

thus R(Si; J) is the sum of the minimum completion time of all non-empty

subsets H ⊆ J weighted with the probability that only the operations in H

do complete successfully:

C(Si; J) =
l

∑

h=1

cijh

D(Si; J) = 1−
l

∏

s=1

(1− dijs) (3.6)

R(Si; J) = D(Si; J)
−1

∑

H∈2J\{⊘}

(

∏

js∈H

dijs
∏

js∈J\H

(1− dijs)
)

·

min
js∈H

{rijs}

63

Chapter 3. MOSES: a Framework for QoS Driven Runtime Adaptation of
Service-Oriented Systems

We make the following remarks concerning the evaluation of R(Si; J):

• In both Equations (3.5)-(3.6)R(Si; J) is calculated conditioned on the event that

at least one service in the considered list terminates. The probability of this event

is equal to the service reliability D(Si; J).

• The expression for R(Si; J) in (3.6) is actually an approximation: the Jensen’s

inequality [79] ensures that the expectation of the minimum of random variables

is lower than or equal to the minimum of the expectations, with the equality hold-

ing only in the deterministic case. Nevertheless, the approximation is accurate

in case of small variances. In other cases a more suitable expression should be

used, which would require the knowledge of the response time distribution, but

this is out of the scope of this thesis.

From Equations (3.5)-(3.6), we see that the implementations of Si according to the

alt or par or patterns have the same reliability when they use the same set of services.

On the other hand, it is not difficult to verify (with some algebra) that alt has a lower

cost than par or, but a higher response time, since the sequential invocation used by

alt means that on the average not all the selected services are invoked, but the response

time of those invoked must be summed.

3.2.6 Optimization Policies

3.2.6.1 Per-Request Optimization

The main feature of the per-request optimization approach is that the QoS attributes are

guaranteed for every invocation to the composite service, therefore in the per-request

approach we need to identify the concrete service to be bound to each abstract service

for all execution paths [12]. This approach currently does not support coordination

64

3.2. Plan Phase

patterns, therefore only a single concrete service is chosen at a time to be bound to an

abstract service. Hence, QoS attributes coincide with those of the selected concrete

operation opij (Equation 3.4).

Workflow Model We assume that all the workflows of the composite services man-

aged by the service broker have a single initial task, or that they start with a fork-join

parallel sequence. Furthermore, we assume that for each conditional branch we know

the probability of executing it; similarly, we assume to know the probability of reiter-

ating loops.

The composite service graph is obtained by transforming the workflow of the com-

posite service as in [12]. In particular, loops are peeled, i.e., they are transformed in

a sequence of branch conditions, each of which evaluates if the loop has to continue

with the next iteration or it has to exit, according to the branch probability introduced

above. A pre-requisite for loop peeling is the knowledge of the maximum number of

supposed iterations. We calculate this value as the p-percentile of the distribution of

reiterating the loop. After loop peeling, the composite service can be modeled as a

Directed Acyclic Graph (DAG). As in [12], we define:

• Execution path. An execution path epn is a multiset of tasks epn = {S1, S2, . . . , SI} ⊆

S, such that S1 and SI are respectively the initial and final tasks of the path and

no pair Si, Sj ∈ epn belongs to alternative branches. We need a multiset rather

than a simple set because a single task may appear several times in the execu-

tion path. An execution path may also contain parallel sequences, but it does

not contain loops, which are peeled. A probability of execution pn is associated

with every execution path and can be calculated as the product of the probabili-

65

Chapter 3. MOSES: a Framework for QoS Driven Runtime Adaptation of
Service-Oriented Systems

ties of executing the branch conditions included in the path. Similarly, the branch

conditions that arise from loop peeling produce other execution paths.

• Subpath. A subpath of an execution path epn is a sequence of tasks [S1, . . . , SI],

from the initial to the end task, that does not contain any parallel sequence. In

other words, each branch b of a parallel sequence identifies a subpath inside the

execution path epn. We denote a subpath by spnb .

Therefore, the set of all the execution paths identifies all the possible execution

scenarios of the composite service. The QoS constraints must hold for every execution

path to guarantee the SLAs the service broker stipulated with its users.

QoS Attributes Computation Given the service selection policyx and the execution

paths that arise from the composition logic, we can calculate the QoS attributes of each

abstract task and then the overall QoS attributes of the composite service.

Let rij be the response time of the concrete service csij , dij its reliability, and

cij its cost. The worst case QoS values of the abstract task Si, namely, the worst

case response time Ri, the reliability Di, and the worst case cost Ci, are given by the

following expressions:

Rw
i = max

j∈ℑi

rijxij (3.7)

Dw
i = min

j∈ℑi

dijxij (3.8)

Cw
i = max

j∈ℑi

cijxij (3.9)

where xij is a binary variable indicating whether the concrete service csij is bound to

the abstract task Si.

66

3.2. Plan Phase

Using these formulas and the notion of execution paths and subpaths, we can calcu-

late the QoS attributes along each execution path itself, using the aggregation formulas

presented in [12]. We denote by Rn the maximum response time of the execution path

epn, with Dn its minimum reliability, and with Cn its maximum cost; these are, in

other words, the QoS attributes values calculated in the worst case scenario. They are:

Rn = max
spn

b
∈epn

∑

Si∈spn
b

Rw
i (3.10)

Dn =
∏

Si∈epn

Dw
i (3.11)

Cn =
∑

Si∈epn

Cw
i (3.12)

While the cost and the reliability are simply obtained, respectively, as a sum and

as a multiplication of the QoS attributes of each abstract task in the execution path,

the matter is slightly different for the response time. Indeed, the response time of an

execution path is equal to the response time of the longest subpath inside the execution

path itself.

Optimization Problem The per-request optimization problem is formulated as a

Mixed Integer Linear Programming (MILP) problem. We denote with the vector x =

[x1, . . . ,xm] the optimal policy for a request to the composite service, where each en-

try xi = [xij], xij ∈ {0, 1}, i ∈ S, j ∈ ℑi, denotes the adaptation policy for task

Si and the constraint
∑

j∈ℑi
xij = 1 holds. That is, xij is the decision variable equal

to 1 if task Si is implemented by concrete service csij , 0 otherwise. Assume that the

per-request policy x determines that for a given request xi = [0, 0, 1, 0]. According to

this policy, for Si the broker binds the request to csi3.

67

Chapter 3. MOSES: a Framework for QoS Driven Runtime Adaptation of
Service-Oriented Systems

Following the per-request strategy in [12], we need to consider all the possible

execution paths derived from the workflow.

The general goal of the optimization problem is to maximize the aggregated QoS

value, considering all of the possible execution scenarios, i.e., all the execution paths

arising from the business process. For simplicity’s sake, in the formulation below we

consider that the service broker’s goal is to minimize for each request the response time

of the composite service it offers.

Problem per-request: min
∑

epn

pn ∗ Rn(x)

subject to: Rn(x) ≤ Rmax ∀epn (3.13)

logDn(x) ≥ logDmin ∀epn (3.14)

Cn(x) ≤ Cmax ∀epn (3.15)

xij ∈ {0, 1} ∀j ∈ ℑi,
∑

j∈ℑi

xij = 1 ∀i ∈ S (3.16)

We note that the minimization of the response time is only one of the possible

objective functions that can be used, depending on the utility goal of the broker. An

alternative expression can be found in [12], where the objective function is formulated

using the weighted z-scores of QoS attributes.

3.2.6.2 Per-Flow Optimization

Differently from the per-request optimization approach, the per-flow optimization does

not aim to satisfy QoS attributes for each invocation to the concrete service, rather it

aims at satisfying them on the average, over a flow of requests. This main character-

istic gives to the approach much more flexibility than the per-request one, allowing it

to realize a probabilistic binding towards concrete services, therefore realizing a much

68

3.2. Plan Phase

better load balancing over all the possible implementations. On the other and, this

approach is unable to satisfy strict QoS constraints on every single request to the com-

posite service. Preliminary steps for the definition of the per-flow optimization strategy

presented in this section can be found in [24, 25].

Workflow Model For each service class k ∈ K MOSES builds and maintains a

labeled tree T = (V,E,L), where V , E and L are the tree nodes, edges and labels,

respectively. T is derived from the syntax tree that describes the production rules used

to generate the composite service, by simply collapsing the S and C nodes. The leaf

nodes of T are thus associated with tasks, while its internal nodes are associated with

composition rules. Hence, for each non root node v ∈ V , its parent node f(v) denotes

the composition rule within which v occurs.

The set L of edges is defined as follows. Each edge (f(v), v) ∈ E is labeled

with ℓk(f(v), v), the expected number of times v is invoked within f(v) for a class k

request:

• if f(v) is the seq or par and composition rule then ℓk(f(v), v) = 1;

• if f(v) is the loop rule, ℓk(f(v), v)) is the average number of times the loop

body is executed;

• if f(v) is the sel rule, ℓk(f(v), v) corresponds to the probability that v is exe-

cuted.

MOSES performs a monitoring activity to keep these values up to date. Figure 3.6

shows the tree T maintained by MOSES for the composite service depicted in Fig. 3.4

(labels equal to 1 are omitted).

69

Chapter 3. MOSES: a Framework for QoS Driven Runtime Adaptation of
Service-Oriented Systems

Figure 3.6: Composite service labeled tree.

QoS Attributes Computation Based on the workflow model, following well known

QoS composition rules [30], we can derive the overall composite service QoS attributes

Rk(x), Ck(x) and Dk(x) (defined at the beginning of Section 3.2.5), givenRk(Si;x),

Ck(Si;x) and Dk(Si;x), 1 ≤ i ≤ m. Table 3.4 shows these rules, where for each

node v ∈ V we denote by d(v) the (possibly empty) set of its children. These rules

define a visit algorithm of the labeled tree T , from which we obtain:

Zk(x) = Z
k(root;x)

Z = C| logD|R, where root denotes the root node of T .

From the rules of Table 3.4 we now derive closed form expressions for the QoS

attributes of the composite service, that will provide the basis for the optimization

problem formulation of the next Section. In these expressions, for each node v ∈ V ,

we write v ≺ u if node v is a descendant of node u.

Cost and Reliability. For these attributes, from the recursive rules of Table 3.4, it is

easy to realize that

70

3.2. Plan Phase

Table 3.4: Recursive rules to calculate the average value of the QoS attributes of a

composite service according to the per-flow workflow model.

QoS rules

node v ∈ V (where Zk = C
k| log Dk|Rk)

seq Z
k(v;x) =

∑

u∈d(v) Z
k(u;x)

loop Z
k(v;x) = ℓk(v, d(v))Zk(d(v;x))

sel Z
k(v;x) =

∑

u∈d(v) ℓ
k(v, u)Zk(u;x)

par and C
k(v;x) =

∑

u∈d(v) C
k(u;x)

log Dk(v;x) =
∑

u∈d(v) log D
k(u;x)

R
k(v;x) = maxu∈d(v) R

k(u;x)

Si Z
k(u;x) = Zk(Si;x)

Ck(x) =

m
∑

i=1

(

∏

j�Si

ℓk(f(j), j)
)

Ck(Si;x) =

m
∑

i=1

V k
i C

k(Si;x) (3.17)

and

logDk(x) =

m
∑

i=1

(

∏

j�Si

ℓk(f(j), j)
)

logDk(Si;x)

=

m
∑

i=1

V k
i logDk(Si;x) (3.18)

where V k
i =

∏

l�Si
ℓk(f(l), l), Si ∈ V , is the expected number of times task Si is

invoked by the composite service for a service class k user.

Response Time. For Rk(x), we need to account for the fact that the overall response

time of the par and pattern is the largest response time among its component tasks.

As a consequence, the response time is no longer additive and we cannot derive an

expression analogous to (3.17). In this case, we obtain a recursive set of expressions

for the response time, whose number is linear in the number of par and composition

71

Chapter 3. MOSES: a Framework for QoS Driven Runtime Adaptation of
Service-Oriented Systems

patterns in the process. To this end, we first introduce the notion of direct descendant

among nodes in V . We say that a node v ∈ V is a direct descendant of u ∈ V , denoted

by v ≺dd u, if v ≺ u and for any other node w ∈ V , v ≺ w ≺ u implies w 6= par and,

i.e., if there is no node labelled par and in the path from v to u. In other words, a node

v ∈ V is said to be a direct descendant of u if task/pattern v is nested within the

composition pattern u, but, within u, it is not nested within a par and pattern.

Let Π ⊂ V denote the set of nodes corresponding to par and activities. We have

the following result for the response time Rk (the proof, which is a simple application

on the recursive formulas of Table 3.4, can be found in [29]).

Theorem 1 For QoS class k ∈ K , the response time Rk can be computed recursively
as follows:

Rk(x) = R
k(root;x) (3.19)

R
k(v;x) =















maxu∈d(v) R
k(u;x) v ∈ Π

∑

Si∈V,Si≺ddv

V k
i

V k
v
Rk(Si;x)+

∑

u∈Π,u≺ddv

V k
u

V k
v
R
k(u;x) v /∈ Π

(3.20)

Theorem 1 provides the response time Rk(v) of each composition pattern v ∈ V

and the composite service response time Rk, k ∈ K . Observe that if the par and

pattern is not present in the workflow, Π = ∅ and Equation (3.20) reduces to Rk(x) =
∑m

i=1 V
k
i Rk(Si;x).

Optimization Problem The basic goal of the per-flow optimization strategy is to de-

termine an adaptation policy x that allows it to meet its QoS objectives stated by the

〈Rk
max, C

k, Dk
min, λ

k
u〉 SLAs, given the constraints determined by the 〈rij , cij , dij , Lij〉

SLAs. Within the possibly empty set of feasible x’s that satisfy these constraints,

MOSES wants to select the x that optimizes a given utility function. Depending on

72

3.2. Plan Phase

the utilization scenario of MOSES, the utility function could be aimed at optimizing

specific QoS attributes for the different service classes (e.g., minimizing their average

response time) and/or it could be aimed at optimizing the MOSES own utility, e.g.,

minimizing the overall cost to offer the composite service (that would maximize the

MOSES owner incomes). These different optimization goals could be possibly con-

flicting, thus leading to a multi-objective optimization problem. To deal with it we

transform it into a single objective problem using for this purpose the Simple Additive

Weighting (SAW) technique [49], which is the most widely used scalarization method.

According to SAW we define the MOSES utility function F (x) as the weighted sum

of the (normalized) QoS attributes of all users. More precisely, let

Z(x) =

∑

k∈K LkZk(x)
∑

k∈K Lk
(3.21)

where Z = R| logD|C is the expected overall response time, reliability and cost,

respectively, and Lk =
∑

u λ
k
u is the aggregated flow of class k requests. We define

the utility function as follows:

F (x) = wr
Rmax −R(x)

Rmax −Rmin
+ wd

logD(x)− logDmin

logDmax − logDmin
+wc

Cmax − C(x)

Cmax − Cmin
(3.22)

wherewr, wd, wc ≥ 0, wr+wd+wc = 1, are weights for the different QoS attributes.
Rmax (Rmin), Dmax (Dmin), and Cmax (Cmin) denote, respectively, the maximum
(minimum) value for the overall expected response time, cost and reliability. We will
describe how to determine these values shortly. With these definitions, the optimization

73

Chapter 3. MOSES: a Framework for QoS Driven Runtime Adaptation of
Service-Oriented Systems

problem can be formulated as follows:

max F (x)

subject to: Ck(x) ≤ Ck, k ∈ K (3.23)

logDk(x) ≥ logDk
min, k ∈ K (3.24)

R
k(root;x) + Tovd ≤ Rk

max, k ∈ K (3.25)

R
k(u;x) ≤ R

k(v;x), u ∈ d(v), v ∈ Π, k ∈ K (3.26)

R
k(v;x) =

∑

Si≺ddv

V k
i

V k
v

∑

J∈ℑi

xk
iJR(Si; J)+

+
∑

u∈Π,u≺ddv

V k
u

V k
v

R
k(u;x), v /∈ Π, k ∈ K (3.27)

∑

k∈K

∑

J∈ℑi,j∈J

xk
iJV

k
i Lk ≤ Lij , opij ∈ OP (3.28)

xk
iJ ≥ 0, J ∈ ℑi,

∑

J∈ℑi

xk
iJ = 1, 1 ≤ i ≤ m, k ∈ K (3.29)

xk
i1j1

= xk
i2j2

opi1j1 , opi2j2 ∈ OP (csl) (3.30)

Si1 , Si2 ∈ Sl, |Sl| > 1, k ∈ K

Equations (3.23)-(3.27) are the QoS constraints for each class on the cost, reliability

and response time. The constraints (3.25)-(3.27) for the response time are directly

derived from (3.20). The additional term Tovd accounts for the overhead introduced

by the broker itself in managing the system. Equations (3.28) are constraints on the

operations load and ensure that the system managed by MOSES does not exceed the

volume of invocations agreed with the providers of those operations. The LHS of (3.28)

is the volume of invocations of operation opij under adaptation policy x. It is the sum

over all service classes of the per class number of invocations per unit time of a given

operation opij (the second summation is over all the implementations J in which j

occurs). The RHS of (3.28) is the maximum load Lij negotiated with the provider of

the operation. Equations (3.29) are the functional constraints. Finally, Equations (3.30)

74

3.2. Plan Phase

are the stateful constraints which basically require that, for stateful tasks, the fraction

of requests that are bound to different operations of the same concrete service must be

the same. Remember that if Si is stateful, we only use the service selection adaptation

technique; in this case J takes values only in OP i.

The maximum and minimum values of the QoS attributes in the objective func-

tion (3.22), used to get a normalized value, are determined by replacing Zk(x), Z =

R| logD|C in Equation (3.21) with the maximum and minimum value that the QoS

attributes can attain. Rmax, Cmax, and Dmin are simply expressed respectively in

terms of Rk
max, Ck , and Dk

max. For example, the maximum cost is given by Cmax =
∑

k∈K LkCk
max∑

k∈K
Lk . Similar expressions hold for Rmax and Dmin. Rmin, Cmin, and Dmax

are similarly expressed in terms of the Rk
min, Ck

min, and Dk
max, the minimum response

time, minimum cost and maximal reliability that can be experienced by a class k re-

quest. For instance, Ck
min =

∑m

i=1 V
k
i C∗(Si) where C∗(Si) = minJ∈ℑi

C(Si; J) is

the minimum cost implementation of task Si. Similar expressions hold for Rk
min and

Dk
max.

We conclude by observing that the per-flow optimization problem is a Linear Pro-

gramming (LP) problem which can be efficiently solved via standard techniques.

3.2.6.3 Load-Aware Per-Request Optimization

The load-aware per-request policy exploits the multiple available implementations of

each abstract task, and realizes a runtime probabilistic binding. In this way, different

concurrent requests to the same abstract task are bound to different concrete services,

realizing a randomized load balancing, in a way similar to the per-flow solutions pre-

sented in Section 3.2.6.2. At the same time, however, the QoS constraints are ensured

for each request that the user submits like the per-request approach presented in Section

75

Chapter 3. MOSES: a Framework for QoS Driven Runtime Adaptation of
Service-Oriented Systems

3.2.6.1. This approach currently does not support coordination patterns, therefore only

a single concrete service is chosen at a time to be bound to an abstract service. Hence,

QoS attributes coincide with those of the selected concrete operation opij (Equation

3.4).

Randomized Load Balancing The core of the load-aware per-request selection pol-

icy is the randomized load balancing of the requests directed to each abstract task Si,

so that they are switched to multiple concrete services implementing it. The load bal-

ancing is tuned on the basis of the capacity of each concrete service csij , defined by the

parameter Lij , and of the rate of requests submitted by the users to Si. As we already

mentioned, an abstract task is bound by the broker to a set of concrete services, each

one having an associated probability. So, at abstract task binding time, only one of

these services is probabilistically chosen. As a consequence, only a fraction of the in-

coming requests is switched to a given concrete service csij , and this fraction depends

on the probability xij determined by the broker. We define a service selection policy as

the set of all these probabilities, that we represent with the vector x = [x1, . . . ,xm],

where for each entry xi = [xij], i ∈ S, j ∈ ℑi, the constraints xij ∈ [0, 1] and

∑

j∈ℑi
xij = 1 hold. Our idea is to drive the value of the xij probabilities, forcing on

each xij an upper bound Pij , so that the fraction of requests switched by the broker

to the concrete service csij does not overload it. The upper bound Pij is calculated

through the ratio Pij =
Lij

λi

, where λi is the actual request rate to the abstract task Si

and Lij is the load threshold for csij . If Pij is greater than 1, it means that there is no

upper bound because csij is able to satisfy all the incoming requests to Si on its own.

Vice versa, if Pij is less than 1, csij alone cannot satisfy all the requests directed to

Si but it must be backed by other concrete services, so that their overall capacity can

76

3.2. Plan Phase

sustain the submitted load.

Workflow Model The workflow model used by the load-aware per-request optimiza-

tion is the same used by the per-request optimization policy, already described in Sec-

tion 3.2.6.1. Such a workflow model correctly captures the need of having a worst-case

scenario, indispensable when QoS attributes have to be guaranteed for every request to

the composite service.

QoS Attributes Computation Given the service selection policyx and the execution

paths that arise from the composition logic, we can calculate the QoS attributes of each

abstract task and then the overall QoS attributes of the composite service. We are

interested in the average QoS perceived by the users as well as in its worst case value.

As discussed below, we need both these values to maximize the broker utility function

and satisfy the QoS constraints.

Let rij be the response time of the concrete service csij , dij its reliability, and cij its

cost. The average QoS values of the abstract task Si, namely, the average response time

Ri, the reliability Di, and the average cost Ci, are given by the following expressions:

Ri =
∑

j∈ℑi

rijxij (3.31)

Di =
∑

j∈ℑi

dijxij (3.32)

Ci =
∑

j∈ℑi

cijxij (3.33)

The worst case QoS values, denoted by Rw
i , Dw

i , and Cw
i , are given by:

Rw
i = max

j∈ℑi

rijyij (3.34)

77

Chapter 3. MOSES: a Framework for QoS Driven Runtime Adaptation of
Service-Oriented Systems

Dw
i = min

j∈ℑi

dijyij (3.35)

Cw
i = max

j∈ℑi

cijyij (3.36)

where yij is a binary variable indicating whether the concrete service csij can be ever

bound to the abstract task Si, i.e., yij = 1 if xij > 0 and 0 otherwise.

Using these formulas and the notion of execution paths and subpaths, we can calcu-

late the QoS attributes along each execution path itself, using the aggregation formulas

presented in [12]. Note that the same formulas apply both for the average case and

for the worst case; therefore, for the sake of simplicity, we show only the latter case.

We denote by Rn the maximum response time of the execution path epn, with Dn its

minimum reliability, and with Cn its maximum cost; these are, in other words, the QoS

attributes values calculated in the worst case scenario. They are:

Rn = max
spn

b
∈epn

∑

Si∈spn
b

Rw
i (3.37)

Dn =
∏

Si∈epn

Dw
i (3.38)

Cn =
∑

Si∈epn

Cw
i (3.39)

While the cost and the reliability are simply obtained, respectively, as sum and mul-

tiplication of the QoS attributes of each abstract task in the execution path, the matter is

slightly different for the response time. Indeed, the response time of an execution path

is equal to the response time of the longest subpath inside the execution path itself.

Optimization Problem Given a composite service P , the goal of the service bro-

ker is to find a selection policy x that ensures the QoS constraints for every execution

78

3.2. Plan Phase

scenario, i.e., for each execution path epn that arises from P , while realizing the ran-

domized load balancing. The selection policy x is calculated by solving a suitable

optimization problem. We formulate this optimization problem as a Mixed Integer

Linear Problem (MILP), with the following decision variables:

• xij : it takes value in the range [0, 1] and represents the probability that the con-

crete service csij ∈ ℑi is bound to the abstract task Si; it is used to drive the

randomized load balancing.

• yij : it is equal to 1 if csij is bound to Si with a given probability defined by xij ,

0 otherwise. We use it to ensure that the QoS constraints are met.

While the QoS constraints are evaluated using the worst case values of the QoS

attributes for each abstract task, the objective function is maximized using the average

values, because it is the value that is expected along multiple executions of the com-

posite service. In particular, the optimization problem maximizes the aggregated QoS

values, which are calculated over all the possible execution paths that arise from the

composite service workflow, taking into account the relative probability pn. We obtain

the aggregated values by applying the Simple Additive Weighting (SAW) technique as

scalarization method.

In the first phase, each quality dimension along an execution path is normalized

according to the following formulas, depending on whether the QoS attribute is a pos-

itive (3.40) or a negative (3.41) one. A QoS attribute is defined positive (negative) if

the greater the value is, the greater (lower) the quality of that attribute. Reliability is

an example of positive attribute (the higher the reliability, the better the quality is),

while response time is an example of negative attribute (the lower the response time,

79

Chapter 3. MOSES: a Framework for QoS Driven Runtime Adaptation of
Service-Oriented Systems

the better the quality is).

zhn(x) =







qhn(x)−min qhn
max qhn −min qhn

, if max qhn 6= min qhn

1, if max qhn = min qhn

(3.40)

zhn(x) =







max qhn − qhn(x)

max qhn −min qhn
, if max qhn 6= min qhn

1, if max qhn = min qhn

(3.41)

In the above formulas, qhn(x) is the h-th quality dimension value calculated over the

execution path epn using the selection policy x. max qhn and min qhn are its maximum

and minimum values and can be estimated across several composite service executions.

In the second phase a score is obtained using a weighted sum of the normalized

quality attributes, as follows:

scoren =
∑

h

whz
h
n(x) (3.42)

where the weight wh specifies the relative importance that the broker assigns to a QoS

attribute with respect to the others.

Finally, the objective function is obtained using the following weighted formula:

F (x) =
∑

n

pnscoren(x) (3.43)

80

3.2. Plan Phase

The optimal service selection policy x can be obtained solving the following opti-
mization problem (for sake of simplicity, we use n instead of epn):

max F (x)

subject to:
∑

j∈ℑi

xij = 1 ∀i (3.44)

xij ≤ Pij ∀i,∀csij ∈ ℑi (3.45)

xij ≤ yij ∀i,∀csij ∈ ℑi (3.46)

rijyij ≤ Rw
i ∀i,∀csij ∈ ℑi (3.47)

dijyij ≥ Dw
i ∀i,∀csij ∈ ℑi (3.48)

cijyij ≤ Cw
i ∀i,∀csij ∈ ℑi (3.49)

∑

i∈spn
b

Rw
i ≤ Rn ∀spnb ∈ epn,∀n (3.50)

∑

i∈epn

log(Dw
i) = Dn ∀n (3.51)

∑

i∈epn

Cw
i = Cn ∀n (3.52)

Rn ≤ Rmax ∀n (3.53)

Dn ≥ log(Dmin) ∀n (3.54)

Cn ≤ Cmax ∀n (3.55)

xij ∈ ℜ+ ∀i,∀csij ∈ ℑi

yij ∈ {0, 1} ∀i,∀csij ∈ ℑi

Rw
i , D

w
i , Cw

i ∈ ℜ+ ∀i

Rn, Cn ∈ ℜ+ ∀n

Dn ∈ ℜ− ∀n

Constraints (3.44) guarantee that the sum of the probabilities of choosing the con-

crete services is equal to 1 for each task Si. Constraints (3.45) define the upper bound

to the probability of choosing a concrete service csij . These two constraints families

implement the randomized load balancing policy. Constraints from (3.47) to (3.49)

express the response time, reliability, and cost of every abstract task Si in terms of

81

Chapter 3. MOSES: a Framework for QoS Driven Runtime Adaptation of
Service-Oriented Systems

the worst concrete services that are selected to implement that task. Constraints (3.50)

evaluate the response time of each execution path epn as the response time of its longest

subpath spnb , while constraints (3.51) and (3.52) refer respectively to the reliability and

cost of each execution path epn. Finally, constraints from (3.53) to (3.55) are the QoS

constraints to be fulfilled. We use the logarithm of the reliability instead of the relia-

bility in our optimization problem because we need to linearize Equation (3.11) to put

it in our MILP problem.

3.3 Monitor Phase

MOSES is a broker prototype for the SOA world. Since SOA makes heavy use of

services that are offered by third party providers, even in presence of SLAs, there is no

actual guarantee that the services abide to the negotiated QoS parameters as network

overload, service overload, and/or power outages may cause a service to not respect

the expected QoS level.

As a consequence, to provide QoS guarantees, we have to account for the actual

services QoS, rather than the QoS values stated in the SLAs. To this end, we need to

monitor the execution of the concrete services and to analyze the collected data, so to

be able to determine whether a change in the QoS level has occurred and a new service

selection needs to be determined by using the updated QoS parameters.

Figure 3.7 shows how MOSES fits into the taxonomy presented in Section 2.4.1. In

the following, we discuss the methodologies we have adopted to monitor the concrete

services and to analyze the collected data with particular reference to service response

time, but the same applies for other QoS attributes.

82

3.4. Analyze Phase

3.3.1 Monitoring the Concrete Services

The QoS attributes stated in a SLA are the targets of our monitoring activity. The

monitored data can be collected at two different locations: at the service provider side

or at the broker side. The former is made possible when the service provider collects

data for itself and makes them available to its clients, like the Amazon CloudWatch

service. However, the most common solution adopted in the SOA context is to collect

data on the service broker that manages the composite service [9, 15, 21, 66], because

the monitoring service is hardly provided by the concrete services providers.

Generally speaking, the methodology used to collect the data can be either active,

if the data are collected sending proper inputs to the monitored entities, or passive, if

the data are collected without injecting additional load but rather observing the system

behavior. We preferred the latter solution, because in the context of SOA applica-

tions each service invocation may have a cost. Another important question regards the

frequency at which data are collected, i.e., after how many invocations of a service we

measure the QoS. Clearly, a low frequency approach requires less computational power

than a high frequency one, but we adopt this latter in order to react more quickly to a

change in the QoS of a service. Therefore, our monitoring activity is quite simple: we

measure and store the QoS of each single concrete service invocation on a continuous

time basis.

3.4 Analyze Phase

Monitoring is useless if collected data is not properly analyzed to learn the actual be-

havior of concrete services.

Figure 3.8 shows how MOSES fits into the taxonomy presented in Section 2.4.2.

83

Chapter 3. MOSES: a Framework for QoS Driven Runtime Adaptation of
Service-Oriented Systems

In this section we describe the online adaptive cumulative sum (Cusum) algorithm [72]

for service response time monitoring and abrupt change detection. We did not use the

standard Cusum algorithm because it has been designed to detect changes in stationary

time series with known statistical characteristics: in a non-stationary context, like the

SOA context, whereby the variance can exhibit significant variation over time, its per-

formance is very poor [31]. Indeed, given a time series, its standard deviation is used

to properly tune the Cusum algorithm. Furthermore, although this algorithm detects

changes in the time series mean, one of main assumptions behind it is that the variance

is always constant over time.

The online adaptive Cusum detector we design in MOSES [31] combines an Expo-

nential Weighted Moving Average (EWMA) filter to tracks the slow varying response

time series average with a two-sided Cusum test to detect abrupt changes in the series

average which cannot be timely accounted by EWMA filter.

We consider the following tracking EMWA filter:

µi = αyi + (1− α)µi−1 (3.56)

where µi represents the i-th current estimate of the average response time and yi repre-

sents the i-th collected response time sample and α is a small constant. To timely detect

the occurrence of significant changes, the Cusum algorithm uses two variables, g+ and

g−, to detect positive and negative changes, respectively, which measure positive and

negative deviation of the time series with respect its average value. They are initialized

to 0 and updated at each step as follows:

g+i = max{0, g+i−1 + yi − (µi +K+)} (3.57)

g−i = max{0, g−i−1 + (µi −K−)− yi} (3.58)

84

3.4. Analyze Phase

where K+ (K−) is the smallest shift we want to detect on the leading (trailing) edge. In

our experiments, we set it equal to 25% of the response time stated in the SLOs of the

monitored services. A change is detected whenever g+i or g−i are greater than a suitable

threshold H∗, which represents a trade-off between detection delay and probability of

false positive. To compute H∗ we followed the approach in [31], which ensures a

small probability of false detection (measured in terms of expected number of samples

between false positives, we set to 1000). This requires the numerical inversion of

the Siegmund approximation [72] which typically yields H∗ ≈ 5σy , where σy is the

time series standard deviation. Since σy is unknown, we resort to a widely adopted

approximation, which basically replaces the standard deviation with the estimate of the

mean deviation E[|yi − E[y]|]:

σi = β|yi − µi|+ (1− β)σi−1 (3.59)

where we set β to 0.5.

Whenever an abrupt change is detected, the average response time is updated ac-

cording to the following equations [72]:

µi =

{

µi−1 +K + g+i /N
+ if g+i > H∗

µi−1 −K − g−i /N
− if g−i > H∗

(3.60)

in place of Equation (3.56), where N+ (N−) is the number of samples since the last

time g+i (g−i) was equal to zero. Upon a change detection, g+i and g−i are reset to 0.

The estimates of the services response time, obtained via Equation (3.56) (or (3.60)

when an abrupt change is detected), are used by the broker in the actual formulation of

the service selection optimization presented in Section 3.2.6.

85

Chapter 3. MOSES: a Framework for QoS Driven Runtime Adaptation of
Service-Oriented Systems

Figure 3.7: MOSES within the monitor taxonomy

86

3.4. Analyze Phase

Figure 3.8: MOSES within the analyze taxonomy

87

4
Case Study: Design and Implementation

of MOSES

Contents

4.1 IaaS Layer . 90

4.1.1 Back-End Subnet . 91

4.1.2 Choosing the IaaS Management Platform 101

4.1.3 Front-End Subnet . 104

4.2 PaaS Layer . 105

4.3 SaaS Layer . 107

4.3.1 Overview of the MOSES Architecture 107

4.3.2 MOSES Design within OpenESB 111

4.3.3 MOSES Components . 113

4.3.4 MOSES Clustered Architecture 114

4.3.5 MOSES Overheads . 116

MOSES is a Cloud broker service: it belongs to the Software as a Service (SaaS)

layer of the Cloud Computing stack [99], therefore it has been designed in order to be

easily deployed into any public Cloud provider. However, since one of the target of

our work is the evaluation of the performance of MOSES, and since it is very diffi-

cult to obtain accurate performance measurements on public clouds [2], we opted for

building our own private cloud infrastructure to deploy MOSES in. In this way we

had the opportunity to test MOSES without any external noise, thus providing base-

line performance measurements that can be taken into account for comparisons with

89

Chapter 4. Case Study: Design and Implementation of MOSES

performances on public clouds.

In the following we will first present a general purpose architecture for building a

reliable, scalable, flexible, and modular private cloud that exploits virtualization tech-

nologies at different levels. In our specific case, the architecture has been entirely

implemented using Free Software and standard protocols, thus realizing a truly open

Infrastructure as a Service (IaaS). The obtained IaaS can be used to offer a variety of

services that span from web applications and web services to soft real-time applica-

tions.

In the MOSES case, the private IaaS has been dedicated to the deployment of sev-

eral instances of OpenESB (more details in Section 4.2), which enables a Platform as

a Service (PaaS) layer. As well as for any other software used to build the IaaS, also

OpenESB is Free Software. This software acts as a container for MOSES and offers

many facilities to scale the environment. The design and implementation of MOSES

will be presented in Section 4.3.

4.1 IaaS Layer

In this section we present a possible architecture that can be adopted by a prospective

IaaS provider. It has the main objective to decouple storage resources from computa-

tional resources. Such a decoupling makes the entire infrastructure more scalable and

more flexible because it allows the administrators to add or remove storage systems

without any impact on the computational resources and vice-versa. The system archi-

tecture is partitioned in two logical levels, respectively named back-end subnet and

front-end subnet. The back-end subnet is the architectural component aimed at both

managing the storage resources and offering the storage as a service to the front-end

90

4.1. IaaS Layer

subnet, while the latter contains computational resources, which are then attached to

storage services to obtain high-level services which are finally exposed to the end users.

In addition to being a gateway to storage facilities, the back-end subnet also offers a

centralized management of the services provided by the front-end subnet to the end

users.

4.1.1 Back-End Subnet

We have designed the back-end subnet in such a way to obtain a clear separation be-

tween the services offered to the end users and the hardware/software needed by those

services. That is, the back-end subnet provides a decoupling layer that allows the sys-

tem administrators to manage the entire infrastructure in a modular and scalable way.

The basic idea is as follows: a service is just an application that performs a task re-

quired by an end user, where each application requires several system resources (CPU,

memory, disk, and network) with different needs. These resources have to be assigned

by the system administrator in an transparent way with respect to the users, whose ex-

pectation is to have a fully functional service without taking care of their administrative

issues. Therefore, the back-end subnet goal is to provide all the basic infrastructure fa-

cilities, such as a redundant storage management and a highly available management

of computational resources, that should be managed as much as possible through a cen-

tralized tool to facilitate the system administrator tasks. In the following, we analyze

each component of the back-end subnet.

4.1.1.1 Redundant Network Topology

A basic requirement of every dependable infrastructure is a dependable network topol-

ogy. We introduce a redundant network topology that can (i) scale according to the

91

Chapter 4. Case Study: Design and Implementation of MOSES

number of used physical links and (ii) automatically re-arrange itself by excluding mal-

functioning links without any service interruption. The presented topology is generic

and does not depend on the physical medium used to implement it: therefore, it is pos-

sible to use links based on Fiber Channel over optical fiber or Ethernet links on copper

cables.

Left side of Figure 4.1 shows the components belonging to the back-end subnet.

Starting from the left side, there are two storage subsystems (primary and replica) and

two highly available storage gateways, that are interconnected by a redundant network

topology, except for the connection between the storage gateways and the storage sub-

systems. The latter can also be replicated, whether the employed storage subsystems

support multi-pathing; since not all storage subsystems support multi-path connections,

we depicted only a single link, even if our implementation supports multi-pathing. We

also observe that the network topology supports any number of links among its nodes:

although we depicted only two links between the storage gateways and two links be-

tween each single storage gateway and the two switches, any number of links can be

used, depending on the bandwidth and availability requirements. Specifically, in our

implementation we use a single 4 Gbps Fiber Channel link between each storage sub-

system and its storage gateway, while we use four 1 Gbps Ethernet links between each

storage gateway and the border switches. Finally, the connection between the two stor-

age gateways is a 4 Gbps Fiber Channel.

We designed the network topology with the goal to maximize both dependability

and throughput, trying also to minimize the hardware costs, since storage subsystems

are often expensive Storage Area Networks (SANs), that require expensive Host Bus

Adapters (HBAs) and SAN switches (often switched fabrics) to connect to. The intro-

92

4.1. IaaS Layer

Figure 4.1: Network topology.

duction of two storage gateways decouples the native storage connections from where

the storage needs to be attached. In this way, using the storage gateways as front-ends

for the storage system, we reach the following objectives:

• to make the front-end servers unaware of the storage type;

• to aggregate different storage systems for reaching maximum expandability: that

is, we can attach multiple heterogeneous storage subsystems to each storage

gateway, hiding such a complexity to the front-end servers;

• to use arbitrarily complex storage management policies and replication;

• to minimize the hardware costs: we do not need to buy a lot of expensive HBAs

and expensive fabrics because the two highly-available storage gateways are di-

rectly connected to the storage systems.

The channel aggregation of server NICs is realized using the Linux Bonding Driver.

93

Chapter 4. Case Study: Design and Implementation of MOSES

It provides a method to aggregate multiple network interfaces into a single logical

“bonded” interface. The behavior of the bonded interfaces depends on the selected

operating mode. It is possible to distinguish between two families of operating modes:

the first only provides high availability connections (by using either hot stand-by or

broadcast links), while the second also adds load balancing mechanisms on bonded

links. The only drawback of using load balancing mechanisms relies in a more difficult

network debugging when problems arise.

The overall back-end subnet can be seen as a black-box storage unit because it

offers a high-level and feature rich storage service to the front-end subnet; we note

that two storage gateways may not be sufficient to manage large amounts of I/O when

thousands of disks are attached, but storage units can be replicated by using a flat

or a hierarchical approach. Therefore, storage units are a scalable way to implement

a modular interface to storage subsystems, since each storage unit implicitly provides

the same interface to the front-end subnet layer even if the actual implementation could

be very different.

4.1.1.2 Redundant Storage

When designing an architecture for an IaaS provider, an important issue is to ensure

data protection from system failures: although a short unavailability period of a given

service can often be tolerable, data loss is certainly intolerable. To address this issue,

we introduced a redundant storage schema in our infrastructure architecture.

Suppose that the primary storage subsystem is a SAN with several RAID arrays:

each RAID array in a SAN can host multiple Logical Unit Names (LUNs), each of

which is seen as a physical disk by the operating system of the storage gateway con-

nected to the SAN. We manage to introduce the storage replication through a software

94

4.1. IaaS Layer

layer positioned just over the plain disk seen by the operating system and represented

by Distributed Redundant Block Devices (DRBD) [40].

DRBD defines two roles in a replication scheme, named primary and secondary:

only a node with primary role can access data if not using a distributed filesystem. We

can use different working modes, that range from fully synchronous to asynchronous

replication. With synchronous replication the filesystem on the active node is notified

that the writing of the block is completed only when the block made it to both disks

of the cluster. Using asynchronous replication, the entity that issued the write request

is informed about completion as soon as the data is written to the local disk and to

the local socket buffer. Finally, with memory-synchronous replication, the filesystem

on the active node is notified that the writing of the block is completed when data is

written to the local disk and has reached the write buffer of the remote server.

The choice of the working mode to be used strictly depends on the storages type

and the interconnecting network. The best scenario is when we have a fast primary

storage coupled with a fast1 secondary storage, connected with a fast and reliable net-

work. The worst scenario is when we have a fast primary storage with a relatively slow

secondary storage, coupled with a slow and unreliable network (think to geographic

data replication). We do not consider the scenario in which we have two poorly sized

storage subsystems. Under the first scenario, synchronous DRBD replication is surely

the best choice, because it ensures maximum data protection with a negligible per-

formance loss. On the other hand, in the latter case we must take into account more

variables, such as global disk speed, buffers, and network. If geographic replication is

not needed and the infrastructure relies on a fast local network, we can choose either

1We consider a storage system to be fast when it is adequately sized to sustain the submitted workload.

95

Chapter 4. Case Study: Design and Implementation of MOSES

memory-synchronous replication or asynchronous replication, depending on the global

disk speeds and the buffers offered by the secondary storage controller: the choice has

to be done carefully and really depends on the workload the storage is supposed to

face. If we choose a memory-synchronous replication without having enough buffers

we can introduce a bottleneck, but if we use asynchronous replication with a fast and

adequately buffered secondary storage we are not working in an optimal way.

In our implementation, we have a fast SAN as primary storage and a slow NAS (a

server with direct attached storage) as secondary storage, with a fast interconnecting

network. From not reported experiments, we found that for this specific configura-

tion the best operating mode is the asynchronous replication with network congestion

control: whenever the active storage gateway detects a network congestion2, it tem-

porarily detaches the secondary storage, thus going in “Ahead/Behind” operational

mode. In such a way, the bottleneck is temporarily detached from the infrastructure

and data synchronization restarts as soon as the network congestion disappears; the

data synchronization process only involves those data blocks that have been changed

on the primary storage while it was in “Ahead” mode. This advanced configuration has

been pursued to avoid buying an expensive secondary SAN thus lowering the total cost

of ownership, but at the same time increasing the overall infrastructure reliability by

adding a storage replica.

Similar considerations can be applied to each storage unit in our architecture. Al-

though different storage units have the same network topology and the same external

interface, they can have different interconnections and storage speeds. Therefore, we

are free to choose different replication policies depending on the components of each

2With a fast and reliable network, a congestion is likely to happen only when secondary storage disks

utilization is 100% and the buffer is full.

96

4.1. IaaS Layer

storage unit, offering a better QoS to users that are willing to pay more and a best-effort

QoS to thrifty users.

4.1.1.3 Volumes Management

A modern storage system, besides being reliable, needs to be flexible. Volumes man-

agement introduces a considerable degree of flexibility, providing features like online

volumes resizing, volumes snapshotting, and hot disk addition or removal. Volumes

are considered by an operating system just like partitions, since we can use them to

hold root filesystems or data directories (that is, they are seen as block devices). We

briefly describe below the feature offered by logical volumes.

Online volumes resizing is a key feature: whenever we find out that we allocated

less space than needed for a volume, it allows us to expand the space and, if the filesys-

tem has the support, we can also hot-expand the filesystem without rebooting a server

and therefore without service interruption.

Volumes snapshotting has a twofold use: we can snapshot a volume either to rapidly

have new operating system images ready to use or to make consistent backups. Snap-

shots are nothing more than simple volumes, with their own allocated space, but they

are originated from existing volumes and they use the Copy On Write (COW) [98]

optimization strategy. Usually, when using volume snapshotting for operating system

image cloning, we have a 1:N ratio of gold images and derived snapshots. Therefore,

to avoid disk overload, it is necessary to have a read-only gold image and read-write

snapshots, otherwise each single write on the source volume triggers the COW on each

snapshot. On the other hand, when using volume snapshotting for consistent backups,

we usually have a 1:1 ratio between snapshotted volumes and snapshots, also having

the source volume read-write mounted and the snapshot volume read-only mounted. In

97

Chapter 4. Case Study: Design and Implementation of MOSES

this case, we only need to take care of the snapshot size, that has to be enough to hold

changes made on the source volume during the snapshot lifetime.

Disk addition and removal features are a must for a flexible architecture. When

business grows, we can certainly expect an increase in the data to be stored. A disk

addition feature allows to buy only needed disks from time to time, while a disk re-

moval feature allows us to reduce the number of disks if they are no more needed and

to replace old disks with newer ones without service interruption.

In our architecture we used Logical Volume Manager (LVM) to implement vol-

umes management. LVM introduces three abstraction layers: physical volumes, vol-

ume groups, and logical volumes. LVM Physical Volumes (PVs) are simple partitions

or physical disks initialized by LVM. After being initialized, PVs are aggregated to

form Volume Groups. LVM Volume Groups (VGs) are an aggregation of PVs. This

abstraction level let us overcome the single disk (or the single RAID array) capacity.

LVM Logical Volumes (LVs) are flexible partitions built upon VGs and provide every

feature described above. Since LVs are managed by the operating system just like par-

titions, LVM can be positioned either under or over DRBD. Our choice was to position

LVM over DRBD on the primary storage and under DRBD on the secondary storage.

The motivation is again the asymmetric configuration of the primary and secondary

storage: the primary SAN can scale up to 99 disks; the secondary NAS can only scale

up to 10 disks. Using larger disk on the NAS we can host DRBD resources over LVM

volumes that turns out in consolidating the disk utilization.

4.1.1.4 Complete Storage Architecture

Figure 4.2 unveils the complete storage architecture we have realized: we can roughly

divide the figure in two columns. The left column represents the primary storage sub-

98

4.1. IaaS Layer

system, while the right column represents the secondary storage. Reading the figure

bottom-up, we find that disks on the primary storage are organized in a RAID array,

over which we created a LUN seen by the operating system with the name /dev/sdc.

Over the RAID array, we created the physical partition /dev/sdc1, backing device

for the DRBD resource imgos. The latter contains the operating systems images that

can be attached to virtual machines (VMs) deployed on the front-end servers. The

DRBD device /dev/drbd0p1 is initialized as a LVM PV and is then inserted into

the imgos group VG. imgos group thus contains as many LVs as the number of

operating systems images stored in this storage unit. Looking at the DRBD level, it

is coupled with a peer DRBD level on the secondary storage, whose backing device

is a LVM LV imgos, which belongs to a VG named repdata and whose backing

devices are two partitions on two different RAID arrays3.

The designed storage architecture ensures high data reliability and throughput,

flexibility and easiness of management, low costs, and finally a single asynchronous

backup source. Data reliability is ensured by replication: local replication is achieved

through RAID arrays, while remote replication is achieved through DRBD. When-

ever the secondary storage fails, nobody will notice it and if the primary storage fails,

the secondary one instantly replaces it. High data throughput is allowed by an asyn-

chronous replication with congestion control (actually the perceived write speed is the

one provided by the primary, fast storage). Flexibility and easiness of management

are provided by LVM; to reduce the costs, we built a replicated storage only using

free software and with an economic secondary storage. Last but not least, an inter-

3Actually, two RAID arrays on the secondary storage are not required, but we added them because the

server used as secondary storage could not boot over a logical disk with GPT partitioning schema, which is

required by logical disks larger than 2 TB.

99

Chapter 4. Case Study: Design and Implementation of MOSES

Figure 4.2: Data flow on the storage architecture.

esting feature of the storage architecture is the ability to have a single asynchronous

backup source: thanks to the LVM LV backing device for the entire DRBD resource

on the secondary storage, we can instantly take a snapshot of the imgos resource and,

since snapshots never modify original data, we can safely mount volumes found in the

imgos snapshot, thus having a stable view of the entire storage unit data. This ensures

easy, consistent, and economic backups: we do not need to backup every single server,

100

4.1. IaaS Layer

but we can take them all together and backup them with a single backup application.

This feature terribly lowers the effort of system administrators in keeping a working

backup.

4.1.2 Choosing the IaaS Management Platform

In this section we briefly review and compare the major open-source platforms for

the management of cloud infrastructures: Eucalyptus [81], OpenQRM [85], OpenNeb-

ula [84], Nimbus [80], and OpenStack [86] We classify the various platforms according

to the abstraction level they provide with respect to the underlying hardware and the

customization degree. More detailed analyses and comparisons of open-source cloud

computing platforms can be found in [14, 93, 101, 102].

Eucalyptus (Elastic Utility Computing Architecture for Linking Your Programs To

Useful Systems) is an open-source cloud management platform developed by the Uni-

versity of California that offers the highest abstraction level among the others, by let-

ting the user choose only from a fixed set of VM templates. It provides a framework

similar to Amazon Web Services, by implementing interfaces compatible with Elas-

tic Compute Cloud (EC2) and Amazon Simple Storage Service (S3), also realizing a

distributed storage system called Warlus, which is designed to imitate Amazon’s S3

distributed storage. Whenever a new virtual machine instance is requested to Eucalyp-

tus, its operating system is copied from the storage system to the physical server (from

now on Compute node) which will execute it.

Nimbus offers a higher customization degree compared to Eucalyptus, but only

from the administrators’ point of view: it let them configure at a finer level the VM

instances that will be offered to end-users. Like Eucalyptus, Nimbus implements a

101

Chapter 4. Case Study: Design and Implementation of MOSES

storage system similar to Amazon S3. Both Nimbus and Eucalyptus are architected in

order to decentralize resources: for this reason, each time a VM is requested, its image

template is copied to the Compute node that will run the VM. In this way, both the

platforms can achieve maximum scalability, as well as a good fault isolation because

each Compute node is independent from the others. However, decentralizing storage

systems also leads to a more complex management of replication policies as well as

backup policies. For this reason, neither Eucalyptus nor Nimbus are compatible with

our architecture.

OpenNebula is inspired by different principles compared to both Eucalyptus and

Nimbus: it aims to provide a finer level of customizability for front-end users and its

architecture tends to centralize resources by offering a central storage. A fine customiz-

ability level requires smart users because some details about the underlying infrastruc-

ture cannot be hidden anymore. Therefore, OpenNebula is more suited for private

clouds where the entire environment is trusted and users have more skills. However,

besides offering a central image storage, OpenNebula also provides the ability to run

the image locally on the compute node, thus achieving the same flexibility of Eucalyp-

tus and Nimbus.

The OpenStack project started in summer 2010 when RackSpace and NASA jointed

their initial projects “CloudFiles” and “Nebula”, respectively. It is based on a dis-

tributed architecture composed by several modules, among which the compute, net-

working, storage, and dashboard. Its approach is similar to Eucalyptus because it lets

the administrator define several VM templates and the user can only choose among

them. However, differently from what happens in Eucalyptus, with OpenStack it is

possible to configure both centralized or local storage for VM disks. At present, it is

102

4.1. IaaS Layer

the fastest growing free open source software for IaaS management.

The last platform we consider is OpenQRM, which provides the highest level of

customizability, because it lets the administrators of the private cloud configure each

single aspect of the datacenter. Its core is very small and its architecture is com-

pletely plugin-based, e.g., there are plugins to connect to different storage systems

(NFS, iSCSI, AoE, etc.), as well as plugins to manage several virtualization technolo-

gies (primarily Xen and KVM, but also VMWare, Virtualbox, etc.). OpenQRM can be

used just to administer the datacenter. Anyway, installing the Cloud plugin, we can ex-

ploit every typical cloud feature, like scheduled VM provisioning and de-provisioning

and a pay-per-use model. Unlike the other platforms, OpenQRM lets the administrator

of the cloud infrastructure configure the products offered to the cloud users at a finer

granularity level: instead of configuring a fixed set of instances templates, it is possible

to configure parameters like the quantity of CPU and RAM users are allowed to de-

mand (with associated cost), as well as several possibility for data storage. Users can

dynamically assemble their VM instances by choosing each single component from a

drag-n-drop palette.

We chose OpenQRM for our infrastructure implementation, because it offers the

higher customizability level, but our infrastructure is compatible with OpenNebula and

OpenStack as well. Such a software can be added to our system architecture in two

different positions. In case of a single storage unit, OpenNebula, OpenQRM or Open-

Stack can be installed on the two storage gateways; otherwise, in case of multiple

storage units we need two additional servers at the back-end subnet boundaries to host

the datacenter management software.

103

Chapter 4. Case Study: Design and Implementation of MOSES

4.1.3 Front-End Subnet

The front-end subnet, represented on the right side of Figure 4.1, is composed by a

bunch of servers with lots of RAM and CPU. The connection schema is the same

used for the back-end subnet: each front-end server can be equipped with a number of

NIC, in our case each server has 8 NICs (2 quad-port Gigabit Ethernet), where 4 links

are directed to back-end switches and the remaining 4 links are directed to front-end

switches. The channel aggregation is again achieved through the Linux bonding driver.

The front-end servers do not need any internal hard disk because they are network

booted by OpenQRM, using DHCP, TFTP and iSCSI or NFS protocols with a minimal

Linux distribution with only the software required to run a KVM virtual machine.

Because of virtualization, the front-end servers host a multi-level network stack

(Figure 4.3). The first level is composed by several physical network devices (8 in

our case), half of which is connected to back-end switches, while the other half is

connected to front-end switches. The second level is given by link aggregation with

bonding driver. We created two bond devices: bond0 (directed to back-end switches)

and bond1 (directed to front-end switches). The first bond is used for storage access,

while the second one is used for service delivery because the front-end switches are

attached to a generic internet gateway. Finally, the third level is the bridge, which

allows virtual machines to use networking. Virtual machines support two networking

configurations: bridge and NAT. The simplest configuration is bridge, because it

involves network layers from physical to Logical Link Control (LLC), belonging to the

Data Link layer. However, because of its simplicity, bridging configuration can only

be used when complex network segmentation and isolation are not needed, because

they can only be achieved using VLANs. VLANs imply switches configuration and,

104

4.2. PaaS Layer

when the network becomes large, they can be very hard to manage. On the other hand,

using NAT we raise the OSI layer to Network/Transport, so we can use more complex

firewall rules to manage subnets communications at the price of losing the ability to

use non TCP and non UDP applications.

Figure 4.3: Network stack of the front-end servers.

Each front-end server has two network stacks: the first for data access and directed

to storage gateways through back-end switches, and the latter for service delivery.

4.2 PaaS Layer

The PaaS layer is entirely implemented with OpenESB [83]. OpenESB is an Open

Source project that delivers a platform for SOA business integration and Enterprise

Application Integration (EAI). It is based on a large number of standards, such as Java

EE, SOAP, WS-* and, in particular, JBI (Java Business Integration) [51]. JBI is a

messaging-based pluggable architecture, whose components describe their capabilities

through WSDL. Its major goal is to provide an architecture and an enabling framework

that facilitates the dynamic composition and deployment of loosely coupled participat-

ing applications and service-oriented integration components. The key components of

105

Chapter 4. Case Study: Design and Implementation of MOSES

the JBI environment are:

• the Service Engines (SEs) that enable pluggable business logic;

• the Binding Components (BCs) that enable pluggable external connectivity;

• the Normalized Message Router (NMR), which directs normalized messages

from source to destination components according to specified policies.

OpenESB implements and extends JBI because it enables a set of distributed JBI in-

stances to communicate as a single logical entity that can be managed through a cen-

tralized administrative interface. GlassFish application server is the default runtime

environment, although OpenESB can be integrated in several JEE application servers.

Applications built around an ESB usually consist of multiple parts; therefore any

business application may have multiple points of failure. For example, an application

could consist in several components: a BPEL process, some EJB module, JMS and so

on. Failure of any component may have a serious affect on the business applications

availability. Therefore one important consideration is to identify and manage all single

points of failure. Clustering is a way of deploying a number of components, allowing

them to work together to improve availability and performance, compared to what can

be achieved by deploying just one component. Clusters can provide added reliability

using failover capabilities, which means that when a component fails, another takes

over and provides the same set of services, but can also improve performances when

multiple instances of the same component work together. This is done transparently so

that clients are not aware of what happens behind.

OpenESB supports clustering by grouping together application server instances.

Each cluster is considered to be a logical managed unit and instances share a common

106

4.3. SaaS Layer

configuration, host identical applications and can be managed and monitored centrally.

Each JBI component is specifically designed to work in a cluster environment, thus

providing a platform that eases the implementation of clustered applications. In Section

4.3 we will show how we designed and built MOSES following the JBI specifications

with OpenESB.

4.3 SaaS Layer

In this section we present the architecture of MOSES. We will start with an overview

of the MOSES components and then we will show how they are designed to fit into

the JBI framework exposed by OpenESB. MOSES has been designed with scalability

in mind: it can be completely executed by a single virtual machine when subject to

small load, but it can also scale using the clustered architecture presented in Section

4.3.4. Finally, we will present an analysis of the overheads introduced by MOSES

with respect to the execution of a workflow with static bindings and without runtime

adaptation features.

4.3.1 Overview of the MOSES Architecture

Figure 4.4 shows the MOSES architecture, whose core components are organized in

parts according to the MAPE-K cycle. The Execute part comprises the Composition

Manager, BPEL Engine, and Adaptation Manager. The first component receives from

the brokering service administrator a new BPEL process to be deployed inside MOSES

and builds its corresponding behavioral model. To this end, it interacts with the Service

Manager to identify the concrete services that implement the functionalities required

by the service composition. Once created, the behavioral model, which also includes

107

Chapter 4. Case Study: Design and Implementation of MOSES

Service Manager

,

Adaptation

Manager

SLA Manager

QoS Monitor

Optimization Engine

D
a

ta
 A

c
c
e

s
s
 L

ib
ra

ry

S
to

ra
g
e

Composition

Manager

Monitor + Analyze

Plan

Execute

Knowledge

BPEL Process Users Concrete Services

Execution Path

Analyzer

BPEL Engine

WS Monitor

Service Registry

Figure 4.4: MOSES high-level architecture.

information about the discovered concrete services, is stored in the Knowledge part to

make it accessible to the other system components.

While the Composition Manager is invoked rarely, the BPEL Engine and Adap-

tation Manager are the core modules for the execution and runtime adaptation of the

composite service. The first is the software platform that actually executes the business

process and represents the user front-end for the composite service provisioning. It

interacts with the Adaptation Manager to invoke the proper component services: for

each abstract functionality required during the process execution (i.e., invoke BPEL

activity), the Adaptation Manager dynamically binds the request to the real endpoint

that represents the service. The latter is identified by the solution of one of the imple-

108

4.3. SaaS Layer

mented optimization problems [12, 23, 27] and can be either a single service instance

or a subset of service instances coordinated through some pattern. MOSES currently

supports as coordination patterns the 1-out-of-n parallel redundancy and the alternate

service [23]. With the former, the Adaptation Manager invokes the concurrent execu-

tion of the concrete services in the subset identified by the solution of the optimization

problem, waiting for the first successful completion. With the latter, the Adaptation

Manager sequentially invokes the concrete services in the subset, until either one of

them successfully completes, or the list is exhausted.

The Optimization Engine realizes the planning aspect of the autonomic loop. It

solves the optimization problem, which is based on the behavioral model initially built

by the Composition Manager and instantiated with the parameters of the SLAs negoti-

ated with the composite service users and the concrete services. The model is kept up

to date by the monitoring activity carried out by the components in the Monitor-and-

Analyze part. The problem solution provides indications about the adaptation actions

that must be performed to optimize the use of the concrete services with respect to the

utility goal of the brokering service and within the SLA constraints.

The Monitor-and-Analyze part comprises all the components that capture changes

in the MOSES environment and, if they are relevant, modify at runtime the behavioral

model and trigger a new adaptation plan. Specifically, the QoS Monitor collects and

analyzes information about the QoS levels perceived by the composite service users

and offered by the concrete services providers. The WS Monitor checks periodically

the concrete services availability. The Execution Path Analyzer monitors variations in

the usage profile of the composite service functionalities by examining the business

process executed by the BPEL Engine; it determines the expected number of times that

109

Chapter 4. Case Study: Design and Implementation of MOSES

each functionality is invoked by each service class. The Service Manager and the SLA

Manager are responsible for the SLA negotiation processes in which the brokering ser-

vice is involved. Specifically, the first negotiates the SLAs with the concrete services,

while the latter is in charge to add, modify, and delete users SLAs and profiles. The

SLA negotiation process towards the user side includes the admission control of new

users 4; to this end, it involves the use of the Optimization Engine to evaluate MOSES

capability to accept the incoming user, given the associated SLA and without violating

already existing SLAs. Since the Service and SLA Managers can determine the need

to modify the behavioral model and solve a new instance of the optimization problem,

we have included them within the Monitor-and-Analyze part.

In the current MOSES prototype, each component in the Monitor-and-Analyze

part, independently from the others, senses the composite service environment, checks

whether some relevant change has occurred on the basis of event-condition-action rules

and, if certain conditions are met, triggers the solution of a new optimization problem

instance. Tracked changes include the observed variations in the SLA parameters of the

concrete services (QoS Monitor), addition/removal of concrete services correspond-

ing to functionalities of the abstract composition (WS Monitor and Service Manager),

variations in the usage profile of the functionalities in the abstract composition (Ex-

ecution Path Analyzer) and, only for the per-flow optimization described in [23], the

arrival/departure of a user with the associated SLA (SLA Manager).

Finally, the Knowledge part is accessed through the Data Access Library, which

allows to access the parameters of the composite service operations and environment,

among which the solution of the optimization problem and the monitored model pa-

4Currently the only service selection solution that supports admission control is the per-flow described

in [23]

110

4.3. SaaS Layer

rameters.

4.3.2 MOSES Design within OpenESB

Each MOSES component is executed by one Service Engine, that can be either Sun

BPEL Service Engine for executing the business processes logic and internal orches-

tration needs, or J2EE Engine for executing the business logic of all the MOSES com-

ponents except the BPEL Engine. Developing the components with J2EE Engine im-

proves the flexibility, because they can be accessed either as standard Web services or

as EJB modules through the NMR.

Figure 4.5: Typical execution flow in the ESB-based MOSES prototype.

The typical execution flow of a request to the composite service managed through

the per-flow adaptation strategy is illustrated by the sequence diagram in Fig. 4.5.

With per-request adaptation an initial invocation to the Optimization Engine is added

to compute the optimal solution for the current request. As first step, the registered

user issues a SOAP request to the MOSES front-end, that is the HTTP BC; the request

format follows what expected by the BPEL process to whom the request is addressed.

111

Chapter 4. Case Study: Design and Implementation of MOSES

The HTTP BC normalizes the HTTP request and sends it to the BPEL Engine through

the NMR. Upon receipt of the message, the BPEL Engine de-normalizes the message

and starts to serve the request. The first task performed within the process is the invoca-

tion of the authentication module (not shown in the high-level architecture of MOSES)

to verify that the user issuing the request is properly registered. If not, an exception is

forwarded to the user. Otherwise, for each invoke activity within the BPEL process, the

Adaptation Manager reads the solution of the optimization problem from the storage

layer and for that abstract functionality invokes the subset of concrete services using

the coordination pattern as determined by the solution (Fig. 4.5 shows the use of the

1-out-of-n parallel redundancy pattern for one service invocation). Finally, when the

response is ready for the user (these steps are not shown in Fig. 4.5), the BPEL Engine

puts the response message on the NMR, the HTTP BC de-normalizes it, obtaining a

plain SOAP response message that is finally forwarded to the user.

Alternative execution flows can be split in monitoring and administration flows.

The former denotes each flow that is related to the resources monitoring and can trigger

the execution of the Optimization Engine to determine a new optimal solution. The

WS Monitor, QoS Monitor, and Execution Path Analyzer are periodically invoked by

the Scheduler BC, and each of them can trigger the Optimization Engine when a new

adaptation plan is needed. The Service Manager can be invoked either by the Scheduler

BC or by the Composition Manager when new concrete services are needed. The SLA

Manager is invoked by users when they register or establish new SLAs with MOSES;

the Composition Manager is invoked by the MOSES administrator to manage new

BPEL processes.

We observe that MOSES requires that only the BPEL Engine, the Adaptation Man-

112

4.3. SaaS Layer

ager and the storage layer must be up and running to complete the request-response

cycle. When only these components work, the broker can orchestrate the composite

service (although in a sub-optimal way, being not able to solve a new instance of the

optimization problem), but it still succeeds in providing a response to the users.

4.3.3 MOSES Components

We analyze in detail only the Adaptation Manager and storage layer design, because

these are the components that mostly influence the MOSES performance and scalabil-

ity. We have designed and implemented all the other components, except the Service

Manager; their detailed description can be found in [28]. We note that all inter-module

communications exploit the NMR presence: message exchanges are faster than those

based on SOAP communication, because they are “in-process”, thus avoiding to pass

through the network protocol stack. However, thanks to OpenESB we can expose ev-

ery MOSES component as a Web service. The tasks of the Adaptation Manager are to

modify the request payload in order to make it compatible with the subset of invoked

concrete services and to invoke these services according to the coordination pattern

determined by the solution of the optimization problem.

Being the Adaptation Manager the MOSES component that receives the highest

request rate, its design is crucial for scalability and availability. We have investigated

three alternative solutions for its implementation. The first realizes the component di-

rectly in BPEL, but we discarded it because the Sun BPEL Service Engine does not cur-

rently support the forEachBPEL structured activity with the attribute parallel set

to yes. We needed this activity to realize in BPEL the 1-out-of-n coordination pattern.

With the second alternative we investigated how to realize the Adaptation Manager as

113

Chapter 4. Case Study: Design and Implementation of MOSES

a Java EE Web service. We found a feasible solution (based on the Provider interface

offered by the JAX-WS API) but we discarded it because it causes a non negligible and

useless performance overhead for the service invocation itself. The solution we finally

implemented realizes the Adaptation Manager as a Java class which is directly invoked

inside the BPEL process. The advantage is the higher communication efficiency and

the consequent reduction of the response time perceived by the users of the composite

service.

The storage layer represents a critical component of a multi-tier distributed sys-

tem, because the right tradeoff between responsiveness and other performance indexes

(like availability and scalability) has to be found. We have investigated various alter-

natives to implement the MOSES storage layer and decided to rely on the well-known

relational database MySQL, which offers reliability and supports clustering and repli-

cation. However, to free the MOSES future developers from knowing the storage layer

internals, we have developed a data access library, named MOSES Data Access Library

(MDAL), that completely hides the data backend. This library currently implements a

specific logic for MySQL, but its interfaces can be enhanced with other logics.

4.3.4 MOSES Clustered Architecture

In designing the clustered architecture of MOSES we made a tradeoff between flexibil-

ity and performance. By flexibility we mean the ability to distribute the MOSES com-

ponents at the finest level of granularity (i.e., each component on a different machine);

however, we have found that having a high degree of flexibility impacts negatively

on the overall MOSES performance [28]. Therefore, we have carefully distributed

the MOSES components in order to minimize the network overheads for inter-module

114

4.3. SaaS Layer

communications and storage access. Following this guideline, we have collocated the

BPEL Engine and the Adaptation Manager on the same machine; in such a way, for

each invoked external service whose binding is executed at runtime by the Adapta-

tion Manager, the BPEL Engine does not need to communicate through the network.

In addition, being these two components executed by the same JVM, the Adaptation

Manager is called as a Java class rather than as a Web service, with consequent perfor-

mance speedup.

Figure 4.6: MOSES clustered architecture.

115

Chapter 4. Case Study: Design and Implementation of MOSES

Figure 4.6 illustrates the MOSES clustered architecture composed by three clusters,

where each one owns two replicas of the components placed in that cluster. The BPEL

Engine and the Adaptation Manager constitute the core cluster, while the other two

clusters provide additional features that are not mandatory for the basic execution. The

front-end cluster provides the broker with the ability to receive new BPEL processes

and negotiate SLAs with users. The back-end cluster comprises the components to

monitor and analyze the environment and to determine a new adaptation plan. In front

of those clusters that are accessed by the composite service users, there is an HTTP

load balancer that distributes the requests among the replicas.

As regards the distribution of the storage layer, the core cluster hosts its own high

available DB server with strong consistency to execute the DB queries as fastest as

possible. The back-end clusters DB is instead synchronized with the core clusters DB

using an external weak consistency policy and an internal strong consistency policy.

Finally, the front-end cluster does not own a DB at all: we assume that the request rate

directed to it is much lower than that directed to the core cluster; therefore, we prefer to

pay a penalty for the DB accesses generated by the front-end cluster rather than having

on it a new MySQL instance with its own replication strategy and related overhead.

4.3.5 MOSES Overheads

The runtime adaptation management introduces in MOSES different types of over-

heads, that may affect the response time of the composite service and can be classified

according to the MOSES macro-components:

• overhead due to the Plan macro-component (i.e., the Optimization Engine);

• overhead of the Execution macro-component (i.e., the Adaptation Manager) due

116

4.3. SaaS Layer

to the runtime binding of the task endpoints to concrete implementations;

• overhead due to the Monitor and Analyze macro-components.

For the first type of overhead, we must distinguish between per-request and per-flow

optimization strategies. In the first case, indeed, the Optimization Engine calculates

a new adaptation policy for each invocation to the application and the optimization

overhead must be totally summed to the overall execution time. In the second case,

instead, we observe that the Optimization Engine calculates a new adaptation policy

asynchronously with respect to the service execution flow, while incoming service re-

quests are served by the Adaptation Manager according to the previously calculated

policy. Only when the new adaptation policy is stored in the database, the Adaptation

Manager begins to use it. Hence, the Optimization Engine only interferes with those

requests that are being served while the new solution of the optimization problem has

to be stored. However, the time taken to calculate a new adaptation policy affects the

MOSES ability to promptly react to changes in the environmental conditions. The sec-

ond kind of overhead affects each request to the composite service as many times as

the number of invoke activities executed in the BPEL process. For every invocation

of an abstract task, the Adaptation Manager, which is stateless, retrieves the current

adaptation policy kept in the storage layer and, according to it, determines the coordi-

nation pattern to be used and the actual operation(s) to implement the abstract task. We

will measure in Section 5.3.1 the overhead introduced by the Adaptation Manager to

execute the runtime binding.

Finally, for the third kind of overhead, we should distinguish between Monitor

and Analyze macro-components impact. We point out that only Monitor affects the

overall service time perceived by a user, while Analyze does not affect it, since this

117

Chapter 4. Case Study: Design and Implementation of MOSES

function is executed asynchronously with respect to the business process. The most

time consuming and frequent monitoring activity is that performed with respect to the

SLA parameters offered by the operations. In this case, the monitoring overhead is

about one millisecond for each invoke activity, as it only involves inserting the oper-

ation response time in a table of the MOSES database: for each operation invocation,

MOSES gets the timestamp before and after the invocation itself, and then stores the

observed response time, together with a flag reporting whether the operation execu-

tion failed. Such values are asynchronously read by the QoS Monitor in the Analyze

macro-component, that could run on a different machine with respect to that assigned

to the BPEL execution not to interfere with the Execution macro-component. The QoS

Monitor is invoked at a fixed, configurable frequency and its task is to analyze stored

monitoring data in order to find out whether some SLA has been violated. It performs

two steps:

1. for each invoked operation, it computes statistics like average response time and

standard deviation;

2. it compares computed statistics with SLA parameters and, in case of violation, it

issues a call to the Optimization Engine.

118

5
Performance Evaluation

Contents

5.1 Testing Environment . 121

5.2 Workload Generator . 121

5.3 Performance Evaluation . 123

5.3.1 Runtime Binding Overhead Analysis 123

5.3.2 Performance of MOSES ESB Clustered 125

5.4 Effectiveness Evaluation . 126

5.4.1 Effectiveness of Per-Flow Adaptation Policy 126

5.4.2 Improving Reliability through Web Service Monitoring . . 136

5.4.3 Comparison of Per-Request and Per-Flow Approaches . . . 142

5.4.4 Comparison of Per-Request and Load-Aware Per-Request

Approaches . 151

In this chapter we will illustrate:

• the performance of MOSES with respect to the execution of a SOA application

with static binding and without adaptation features;

• the performance of a SOA application served by MOSES using different adapta-

tion policies.

For the former we will present two sets of experiments. The first aims at evidencing

the overhead introduced by the runtime binding, the second at showing the scalability

properties of MOSES.

119

Chapter 5. Performance Evaluation

For the latter we will describe four different set of experiments. In the first set of

experiments we will prove the effectiveness of the per-flow adaptation policy described

in Section 3.2.6.2 (see [23] for more details) without any reactive component. That

is, we suppose that the concrete services we use in this evaluation behave exactly as

they declare into their SLA. We will demonstrate how MOSES is able to serve several

flows of requests in compliance with the established SLAs. This set of experiments

also includes an experiment aimed at showing the computational cost of the per-flow

optimization algorithm.

The second set of experiments goes one step further: we relax the assumption of

concrete services behaving exactly like declared into their SLAs. We expect therefore

that some service could fail during the execution of the experiment. Such a failure could

lead in turn to many SOA application execution failures if not correctly addressed. For

this reason, we enable in this second set of experiments the reactive component WS-

Monitor (presented in Section 4.3.1), which is able to detect concrete services failures.

In the third set of experiments we compare the per-request and per-flow optimiza-

tion approaches described in Sections 3.2.6.1 (see [12] for more details) and 3.2.6.2,

respectively. We will show the scalability limits of the former: since it is completely

stateless, it does not consider the clients aggregate request rate. Therefore, the candi-

date operations could get overloaded and the SLAs established with the clients could

not be satisfied. On the contrary, since the per-flow approach is stateful, there is no

overload of concrete services because MOSES starts dropping new contract requests

from clients when the aggregate request rate in no more sustainable.

Finally, in the last set of experiments, we will compare the per-request optimization

policy with the load-aware per-request optimization policy described in Section 3.2.6.3

120

5.1. Testing Environment

(see [27] for more details), which keeps track of the load submitted to each concrete

service. This feature allows the policy to scale-out the multiple implementations of the

same functionality, therefore allowing a load-balancing of the concrete services.

5.1 Testing Environment

For every set of experiments, the testing environment consisted of 3 Intel Xeon quad-

core servers (2 Ghz/core) with 8 GB RAM each (nodes 1, 2, 3), and 1 KVM Virtual

Machine with 1 CPU and 1 GB RAM (node 4); a Gbit Ethernet connected all the

machines. The MOSES prototype has been deployed as follows: node 1 hosted all

the components of the Execute subsystem, node 2 the storage layer together with the

candidate concrete services; node 3 the components in the Monitor, Analyze and Plan

subsystems. Finally, node 4 hosted the workload generator. For every scenario we con-

sidered the SOA application defined by the workflow shown in Figure 5.1, composed

by 6 stateless tasks, while the number of concrete services implementing such tasks

has been varied according to the objective of each experiment. In every experiment,

unless otherwise specified, we generated the MOSES load through a load generator,

described in the following section.

5.2 Workload Generator

To issue requests to the composite service managed by MOSES and to mimic the be-

havior of users that establish SLAs before accessing the service, we have developed

a workload generator. It is based on an open system model, where users requesting a

given service class k ∈ K offered by MOSES arrive at mean user inter-arrival rate Λk.

Each class k user u is characterized by its SLA parameters and by the contract duration

121

Chapter 5. Performance Evaluation

Figure 5.1: Workflow of the composite service managed by MOSES

tku. If we are using the per-flow adaptation policy, each incoming user is subject to an

admission control, carried out by the SLA Manager as follows: the user arrival rate λk
u

is added to the aggregate flow Lk of class k requests currently served by MOSES, and

the so obtained new instance of the optimization model is solved by the Optimization

Engine. If a solution exists, the user is admitted and starts generating requests to the

composite service according to the rate λk
u until its contract ends. Otherwise, its SLA

request is rejected, because MOSES does not hold sufficient resources to manage it and

the already admitted users with their SLAs, and the user terminates. In case we are in-

stead using the per-request or load-aware per request adaptation policies, the previous

step is skipped. Differently from traditional Web workload, SOA workload character-

ization has been not deeply investigated up to now (some preliminary results can be

found in [78]). Therefore, in our workload model we assume exponential distributions

of parameters Λk and 1/tk for the user inter-arrival time and contract duration, respec-

tively. We also assume that the request inter-arrival rate and the operations service time

follow a Gaussian distribution, where mk and σk are the parameters of the former, and

rij and rij/12 are the parameters of the latter.

122

5.3. Performance Evaluation

The workload generator has been implemented in C language using the Pthreads

library. Multiple independent random number streams have been used for each stochas-

tic component of the workload model.

5.3 Performance Evaluation

5.3.1 Runtime Binding Overhead Analysis

We point out that this kind of overhead is present in every system that provides run-

time binding capabilities as MOSES does, irrespectively of the methodology used to

determine the adaptation policy.

We have performed a stress test of the MOSES prototype under an open system

model, where the requests to the composite service have been generated at an increas-

ing rate through the httperf tool [46]. The overall experiment consists of 120 runs,

each one lasting 300 seconds during which httperf generates requests to the com-

posite service at a constant rate. The adaptation policy is determined at the beginning

of each run and is then used for the entire duration of the run without being recalcu-

lated, because the goal of this experiment is to measure the additional overhead the

runtime binding adds to a plain BPEL engine. The main performance metric we col-

lected for each run is the mean response time, i.e., the time spent on average for the

entire request-response cycle.

For increasing values of the request arrival rate to the composite service, Figure 5.2

compares the response time achieved by MOSES, which executes the runtime binding

according to the adaptation directives, to that obtained by the standard GlassFish ESB

with Sun BPEL Engine, which only provides the composite service execution with

a static binding to a given operation. As expected, MOSES is able to sustain lower

123

Chapter 5. Performance Evaluation

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 10 20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
tim

e
(s

ec
)

Request arrival rate (req/sec)

GlassFish ESB with Sun BPEL Engine
MOSES

Figure 5.2: MOSES response time.

load levels than GlassFish ESB before reaching the saturation point, because of the

overhead introduced by the Adaptation Manager for each abstract task. Until the re-

quest arrival rate does not reach the MOSES saturation point (around 80 req/sec), the

MOSES response time is on average 74% higher than that provided by GlassFish ESB

(the percentage increase ranges from a minimum of 13% to a maximum of 127%).

In the experiments presented above, the composite service workflow corresponds to

that shown in Figure 5.1. In general, we observe that the runtime binding overhead

is related to the size of the managed composite service. In case of static binding,

the binding execution complexity depends only on the number of abstract tasks, i.e.,

O(m). In case of MOSES runtime binding, for each invoked abstract task Si the Adap-

tation Manager needs to retrieve from the database the specific records of the table that

store the current adaptation policy x
k
i . Since B-trees are commonly used in databases,

124

5.3. Performance Evaluation

the time complexity for searching the implementation sets is logarithmic in the num-

ber of the table entries. Therefore, the overall execution complexity in MOSES is

O(m log(m|K|maxi |ℑi|)), where the logarithmic factor is the overhead introduced

by the Adaptation Manager.

5.3.2 Performance of MOSES ESB Clustered

The experiments for the clustered version of MOSES ESB have been based on both

the open and closed system models. These sets of experiments were executed with

the same hardware already used for the non-clustered version, but we slightly changed

the component deployment schema. We used 5 machines, where nodes 1 and 2 hosted

a GlassFish instance, node 3 the data backend and the concrete services, node 4 the

load balancer, and node 5 either The Grinder [44] or httperf. GlassFish allows the

system administrator to choose between two load balancers: Sun Java Web Server or

Apache Web Server with a load balancing plugin. The first is a closed-source Web

server; therefore, we have chosen the latter being open-source. Nevertheless, we were

constrained to use a closed-source plugin in order to have an active load-balancing sub-

system, which allows to react at the load-balancer level to any failure of the connected

GlassFish instances, for example by re-issuing the request to an active instance.

Figure 5.3 shows the throughput improvement achieved by adding a Glass-Fish

instance to the MOSES cluster. The load balancer introduces a negligible overhead and

the overall performance is incremented by almost a factor of 2. Figure 5.4 compares

the clustered version of MOSES ESB with its non-clustered counterpart using the open

system model. Similarly to what obtained in the closed-model experiment, we can see

that for a low request load, the clustered version is a bit slower than the non-clustered

125

Chapter 5. Performance Evaluation

Figure 5.3: Throughput in the closed model.

one because of the load balancer component. However, this gap is rapidly filled starting

from the request rate equal to 50. After this point, the clustered version is clearly the

winner, achieving a response time that halves that of the non-clustered prototype.

5.4 Effectiveness Evaluation

5.4.1 Effectiveness of Per-Flow Adaptation Policy

In this section we illustrate the result of the adaptation directives issued by MOSES

under two different broker goals:

1. the maximization of the average reliability;

2. the minimization of the average cost.

In both the experiments, we also analyze the effectiveness of considering redundancy

patterns described in Section 3.2.2 for the task implementation. To this end, we com-

126

5.4. Effectiveness Evaluation

Figure 5.4: Response time in the open model.

pare the performance of MOSES when the redundancy patterns par or and alt are

enabled with that obtained with only the single pattern enabled. The results are sum-

marized in Table 5.3, which shows for each class the measured values of the SLA pa-

rameters for the with- and w/o-Redundancy approaches in the two scenarios, reporting

the mean values along with the 95% confidence interval.

For the sake of simplicity we assume that two candidate operations (with their

respective SLAs) have been identified for each task, except for task S2 for which four

operations have been identified. The respective SLAs differ in terms of cost, reliability,

and response time (being the latter measured in seconds). Table 5.1 summarizes the

SLA parameters 〈rij , cij , dij〉 for each operation opij . They have been chosen so that

for task Si, operation opi1 represents the best implementation, which at a higher cost

guarantees higher reliability and lower response time with respect to operation opij

for j ≥ 2, which costs less but has lower reliability and higher response time. For all

127

Chapter 5. Performance Evaluation

Oper. cij dij rij

op11 6 0.995 2

op12 3 0.99 4

op21 4.5 0.99 1

op22 4 0.99 2

op23 2 0.95 4

op24 1 0.95 5

op31 2 0.995 1

Oper. cij dij rij

op32 1.8 0.995 2

op41 1 0.995 0.5

op42 0.8 0.99 1

op51 2 0.99 2

op52 1.4 0.95 4

op61 0.5 0.99 1.8

op62 0.4 0.95 4

Table 5.1: Operation SLA parameters.

operations, Lij = 10 invocations per second.

On the user side, we assume a scenario with four classes of the composite service

managed by MOSES. The SLAs negotiated by the users are characterized by a wide

range of QoS requirements as listed in Table 5.2, with users in service class 1 having

the most stringent requirements, D1
min = 0.95 and R1

max = 7.1 and users in service

class 4 the least stringent requirements D4
min = 0.85 and R4

max = 18.1. The SLA

cost parameters for these classes have been set accordingly, where service class 1 has

the highest cost per request, C1 = 25, while service class 4 only C4 = 12. The

rightmost column of Table 5.2 reports the values for Lk, that is the aggregate rate of

class-k requests to the composite service. The usage profile of the different user service

classes is given by the following values for the expected number of service invocations:

V k
1 = V k

2 = V k
3 = 1.5, V k

4 = 1, k ∈ K; V k
5 = 0.7, V k

6 = 0.3, k ∈ {1, 3, 4};

V 2
5 = V 2

6 = 0.5. In other words, all classes have the same usage profile except for

users in service class 2, who invoke the tasks S5 and S6 with different intensity. The

values of the parameters that characterize the user workload model are tk = 100 and

(mk, σk) = (3, 1), ∀k ∈ K . For the experiments presented in the next Section, the

128

5.4. Effectiveness Evaluation

Class k Ck Dk
min Rk

max Lk

1 25 0.95 7.1 1.5

2 18 0.9 11.1 1

3 15 0.9 15.1 3

4 12 0.85 18.1 1

Table 5.2: Class SLA parameters.

changes detected by MOSES and that trigger the Optimization Engine include only

the arrival/departure of users, that cause a variation of the load and QoS requirements

addressed to the composite service.

5.4.1.1 Maximization of the Average Reliability

In the first experiment, the broker goal is to maximize the users’ reliability. In this

setting, the solution provided by the Optimization Engine is bounded by the maxi-

mum cost the broker is willing to pay for each user (which defines its profit margin).

Only for the w/o-Redundancy approach, the solution is also bounded by the single

operations available to implement the services. Both approaches succeed in respect-

ing the SLA values (see left side of Table 5.3). We observe that with respect to the

w/o-Redundancy approach, the with-Redundancy approach allows achieving a higher

level of satisfaction of the reliability parameter (the mean values for the four classes

range from 0.9983 to 0.9991) at a higher cost, whose mean value is saturated to the

maximum agreed in the SLA (see Table 5.2). This is particularly evident for class 1,

which requires the most stringent performance requirements at the highest cost (the

mean cost ranges from 21.149 for the w/o-Redundancy approach to 25.051 for the

with-Redundancy approach, being 25 the cost settled in the SLA). The improvement

of the reliability is achieved thanks to the additional patterns par or and alt exploited

129

Chapter 5. Performance Evaluation

 0.8
 0.82
 0.84
 0.86
 0.88

 0.9
 0.92
 0.94
 0.96
 0.98

 1

 0 30 60 90 120 150 180 210 240 270 300

R
el

ia
bi

lit
y

Time (min)

SLA k=1
w/o-Redundancy k=1

with-Redundancy k=1
 0.8

 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 0 30 60 90 120 150 180 210 240 270 300

R
el

ia
bi

lit
y

Time (min)

SLA k=2
w/o-Redundancy k=2

with-Redundancy k=2

 0.8
 0.82
 0.84
 0.86
 0.88

 0.9
 0.92
 0.94
 0.96
 0.98

 1

 0 30 60 90 120 150 180 210 240 270 300

R
el

ia
bi

lit
y

Time (min)

SLA k=3
w/o-Redundancy k=3

with-Redundancy k=3
 0.8

 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 0 30 60 90 120 150 180 210 240 270 300

R
el

ia
bi

lit
y

Time (min)

SLA k=4
w/o-Redundancy k=4

with-Redundancy k=4

Figure 5.5: (wd = 1): reliability for all classes over time.

by the with-Redundancy approach.

To compare in more detail the w/o- and with-Redundancy approaches with respect

to the reliability QoS parameter, Figure 5.5 shows how in the first scenario the reliabil-

ity of the composite service varies over time for the four classes. The horizontal line

is the agreed reliability, as reported in Table 5.2. We observe that the w/o-Redundancy

approach leads to some violations of the agreed reliability, while the with-Redundancy

approach allows the broker to offer always a reliability much better than that agreed.

130

5.4. Effectiveness Evaluation

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 30 60 90 120 150 180 210 240 270 300

R
es

po
ns

e
tim

e
(s

ec
)

Time (min)

k=1
k=2
k=3
k=4

(a) w/o-Redundancy.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 30 60 90 120 150 180 210 240 270 300

R
es

po
ns

e
tim

e
(s

ec
)

Time (min)

k=1
k=2
k=3
k=4

(b) with-Redundancy.

Figure 5.6: (wd = 1): response time for all classes over time.

The exploitation of the redundancy coordination patterns improves the reliability

but it can determine an increase in the response time when the alt pattern is selected.

Figure 5.6 shows how in the first scenario the response time of the composite service

varies over time for the four classes, being the horizontal lines the agreed response

times, as reported in Table 5.2. We observe that the with-Redundancy approach leads

to a response time that is slightly higher than that achieved by the w/o-Redundancy

approach. However, for classes from 2 to 4 the response time is always much lower

than that agreed, while for class 1, which requires the most stringent performance re-

quirements, it reaches the maximum agreed in the SLA.

5.4.1.2 Minimization of the Average Cost

In this experiment the broker goal is to minimize the expected cost (which in turn

maximizes the broker profit). In this setting, the broker has no incentive to guarantee

to the users more than the minimum required. As a result, the solution provided by

the Optimization Engine guarantees only the minimum required level of reliability (see

131

Chapter 5. Performance Evaluation

Scenario 1 (wd=1) - w/o-Redundancy

Ck Dk Rk

k = 1 21.149 ± 0.148 0.955 ± 0.0028 6.934 ± 0.037

k = 2 18.173 ± 0.155 0.9514 ± 0.0035 9.741 ± 0.075

k = 3 14.808 ± 0.072 0.9339 ± 0.0024 12.194 ± 0.058

k = 4 11.744 ± 0.093 0.9017 ± 0.0049 14.936 ± 0.122

Scenario 1 (wd=1) - with-Redundancy

Ck Dk Rk

k = 1 25.051 ± 0.184 0.9991 ± 0.0004 7.182 ± 0.045

k = 2 18.427 ± 0.137 0.9991 ± 0.0004 9.509 ± 0.068

k = 3 14.97 ± 0.074 0.9987 ± 0.0003 12.641 ± 0.064

k = 4 11.953 ± 0.087 0.9983 ± 0.0004 16.001 ± 0.121

Scenario 2 (wc=1) - w/o-Redundancy

Ck Dk Rk

k = 1 20.973 ± 0.172 0.9539 ± 0.0033 7.007 ± 0.044

k = 2 15.866 ± 0.117 0.934 ± 0.0036 10.899 ± 0.079

k = 3 12.255 ± 0.062 0.9032 ± 0.003 14.491 ± 0.076

k = 4 10.659 ± 0.09 0.8623 ± 0.0058 17.651 ± 0.135

Scenario 1 (wc=1) - with-Redundancy

Ck Dk Rk

k = 1 20.843 ± 0.172 0.9555 ± 0.0033 7.135 ± 0.051

k = 2 15.891 ± 0.141 0.9308 ± 0.0044 11.023 ± 0.1

k = 3 12.144 ± 0.053 0.9024 ± 0.0026 14.747 ± 0.066

k = 4 10.426 ± 0.091 0.8625 ± 0.0062 17.76 ± 0.146

Table 5.3: Measured values for SLA parameters (mean and 95% confidence interval).

right side of Table 5.3), with increasing costs for increasing reliability levels.

Let us now consider how in the second experiment the reliability of the composite

service varies over time, as shown in Figure 5.7. As expected, we find that the relia-

bility level achieved with the with-Redundancy approach is lower with respect to the

first experiment. The motivation is that, when the broker minimizes the cost of the

composite service, the solution of the optimization problem exploits less frequently the

redundancy coordination patterns par or and alt as they may cost more than the single

132

5.4. Effectiveness Evaluation

pattern.

 0.8
 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 0 30 60 90 120 150 180 210 240 270 300

R
el

ia
bi

lit
y

Time (min)

SLA k=1
w/o-Redundancy k=1

with-Redundancy k=1
 0.8

 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 0 30 60 90 120 150 180 210 240 270 300

R
el

ia
bi

lit
y

Time (min)

SLA k=2
w/o-Redundancy k=2

with-Redundancy k=2

 0.8
 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 0 30 60 90 120 150 180 210 240 270 300

R
el

ia
bi

lit
y

Time (min)

SLA k=3
w/o-Redundancy k=3

with-Redundancy k=3

 0.8
 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 0 30 60 90 120 150 180 210 240 270 300

R
el

ia
bi

lit
y

Time (min)

SLA k=4
w/o-Redundancy k=4

with-Redundancy k=4

Figure 5.7: (wc = 1): reliability for all classes over time.

5.4.1.3 Adaptation Policy Computational Cost

The per-flow optimization algorithm is implemented in MATLAB R©. To assess the

algorithm computational cost, we executed the algorithm on 2.00GHz Intel(R) Xeon(R)

CPU E5504 quad-core with 8GB RAM on randomly generated problem instances and

measured the solution execution time. The results are reported in Figures 5.8-5.9 for

different values of number of composite service tasks m, number of service classes

|K|, number of operations implementing a task ni, and different maximum degree of

133

Chapter 5. Performance Evaluation

 0.01

 0.1

 1

 10 20 30 40 50 60 70 80 90 100

O
pt

. P
ro

bl
em

 E
x.

 T
im

e
(s

ec
)

number of tasks (m)

no redundancy (p=0)

ni=10
ni=20
ni=50

(a)

 0.01

 0.1

 1

 10

 100

 10 20 30 40 50 60 70 80 90 100
O

pt
. P

ro
bl

em
 E

x.
 T

im
e

(s
ec

)

number of tasks (m)

par or redundancy (p=2)

ni=10
ni=20
ni=50

(b)

 0.01

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90 100

O
pt

. P
ro

bl
em

 E
x.

 T
im

e
(s

ec
)

number of tasks (m)

par or redundancy (p=3)

ni=10
ni=20
ni=50

(c)

Figure 5.8: Optimization problem execution time for different values of maximal re-

dundancy: (a) no redundancy (p = 0); (b) at most two concrete services using the

par or pattern (p = 2) and (c) at most three concrete services using the par or pattern

(p = 3).

redundancy a, p. For the sake of simplicity, and without loss of generality, in the

following we consider only the par or pattern as redundancy pattern for the analysis

of the computational complexity. Similar results apply to the alt pattern and to the

simultaneous use of both patterns.

In Figure 5.8 we plot the execution time vs the number of service tasks m for dif-

ferent level of par or redundancy: p = 0, no redundancy, i.e., service selection only,

p = 2, at most two concrete services using the par or pattern, and p = 3, at most three

concrete services using the par or pattern and for different numbers of available oper-

ations implementing a given task ni (ni = 10, 20 and 50). In these set of experiments,

we consider only one class of service, i.e., |K| = 1. From the plots, we can observe

that for fixed p and ni, the execution time grows almost linearly with the number of

tasks m (about one order of magnitude increase of the execution time for one order

of magnitude increase in the number of tasks). At closer inspection we verified this

holds true for execution times below one second; for larger values the execution time is

actually proportional to m3 which is consistent with the the fact that the problem size

134

5.4. Effectiveness Evaluation

n grows linearly with m (and |K|) and the per iteration cost of interior points methods

is O(n3). We will return to this later.

By comparing the different plots we note that, as expected, the execution time is

greatly affected by the absence/presence of redundancy patterns and the number of

available implementations: without redundancy (Figure 5.8(a)), the execution time is

always below 1 second; if we consider redundancy with the par or pattern with at most

two services (Figure 5.8(b)), the execution time increases up to few seconds for the

larger instances; by increasing the maximum number of redundant operations to three

(Figure 5.8(c)), the execution time grows significantly up to 5 minutes for large values

of ni. This behavior can be explained by observing that the use of the redundancy

patterns, coupled with a high number of concrete operations, yields a large number of

possible implementations and thus a large number of variables since n is proportional

to np
i : in the range of values considered, while the smallest problem instance has only

100 variables, the largest one grows up to 2,087,500. This has, of course, a significant

impact on the problem execution time.

In Figure 5.9 we vary the number of service classes |K| and study the impact of

|K| on execution time for different values of ni and maximal redundancy level p. The

number of tasks is again fixed to m = 50. Not surprisingly, the same remarks above on

the influence of m hold true for the number of service classes: for fixed p and ni, the

execution time grows almost linearly with |K| for smaller instances and proportionally

to |K|3 otherwise. We observe that this behaviour is consistent with the O(n3) itera-

tion cost and O(n
3
2 log n

ǫ
) worst case iteration complexity of interior points methods.

Indeed, in our experiments we observed a relatively low number of iterations for con-

vergence, which grew only slightly from about 10 to 100 (hence much less than the

135

Chapter 5. Performance Evaluation

O(n
3
2 log n

ǫ
), the worst iteration cost for the Mehrotra algorithm) which explains the

O(n3) overall cost.

 0.1

 1

 10

 100

 1 2 3 4 5 6 7 8

O
pt

. P
ro

bl
em

 E
x.

 T
im

e
(s

ec
)

number of service classes (|K|)

ni=20 no redundancy (p=0)
ni=50 no redundancy (p=0)

ni=20 par or redundancy (p=2)
ni=50 par or redundancy (p=2)

Figure 5.9: Optimization problem execution time as function of the number of service

classes.

We remark that since the optimization problem is solved asynchronously with re-

spect to MOSES operations, this large value does not directly impact on the broker

responsiveness to user requests; it only affects the time it takes to update the adaptation

policy. In other words, it only affects the interval of time during which, while a new

solution is being computed, the broker uses the old, sub-optimal policy for the ongoing

requests.

5.4.2 Improving Reliability through Web Service Monitoring

The experiments presented in the previous Section proved how MOSES is able to serve

a process with QoS constraints when every involved concrete service behaves as de-

clared within its SLA. However, in a real world scenario, we may expect SLA viola-

tions and therefore, in order not to propagate the violations to MOSES end-users, we

have to detect them and to properly react. In this section we illustrate how MOSES

136

5.4. Effectiveness Evaluation

is able to adapt its behavior with respect to the churn of the services it can use to of-

fer the SOA application. In all the following experiments, the utility function of the

service broker is to maximize the reliability of the SOA application according to the

per-flow optimization problem. The first experiment simulates an ideal scenario, where

the concrete services behave exactly as declared into their SLAs with the service bro-

ker. Therefore, it provides a baseline performance result against which we compare

the results obtained in the two other experiments. In this first experiment, only the

components of the Execute subsystem are involved, because there is no actual need to

monitor and/or analyze the environment. Therefore, the same service selection policy

holds unchanged for the whole experiment.

In the second experiment we introduce some churn with respect to the baseline

experiment, by letting concrete services gracefully fail and recover over time. The fail-

ure/recovery model follows a two-state discrete Markov chain, with stationary proba-

bility distribution prunning, pfailed=0.95, 0.05, in which state changes can occur on av-

erage every 60 seconds. The gracefulness is given by the fact that the concrete services

notify their state to MOSES, therefore allowing it to compute a new service selection

policy including (excluding) the restored (failed) concrete services. This second exper-

iment employs the components of the Plan and Execute phases of the MAPE-K loop.

In particular, whenever a concrete service fails or recovers, the Optimization Engine

solves a new instance of the service selection optimization problem.

In the third experiment we assume a real world scenario, where concrete services

do not notify their clients (i.e., MOSES) of a failure, but we disable the Monitor phase

of the control loop. From the MAPE-K point of view, we can consider that the compo-

nents in the Plan and Execute are enabled, although the Plan phase is never executed

137

Chapter 5. Performance Evaluation

because it is not triggered by the Analyze step. In other words, as in the first experi-

ment, the same service selection policy holds for the whole experiment.

Finally, in the fourth experiment, we prove the effectiveness of the MAPE-K loop

by activating the monitoring of the candidate concrete services performed by the WS

Monitor component. The latter is configured to probe all the known concrete services

every 5 seconds to find out which services are currently available. Whenever the WS

Monitor finds that some service changed its state (going from running to failed or vice-

versa), it sends a trigger to the Optimization Engine, which in turn computes the new

service selection policy that will be applied by the Execute subsystem. In each set,

every experiment lasted 30 minutes and has been repeated twice, using a client request

rate equal to 5 and 10 requests/seconds (in the following, referred to as low and high

request rates) to show the behavioral differences that arise when MOSES is subject to

different loads.

We assume that 10 candidate operations (with their respective SLAs) have been

identified for abstract tasks S1 and S3, while 8 candidate operations have been identi-

fied for any other task. Their respective SLA parameters, shown in Table 5.4, differ in

terms of cost cij , reliability dij , and response time rij (in sec). We also suppose that

MOSES offers to its clients the SLA Rmax, Dmin, Cmax=7 sec, 0.95, 15. For simplic-

ity, we consider only a single service class. The usage profile of this service classes is

given by the following values for the expected number of service invocations: V1 = V2

= V3 = 1.5, V4 = 1, V5 = V6 = 0.5.

5.4.2.1 Baseline Scenario

We first present the results of the baseline scenario. The Baseline curves in Figures 5.10

and 5.11 show how the reliability of the SOA application varies over time, when the

138

5.4. Effectiveness Evaluation

Oper. cij dij rij

op1[1,6] 6 0.995 2

op1[2,7] 6 0.99 1.8

op1[3,8] 6.5 0.99 2

op1[4,9] 4.5 0.995 3

op1[5,10] 3 0.99 4

op2[1,5] 2 0.995 1

op2[2,6] 1.8 0.995 2

op2[3,7] 1.8 0.99 1.8

op2[4,8] 1 0.99 3

op3[1,6] 5 0.995 1

op3[2,7] 4.5 0.99 1

op3[3,8] 4 0.99 2

op3[4,9] 2 0.95 4

op3[5,10] 1 0.95 5

Oper. cij dij rij

op4[1,5] 1 0.995 0.5

op4[2,6] 0.8 0.99 0.5

op4[3,7] 0.8 0.995 1

op4[4,8] 0.6 0.95 1

op5[1,5] 3 0.995 1

op5[2,6] 2 0.99 2

op5[3,7] 1.5 0.99 3

op5[4,8] 1 0.95 4

op6[1,5] 1 0.99 1.8

op6[2,6] 0.8 0.995 2

op6[3,7] 0.6 0.99 3

op6[4,8] 0.4 0.95 4

Table 5.4: Operation SLA parameters.

SLA Average reliability 95% confidence interval

Low request rate 0.95 0.9664 0.0074

High request rate 0.95 0.9646 0.0054

Table 5.5: Average reliability and 95% confidence interval for the baseline experiment

QoS attribute is measured at the client-side by aggregating the values every 20 seconds.

The horizontal lines represent the SLA stipulated with the clients and the average

reliability perceived by the clients over all the experiment duration. We can observe

that the reliability fluctuates over time; most of the time it stays well above the SLA

value, but occasionally it attains lower values. Nevertheless, as also shown in Table 5.5,

where we report the average reliability of the baseline experiment along with the 95%

confidence interval, MOSES is able to fulfill the reliability level agreed in the SLA.

139

Chapter 5. Performance Evaluation

Figure 5.10: Baseline reliability over time under low request rate

SLA Average reliability 95% confidence interval

Low request rate 0.95 0.9692 0.0071

High request rate 0.95 0.9659 0.0053

Table 5.6: Average reliability and 95% confidence interval for experiment with graceful

failures

5.4.2.2 Graceful Failure and Join of Concrete Services

In the second set of experiments we let the service providers gracefully fail, thus sim-

ulating, for instance, service programmed downtimes. The results in Figures 5.12 and

5.13 show how the reliability of the SOA application fluctuates over time; however, the

average reliability is well above the agreed SLA. The experimental values in Table 5.6

show that the average reliability, as well as the 95% confidence interval under the sec-

ond scenario are perfectly comparable to those of the baseline experiment. Therefore,

we can conclude that graceful leaves and joins do not affect the reliability performance

since MOSES is able to adapt to the changed environment by re-computing the service

selection policy.

140

5.4. Effectiveness Evaluation

Figure 5.11: Baseline reliability over time under high request rate

5.4.2.3 Undetected Failure/Join of Web Services

Figures 5.14 and 5.15 show how the reliability of the SOA application varies over time

when the concrete service providers exhibit the same churn rate of the second experi-

ment, but without signaling their state to MOSES. The reliability levels fall down and

the SLA stipulated by MOSES with its clients is no longer fulfilled. This experiment

demonstrates that, if there are changes in the execution environment and no adapta-

tion actions are taken to address these changes, the system is not able to satisfy the

required QoS. It also points out that reliability levels are higher when the request rate

is higher. The motivation is due to the fact that the service selection policy binds each

abstract task to a small subset of concrete services when the incoming request rate is

low. On the other hand, with a higher request rate, the request load on any abstract task

is balanced over a larger set of concrete services, depending on their capacity. Since

we set the capacity of every concrete service to 10 req/sec, it is likely to have a single

concrete service selected for any abstract task when the incoming request rate is equal

to 5 req/sec, while it is likely to have two or more concrete services selected for any

141

Chapter 5. Performance Evaluation

Figure 5.12: Reliability over time when services are subject to graceful failures under

low request rate

abstract task when the incoming request rate is 10 req/sec.

5.4.2.4 Detection of Web Service Failures to Improve Reliability

The purpose of the last experiment is to show the improvement achieved thanks to

the WS Monitor component. Figures 5.16 and 5.17 show how the reliability of the

SOA application varies over time when the service providers exhibit the same churn

rate of the third experiment without signaling their state to MOSES, but now with the

WS Monitor enabled on MOSES. As shown in Table 5.7, MOSES does not succeed in

fulfilling the SLA stipulated with its clients, but the provided reliability has a significant

improvement with respect to the results shown in Figures 5.14 and 5.15, when the WS

Monitor was disabled.

5.4.3 Comparison of Per-Request and Per-Flow Approaches

In the previous Sections we illustrated several experiments aimed at showing the effec-

tiveness of the per-flow optimization policy. However, thanks to its modular architec-

142

5.4. Effectiveness Evaluation

Figure 5.13: Reliability over time when services are subject to graceful failures under

high request rate

SLA Average reliability 95% confidence interval

Low request rate without WS Monitor 0.95 0.7151 0.0187

Low request rate with WS Monitor 0.95 0.9101 0.0118

High request rate without WS Monitor 0.95 0.7798 0.0122

High request rate with WS Monitor 0.95 0.8974 0.0089

Table 5.7: Comparison of the average reliability and 95% confidence interval for the

experiments with and without the WS Monitor

ture, MOSES can implement different optimization strategies. In this section we will

show the performance of the per-request optimization algorithm illustrated in Section

3.2.6.1, in comparison with the per-flow one described in Section 3.2.6.2. What we

will point out are the scalability limits of the per-request approach, from two differ-

ent point of views: (i) the computational cost to calculate an optimal solution and (ii)

the effectiveness of the optimal solution at runtime with heavy load. We will start by

comparing the execution times of the per-flow optimization algorithm with the ones

provided by [6] on the per-request. Then we will compare the response time of a SOA

application served by MOSES using both the per-request and per-flow optimization

143

Chapter 5. Performance Evaluation

Figure 5.14: Reliability over time when services are subject to failures, without WS

Monitor under low request rate

strategies.

We assume that 4 candidate operations (with their respective SLAs) have been iden-

tified for each task, except for tasks S1 and S3 for which 5 implementations have been

identified. The respective SLA parameters, shown in Table 5.8(left), differ in terms

of cost cij , reliability dij , and response time rij (in sec). The candidate operations

are simple stubs; however, their non-functional behavior conforms to the guaranteed

levels expressed in their SLA. The perceived response time is obtained by modeling

each service as a M/G/1/PS queue implemented inside the Web service deployed in the

Apache Tomcat container. For all concrete services the load threshold Lij is equal to

10 req/sec and the response time knee is beyond it.

On the user side, we assume a scenario with four classes of the composite service

managed by MOSES. The SLAs negotiated by the users are characterized by a range

of QoS requirements as listed in Table 5.8(right), with users in class 1 having the most

stringent performance requirements (being willing to pay the highest cost) and users in

class 4 the least stringent ones (being willing to save money). The usage profile of the

144

5.4. Effectiveness Evaluation

Figure 5.15: Reliability over time when services are subject to failures, without WS

Monitor under high request rate

service classes is given by the following values for the maximum number of service

invocations: V k
α,1 = V k

α,2 = V k
α,3 = 3, V k

α,4 = 1, k ∈ K; V k
α,5 = 0.7, V k

α,6 = 0.3,

k ∈ {1, 3, 4}; V 2
α,5 = V 2

α,6 = 0.5, being α = 0.96 the 96-percentile of the distribution

of reiterating the loop.

5.4.3.1 Per-Request and Per-Flow Optimization Time Comparison

We compare the per-flow approach with the per-request approaches presented in [6,12]

which are among the most representative contributions in the literature. The data,

also shown in Table 5.9, are taken from [11] and have been obtained on an equiv-

alent machine, according to CINT and SpecCPU2006 benchmarks (lines (m,ni) =

(100, 10)− (10000, 10) report values from [12], while the rest report values from [6]).

The results show that MOSES per-flow adaptation policy has execution times compa-

rable to those in [12] and about one order of magnitude larger than those in [6]. We

can argue that in a lightly loaded and/or small scale system, it may be effective to ad-

dress the adaptation to each single request, independently of other concurrent requests,

145

Chapter 5. Performance Evaluation

Figure 5.16: Reliability over time when services are subject to failures, with WS Mon-

itor under low request rate

to customize the system with respect to that single request. However, in a large scale

system subject to a quite sustained flow of requests, performing a per-request rather

than a per-flow adaptation could cause an excessive computational load. In this kind

of scenarios, per-flow adaptation is likely to be more effective, even if it loses the po-

tentially finer customization features of per-request adaptation. Moreover, per-request

adaptation could also incur in stability and management problems, since the “local”

adaptation actions could conflict with adaptation actions independently determined for

other concurrent requests.

5.4.3.2 Per-Request and Per-Flow Execution Time Comparison

To compare the per-flow and per-request service selection approaches, we consider two

different workload scenarios.

In the first scenario, we consider each service class per time (i.e., in a specific

experiment the requests pertain only to one of the service classes in Table 5.8(right))

and we stress the MOSES system by progressively increasing the request rate. To this

146

5.4. Effectiveness Evaluation

Figure 5.17: Reliability over time when services are subject to failures, with WS Mon-

itor under high request rate

end, we set for all the contracts a fixed duration equal to 100 sec and Lk
u=1 req/sec,

while the contract interarrival rate ranges from 0.01 to 0.3 contracts/sec for each step

of the overall experiment: this setting corresponds to an overall request arrival rate Lk

from 1 to 30 req/sec. Each single step (corresponding to a given request rate) lasts

15 minutes. At each step, to avoid overwhelming a just started GlassFish instance,

which has a significant setup time, the workload generator does not immediately issue

requests at the required request rate but within a ramp (set to 100 sec), during which

the request rate is linearly incremented until it reaches the desired value.

We focus our analysis on the most sensitive SLA parameter to the workload in-

crease, i.e., the response time, obtained by the requests of class 1, which has the most

stringent SLA requirements. Figure 5.18a shows the response time of the composite

service achieved by the two alternative approaches for an increasing request rate and

with the MOSES monitoring modules disabled (except the SLA Manager). We observe

that while the per-flow response time remains well below the agreed SLA value (equal

to 14 sec), for the per-request approach (denoted by perReq w/o-QoSM) the response

147

Chapter 5. Performance Evaluation

op rij dij cij

op11 2 0.995 6

op12 1.8 0.99 6

op13 2 0.99 5.5

op14 3 0.995 4.5

op15 4 0.99 3

op21 1 0.995 2

op22 2 0.995 1.8

op23 1.8 0.99 1.8

op24 3 0.99 1

op31 1 0.995 5

op32 1 0.99 4.5

op33 2 0.99 4

op34 4 0.95 2

op35 5 0.95 1

op rij dij cij

op41 0.5 0.995 1

op42 0.5 0.99 0.8

op43 1 0.995 0.8

op44 1 0.95 0.6

op51 1 0.995 3

op52 2 0.99 2

op53 3 0.99 1.5

op54 4 0.95 1

op61 1.8 0.99 1

op62 2 0.995 0.8

op63 3 0.99 0.6

op64 4 0.95 0.4

Class k Rk
max Dk

min Ck
max

1 14 0.9 39

2 17 0.88 35

3 19 0.86 32

4 22 0.84 29

Table 5.8: SLA parameters for candidate operations (top) and service classes (bottom)

time increases exponentially approximately at the candidate operations’ load threshold

(set to 10 req/sec). In a lightly loaded system, the per-request approach is effective to

address the adaptation to each single request. However, when the workload increases,

it incurs in stability and management problems, since it takes adaptation actions just

for a single request, independently of the other concurrent requests. Therefore, the

candidate operations identified as the best ones by the per-request deterministic policy

are overwhelmed by the requests. On the other hand, the probabilistic per-flow policy

chooses the best implementations only until their load threshold is not exceeded; at that

148

5.4. Effectiveness Evaluation

Table 5.9: Performance comparison with the per-flow approach of [11] and per-request

approaches of [6, 12] (time measured in seconds).

m ni MOSES per-flow [11] per-request [6, 12]

100 10 0.11 8.10 0.17

100 20 0.21 9.54 0.63

100 25 0.27 9.98 0.58

100 50 0.58 14.30 0.29

1000 10 1.40 19.60 2.10

1000 20 3.03 144.30 5.38

1000 25 4.07 149.60 4.54

1000 50 8.64 451.30 19.88

5000 10 11.20 444.90 4.54

5000 20 24.55 1000.05 35.06

10000 10 15.64 970.15 113.92

10 100 0.13 7.90 0.027

10 200 0.25 9.61 0.037

10 300 0.44 9.83 0.053

10 400 0.62 10.80 0.043

10 500 0.83 13.98 0.067

10 600 0.92 15.00 0.121

10 700 1.10 17.50 0.097

10 800 1.45 17.60 0.0186

10 900 1.68 19.80 0.112

10 1000 1.87 20.50 0.170

20 500 1.78 19.30 0.189

40 500 4.47 141.40 0.432

50 500 7.54 147.30 0.560

100 500 19.22 448.70 1.518

149

Chapter 5. Performance Evaluation

point, it distributes the requests among a subset of (possibly all) the available concrete

services. This behavior is evident in Figure 5.18a, where the response time increases

from around 6 to 7 sec at the candidate operations’ load threshold. The stable behavior

of the per-flow approach is counterbalanced by an amount of dropped SLA contracts;

the rejection percentage ranges from 7% (for 12 req/sec) to 59% (for 30 req/sec).

To improve the performance of the per-request approach, we activate the QoS Mon-

itor, so that after a SLA violation the agreed values of the candidate operations’ param-

eters are updated in the system model with the new measured values and the triggered

Optimization Engine calculates a new solution of the per-request problem. The SLA

violation is detected when the data monitored during one time window exceed by 20%

the SLA agreed by MOSES with the service providers. We can see in Figure 5.18b

that the monitoring activity and the subsequent reaction improve the per-request be-

havior: when the best implementation for a given task becomes overloaded, the re-

quests are shifted towards another concrete service determined by the new adaptation

policy. However, the improvement is achieved at a cost of having a very reactive sys-

tem, characterized by a quite frequent monitoring activity, because the monitored data

are analyzed either to 2 or even 0.7 sec, denoted by perReq withQoSM 2s and per-

Req withQoSM 0.7s in Figure 5.18b.

Let us now consider how in the first scenario the SLA is satisfied: Figure 5.18c

shows the percentage of violations for the response time agreed with the users. While

under the per-flow approach only few requests suffer from a SLA violation, the percent-

age dramatically increases for the per-request service selection, even with a frequent

monitoring activity.

In the second scenario we consider a mixed workload in which MOSES offers si-

150

5.4. Effectiveness Evaluation

multaneously the composite service to all the service classes in Table 5.8(right). We

assume exponential distributions of parameters λk and 1/tk for the contract inter-

arrival time and duration and a Gaussian distribution of parameters (µk, σk) for the

request inter-arrival Lk
u. Each user u generates its requests to the composite service

according to an exponential distribution with parameter Lk
u. The values of the work-

load model parameters are dk = 100 and (µk, σk) = (3, 1) ∀k; λk, tk, and µk val-

ues have been set so that for Little’s formula Lk = λkµktk and therefore on average

L = (Lk) = (1.5, 1, 3, 1). We analyze how the response time of the composite service

varies over time for the most demanding class 1, as shown in Figures 5.19a-5.19c (the

horizontal line is the agreed response time, as reported in Table 5.8). Although in the

second scenario the system is only subject to a moderate workload intensity (the av-

erage overall request rate is 6.37 req/sec, being 20.4 req/sec the peak and 4.29 req/sec

the standard deviation), we find that the response time level achieved by the per-flow

approach has a much more stable trend and does not suffer from the SLA violations of

the per-request service selection. The percentage of dropped contracts by the per-flow

approach is 12%.

5.4.4 Comparison of Per-Request and Load-Aware Per-Request Ap-

proaches

In the previous Section we proved the scalability limits of the per-request optimization

approach. These limits are overcome by the per-flow approach which cannot, however,

customize every single client request as the per-request optimization approach does. In

this section, we present the experimental analysis we have conducted using the MOSES

prototype to demonstrate:

• the effectiveness of the proposed load-aware per-request approach with respect

151

Chapter 5. Performance Evaluation

to the traditional per-request approach proposed by Ardagna and Pernici in [12];

• the effectiveness of the adaptive Cusum algorithm (see Section 3.4 for more de-

tails), and in turn of the whole theoretical framework for a self-adaptive SOS.

In this set of experiments, we assume that 4 candidate operations (with their re-

spective SLAs) have been identified for each task, except for tasks S1 and S3 for which

5 implementations have been identified. The respective SLA parameters, shown in Ta-

ble 5.10, differ in terms of cost cij , reliability dij , and response time rij (measured in

sec). In the experiments, we used this baseline set composed of 26 concrete services,

as well as an enlarged set of concrete services where we doubled the baseline set (in

the following, we refer to the latter as 2x baseline).

op rij dij cij

op11 2 0.995 6

op12 1.8 0.99 6

op13 2 0.99 5.5

op14 3 0.995 4.5

op15 4 0.99 3

op21 1 0.995 2

op22 2 0.995 1.8

op23 1.8 0.99 1.8

op24 3 0.99 1

op31 1 0.995 5

op32 1 0.99 4.5

op33 2 0.99 4

op34 4 0.95 2

op35 5 0.95 1

op rij dij cij

op41 0.5 0.995 1

op42 0.5 0.99 0.8

op43 1 0.995 0.8

op44 1 0.95 0.6

op51 1 0.995 3

op52 2 0.99 2

op53 3 0.99 1.5

op54 4 0.95 1

op61 1.8 0.99 1

op62 2 0.995 0.8

op63 3 0.99 0.6

op64 4 0.95 0.4

Table 5.10: SLA parameters for candidate operations

The concrete services are simple stubs, without internal logic; however, their non-

functional behavior conforms to the guaranteed levels expressed in their SLA. The per-

152

5.4. Effectiveness Evaluation

Service class k Rk
max Rk

min Ck
max

1 16 0.88 55

2 18 0.85 50

3 20 0.82 45

4 22 0.79 40

Table 5.11: SLA parameters for service classes

ceived response time is obtained by modeling each concrete service as a M/D/m/PS

queue implemented inside the Web service deployed in a Tomcat container. TheM/D/m/PS

model is parameterized in such a way to have an average CPU usage between 65% and

70% when the request rate is equal to 10 req/sec. Table 5.11 shows the SLAs offered

by MOSES to the composite service users according to different service classes.

We conducted five experiments to evaluate the service selection policies under dif-

ferent scenarios and loads as well as the monitoring and analysis components. The

first experiment was performed to point out the scalability problems of the traditional

per-request approach; the second was carried out to compare the performance of the

traditional per-request policy versus the load-aware one; the third was performed to

analyze the scalability of the load-aware per-request policy. In the first three experi-

ments, each test is composed by several runs lasting 15 minutes each, during which

the workload generator generates requests corresponding to the service class 2 (see the

k=2 row in Table 5.11 for its SLA) at a constant rate. The request rate is then increased

run by run until the system keeps stable. The fourth experiment was performed in order

to prove the effectiveness of our load-aware policy. Specifically, for every service class

we generated a constant request rate for the first half of the experiment, then increas-

ing the request rate only for class 2 in the second half on the experiment. Finally, the

153

Chapter 5. Performance Evaluation

last experiment was performed to demonstrate the effectiveness of the adaptive Cusum

algorithm, when some services do not behave according to the stipulated SLAs. As in

the first three experiments, each test is composed by several runs lasting 15 minutes

each. The request rate submitted to MOSES is the same in each test, but an external

load, increased run by run, is submitted to op11.

The main performance metric we measured is the response time of the composite

service. We also measured the CPU utilization of the candidate operations to analyze

the different effects of the request load distribution among the candidate operations

achieved by the traditional and the load-aware per-request policies.

5.4.4.1 Per-Request Approach

In this first experiment, we ran three load tests on MOSES using the traditional per-

request policy in [12]. In the first test, we used the baseline set of concrete services

without instrumenting any of the MOSES modules in the Monitor and Analyze macro-

components. In the second test, we used the previous configuration, but we exploited

the 2x baseline set of candidate operations. Finally, in the last test we used the 2x

baseline set of candidate operations and we added the support of the QoS Monitor,

in order to detect SLA violations of the response time of the concrete services and,

in positive case, to determine a new service selection policy that exploits different

candidate operations.

Figure 5.20 shows the average response time perceived by the users of the compos-

ite service for different request rates submitted to MOSES. We observe that for all the

three tests the response time is nearly constant until the request rate reaches 7 req/sec.

From this point on, the response time of both the tests without QoS Monitor ([12], no

QoS, baseline and [12], no QoS, 2x baseline curves), regardless of the used candidate

154

5.4. Effectiveness Evaluation

operations set, rapidly grows because the per-request service selection does not exploit

the presence of different service implementations, always using the same service iden-

tified as the best one. In the test with the QoS Monitor enabled ([12], QoS, 2x baseline

curve), the response times of the candidate operations are collected, their average cal-

culated every 2 sec. and analyzed; if the QoS Monitor finds out that the currently used

operations do not have an adequate performance (i.e., their are violating the response

time contractualized in the SLA), it triggers the Optimization Engine to compute a new

optimal policy x, using the actual response times of the candidate operations instead

of those declared into the SLAs. As a result, the currently used overloaded operations

will not be used in the near future, but they will be candidate for re-usage when the new

selected operations will in their turn become overloaded. However, the introduction of

the QoS Monitor provides only a modest performance improvement; even if the QoS

Monitor invocation frequency is relatively high (every 2 sec.), the reaction is not quick

enough to address higher request rates. We can conclude that the traditional per-request

approach is not able to scale out the available services implementations, and thus it is

unable to sustain higher request rates than those sustainable by the bottleneck candidate

operations.

5.4.4.2 Comparison between Per-Request and Load-Aware Per-Request Approaches

The second experiment compares the traditional per-request and the load-aware per-

request selection policies. This experiment uses the baseline set of candidate opera-

tions and does not involve any Monitor or Analyze MOSES component. Figure 5.21

compares the average response time according to the request rate submitted to MOSES

when using the two different policies. We observe that the response times achieved by

the two policies perfectly overlap until the request rate reaches the saturation point of

155

Chapter 5. Performance Evaluation

the traditional per-request policy. From this point on, the former ([12], no QoS, base-

line curve) is not able to exploit the available implementations, while the load-aware

policy (no QoS, baseline curve) performs better, scaling out the available candidate

operations. Therefore, the load-aware approach is able to sustain higher request rates

than the traditional per-request, given that there are available candidate operations to

be exploited.

To show the load balancing effectiveness, we monitored the CPU usage of the can-

didate operations during the experiments. Since every concrete service is implemented

as a M/D/m/PS queue, the CPU usage has been computed with the formula
λijTij

nCPUij
,

where λij is the request rate directed to the j-th implementation of Si (that is, opij),

Tij its service time, and nCPUij the number of CPUs available to that service imple-

mentation.

Figure 5.22 shows the CPU usage of op13, which is the single operation used by

the traditional per-request optimization approach to implement S1. We can see that

the load increases almost linearly until it reaches the CPU usage equal to 85%; at that

value, the system becomes unstable (see Figure 5.21).

Figure 5.23 shows the CPU usage of the candidate operations used by the load-

aware policy to implement the abstract task S1. Differently from the traditional strat-

egy, with the load-aware policy multiple operations can be used to implement the same

task. In particular, when the request rate is low (from 1 req/sec to 6 req/sec), there is

no need to use multiple operations (we recall that each candidate operations is mod-

eled so to have an average CPU usage between 65% and 70% when the request rate

is equal to 10 req/sec). Therefore, for the low request rate only op13 is used, like in

the traditional per-request policy. When the request rate increases from 7 req/sec to 9

156

5.4. Effectiveness Evaluation

req/sec, the operations op13 and op11 are both used. From 10 req/sec on, op15 is also

used to implement S1, therefore the load is balanced across three operations. We ob-

serve that the cumulative load does not increase monotonically, because the candidate

operations model different underlying hardware: op11 and op15 have 29 CPUs each,

while op13 has 25 CPUs. Therefore, when more load is directed to an operation with a

larger capacity, the overall load decreases.

5.4.4.3 Scalability of Load-Aware Per-Request Approach

We carried out the third experiment to show the scalability capabilities of the load-

aware per-request policy. In this experiment we used both the baseline and the 2x

baseline sets of concrete services, without deploying the QoS Monitor module. Fig-

ure 5.24 shows the scaling capabilities of the load-aware per-request service selection:

until one operation at a time can sustain the load (i.e., around 7 req/sec), it does not

matter to have a larger number of available implementations; therefore, the results with

the baseline set of concrete implementations resemble those with the 2x baseline set.

However, at higher request rates, the availability of a larger set of candidate services

provides better response times and allows to manage the request rates without incurring

in overloading, because the load can be better shared among the available implementa-

tions.

5.4.4.4 Effectiveness of Load-Aware Per-Request Approach

We conducted the fourth experiment to study the effectiveness of the proposed load-

aware per-request approach. We simulated several concurrent users characterized by

different service classes. The goal is to prove the effectiveness of the MOSES adapta-

tion under the load-aware per-request policy despite variations in the submitted work-

157

Chapter 5. Performance Evaluation

Service class Light load Heavy load

1 5.514 sec 6.254 sec

2 5.485 sec 6.350 sec

3 5.509 sec 6.357 sec

4 5.794 sec 8.112 sec

Table 5.12: Average response times of the load-aware per-request policy for all service

classes under light and heavy loads

load. To this end, each service class submits requests at a constant rate equal to 1

req/sec, except class 2 for which we increased the request rate from 1 to 10 req/sec in

the second half of the test. Therefore, in the first half of the experiment, the aggregate

workload is equal to 4 req/sec, which can be also easily managed by the traditional

per-request policy; on the other hand, in the second half of the experiment we submit-

ted to the SOS an aggregated workload equal to 13 req/sec, which cannot be sustained

by the traditional per-request policy (see the candidate operations model described in

Section 5.4.4). The overall experiment lasted 1 hour.

Figures 5.25a-5.25d show that the perceived response times are far below the re-

sponse times agreed in the SLAs and represented by the horizontal lines; this can be

explained by observing that the average behavior is very different from the worst case

considered in the formulation of the optimization policy. This latter issue could be ad-

dressed by considering SLAs where the response time constraint is specified in terms

of bounds on the percentile.

Table 5.12 shows the average response times perceived by the users when issuing

requests either to a lightly loaded or to an heavy loaded system according to the service

class. When the system is subject to a light load, there are not appreciable differences

among the service classes. On the other hand, when the load increases, the average

158

5.4. Effectiveness Evaluation

response time perceived by class 4 (which has the least stringent SLA) suffers more

the load increase. The motivation is that class 4 requests can only exploit a limited

number of candidate operations, because of the lowest maximum cost in the SLA (see

Table 5.11); therefore, to satisfy the cost constraint they cannot be distributed among

all the available candidate operations.

5.4.4.5 Effectiveness of the Adaptive Cusum Algorithm

Finally, in the fifth and last experiment we demonstrate the effectiveness of the adap-

tive Cusum algorithm. In the first test, we used the baseline set of concrete services

without instrumenting any of the MOSES modules in the Monitor and Analyze macro-

components. Conversely, in the second test we added the support of the QoS Monitor,

in order to detect SLA violations of the response time of the candidate operations and,

in positive case, to determine a new service selection policy that exploits different

concrete services implementations. Both the test were conducted submitting requests

corresponding to the service class 2 at a constant rate equal to 4 req/sec. We also

submitted an external load to the operation op11 in order to overload it. The external

load has been incremented by one unit every 15 minutes, starting from 1 req/sec. Fig-

ure 5.26 shows the result of the first test without the QoS Monitor. We can see that the

response time of the composite service keeps constant until the external request rate

is less than 7 req/sec. After this threshold, the operation op11 begins to be overloaded

and therefore the response time of the composite service sharply increases. The SOS

performance changes significantly when the QoS Monitor with the adaptive Cusum

algorithm is turned on, as shown in Figure 5.27. The response time of the composite

service is constant, regardless of the external request rate submitted to op11.

159

Chapter 5. Performance Evaluation

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

R
es

po
ns

e
tim

e
(s

ec
)

Request rate (req/sec)

perReq_w/o-QoSM
perFlow

(a) Per-flow vs per-request approach

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
es

po
ns

e
tim

e
(s

ec
)

Request rate (req/sec)

perReq_w/o-QoSM
perReq_with-QoSM_2s

perReq_with-QoSM_0.7s

(b) Per-request approach with and without QoS Moni-

tor

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SL
A

 v
io

la
tio

n
%

 f
or

 r
es

po
ns

e
tim

e

Request rate (req/sec)

perReq_w/o-QoSM
perReq_with-QoSM_2s

perReq_with-QoSM_0.7s
perFlow

(c) Percentage of SLA violation

Figure 5.18: Scenario 1: response time of the composite service for class 1

160

5.4. Effectiveness Evaluation

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 30 60 90 120 150 180 210 240 270 300

R
es

po
ns

e
tim

e
(s

ec
)

Time (min)

perFlow

(a) Per-flow approach

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 30 60 90 120 150 180 210 240 270 300

R
es

po
ns

e
tim

e
(s

ec
)

Time (min)

perReq_with-QoSM_2s

(b) Per-request approach with QoS Monitor every 2s

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 30 60 90 120 150 180 210 240 270 300

R
es

po
ns

e
tim

e
(s

ec
)

Time (min)

perReq_with-QoSM_0.7s

(c) Per-request approach with QoS Monitor every 0.7s

Figure 5.19: Scenario 2: response time of the composite service over time for class 1

161

Chapter 5. Performance Evaluation

 5

 7

 9

 11

 13

 15

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
es

po
ns

e
tim

e
(s

ec
)

Request rate (req/sec)

[AP07], no QoS, baseline
[AP07], no QoS, 2x baseline

[AP07], QoS, 2x baseline

Figure 5.20: Response time of the traditional per-request service selection policy

 5

 7

 9

 11

 13

 15

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

R
es

po
ns

e
tim

e
(s

ec
)

Request rate (req/sec)

[AP07], no QoS, baseline
no QoS, baseline

Figure 5.21: Response time of the traditional versus load-aware per-request service

selection policies

162

5.4. Effectiveness Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 3 4 5 6 7 8 9 10

C
PU

 u
sa

ge
 (

%
)

Request rate (req/sec)

cs_13

Figure 5.22: CPU usage of the concrete service selected for S1 by the traditional per-

request policy

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
PU

 u
sa

ge
 (

%
)

Request rate (req/sec)

cs_11
cs_13
cs_15

Figure 5.23: CPU usage of the concrete services selected for S1 by the load-aware

per-request policy

163

Chapter 5. Performance Evaluation

 5

 7

 9

 11

 13

 15

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

R
es

po
ns

e
tim

e
(s

ec
)

Request rate (req/sec)

no QoS, baseline
no QoS, 2x baseline

Figure 5.24: Response time of the load-aware per-request policy under the two sets of

concrete services

164

5.4. Effectiveness Evaluation

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 400 800 1200 1600 2000 2400 2800 3200

R
es

po
ns

e
tim

e
(s

ec
)

Time (sec)

Class 1
SLA

(a) Service class 1

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 400 800 1200 1600 2000 2400 2800 3200

R
es

po
ns

e
tim

e
(s

ec
)

Time (sec)

Class 2
SLA

(b) Service class 2

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 400 800 1200 1600 2000 2400 2800 3200

R
es

po
ns

e
tim

e
(s

ec
)

Time (sec)

Class 3
SLA

(c) Service class 3

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 400 800 1200 1600 2000 2400 2800 3200

R
es

po
ns

e
tim

e
(s

ec
)

Time (sec)

Class 4
SLA

(d) Service class 4

Figure 5.25: Response time of the load-aware per-request policy for all service classes

over time

165

Chapter 5. Performance Evaluation

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 15 30 45 60 75 90 105 120 135 150

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

R
es

po
ns

e
tim

e
(s

ec
)

E
xt

er
na

l l
oa

d
ra

te
 (

re
q/

se
c)

Time (min)

Response time
External load rate

Figure 5.26: Response time of the load-aware per-request policy under external load

without QoS Monitor

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 15 30 45 60 75 90 105 120 135 150

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

R
es

po
ns

e
tim

e
(s

ec
)

E
xt

er
na

l l
oa

d
ra

te
 (

re
q/

se
c)

Time (min)

Response time
External load rate

Figure 5.27: Response time of the load-aware per-request policy under external load

with QoS Monitor

166

6
Conclusions

Contents

6.1 Summary . 167

6.2 Future Work . 169

6.1 Summary

In this thesis we addressed the problem of providing SOSs that satisfy QoS require-

ments. To this end, we designed and realized MOSES, an autonomic service-oriented

broker which is able:

• to self-optimize the execution of SOA applications according to a given service

selection strategy;

• to self-configure its components according to a possibly changing environment;

• to self-heal its components and the applications it serves in case of failures.

Since our aim was to realize a software product which could be able to work in real

operating environment, we devoted much attention both to its modularity and ease of

use and to the performance aspects. The broker is now mature enough and it is being

released to the community so to provide a real testbed where experimenting different

service selection strategies or even adaptation features.

167

Chapter 6. Conclusions

We used MOSES to evaluate existing service selection strategies. In detail, we fo-

cused on per-request and per-flow approaches described in Chapter 3, for which we

conducted an extensive evaluation as described in Chapter 5. The ability to test the ca-

pabilities of such approaches on a real environment made it possible for us to demon-

strate their advantages and disadvantages. The advantage of the per-request approach

is that it fulfills QoS requirements for each application invocation; however, it is unable

to exploit multiple implementations of the same abstract service. On the other hand,

the proposed per-flow approach is able to scale over multiple implementations, but it

cannot guarantee QoS levels for each invocation. Therefore, we proposed the load-

aware per-request service selection solution that trade-offs the pros and cons of the two

more traditional approaches.

This new strategy is able to both exploit multiple implementations of the same

abstract service and to fulfill QoS requirements for each application invocation, until

there are enough resources provided by concrete services. In Section 5.4.4 we con-

ducted an extensive test to demonstrate its effectiveness through a direct comparison

with the existing per-request approach [12]. Results show that both the service selec-

tion approaches perform the same until the submitted request rate is sustainable by a

single implementation of each abstract service. At higher request rates the per-request

approach is unable to serve requests fulfilling QoS as the load-aware per-request does.

In order to evaluate the performance of MOSES and the effectiveness of the adap-

tation strategies, we needed to use non-shared hardware. To this end and to easily scale

and deploy MOSES components, we designed and realized a cloud architecture for a

private IaaS provider as described in Section 4.1. This architecture, which has been

entirely implemented with opensource software, has been employed as the foundation

168

6.2. Future Work

for a cloud stack providing MOSES at the SaaS layer.

6.2 Future Work

The research work addressed in this thesis leaves some open questions for future re-

search. In the following, we devise some of these aspects that we plan to address.

Although MOSES can scale by exploiting underlying Cloud resources, it still re-

mains a centralized broker. A decentralized approach is proposed in [41], where a

single workflow is split into several sub-workflows. The authors therefore do not only

consider service selection as a mean to reach the desired QoS, but they also investi-

gate on how to partition the workflow and where to deploy resulting sub-workflows.

However, such an approach only targets one of the aspects of our envisioned decentral-

ized version of MOSES: we speculate a distribution of the whole MAPE loop among

multiple MOSES brokers. Under the hypothesis of federated cooperating brokers, this

would require to devise a distributed solution of the overall optimization problem. Un-

der the hypothesis of competing brokers, MOSES should be more deeply restructured.

In this respect, we note that our characterization of the problem space of self-adaptation

for SOA systems evidences that the case of several self-adaptive SOA systems under

cooperating or non-cooperating scenarios is not yet satisfactorily covered by current

literature. Hence, investigating how to cope with these issues is a timely and promising

indication for our future work on the MOSES framework.

Besides this, there are several other directions along which we plan to continue our

work on the MOSES framework, as we outline below. A first direction consists in deal-

ing with requirements concerning higher moments and percentiles of QoS attributes.

In this respect, a first step towards the inclusion of percentile-based SLAs in MOSES is

169

Chapter 6. Conclusions

presented in [26]. Moreover, we are investigating how to extend the set of assumptions

under which MOSES currently works. This includes: relaxing the synchronous invoca-

tion assumption; considering alternative failure models (e.g., Byzantine failures, which

require different kinds of redundancy patterns); including additional orchestration pat-

terns for service composition, with respect to those matching the grammar presented in

Section 3.2.1.

A further direction is related to the assumption, in the current MOSES framework

implementation, of a known pool of candidate concrete services, without considering

how this pool can be selected and possibly changed at runtime, and the relevant SLA

parameters which can be dynamically negotiated. This is a relevant issue, and dealing

with it should be one of the tasks of the upper layer of MOSES, according to the three-

layers model presented in [57].

Finally, as regards the service selection strategy, it would be interesting to in-

vestigate network awareness, that is to take into account the network location of the

available service implementations with respect to the broker. Existing policies, in-

cluding those we proposed, usually neglect network-related QoS. Although some pro-

posals of self-adaptive network-aware service composition have been recently pre-

sented [47, 55, 94], they do not consider the exploitation of multiple coordination pat-

terns; furthermore, a performance evaluation on a real testbed is still missing. Such

network awareness would also allow to address new scenarios for service composition

that arise from the convergence between Internet of Things, Fog computing [17] and

Cloud computing.

170

Bibliography

[1] W. Aalst, A. Hofstede, B. Kiepuszewski, and A. P. Barros. Workflow patterns.

Distributed and Parallel Databases, 14(1):5–51, 2003.

[2] G. Aceto, A. Botta, W. De Donato, and A. Pescapè. Cloud monitoring: A survey.

Computer Networks, 57(9):2093–2115, 2013.

[3] V. Agarwal and P. Jalote. From specification to adaptation: an integrated qos-

driven approach for dynamic adaptation of web service compositions. In Proc.

of 2010 IEEE Int’l Conf. on Web Services (ICWS ’10), pages 275–282. IEEE,

2010.

[4] T. Ahmed and A. Srivastava. Minimizing waiting time for service composi-

tion: A frictional approach. In Proc. of 2013 IEEE Int’l Conf. on Web Services,

ICWS’13, pages 268–275, June 2013.

[5] G. H. Alférez, V. Pelechano, R. Mazo, C. Salinesi, and D. Diaz. Dynamic adap-

tation of service compositions with variability models. Journal of Systems and

Software, 91:24–47, 2014.

[6] M. Alrifai and T. Risse. Combining global optimization with local selection for

efficient qos-aware service composition. In Proceedings of the 18th Interna-

tional Conference on World Wide Web, pages 881–890. ACM, 2009.

[7] M. Alrifai, D. Skoutas, and T. Risse. Selecting skyline services for qos-based

web service composition. In Proceedings of the 19th International Conference

on World Wide Web, pages 11–20. ACM, 2010.

[8] J. Andersson, R. de Lemos, S. Malek, and D. Weyns. Modeling dimensions

of self-adaptive software systems. In Software Engineering for Self-Adaptive

Systems, volume 5525 of LNCS, pages 27–47. Springer, 2009.

171

BIBLIOGRAPHY

[9] D. Ardagna, L. Baresi, S. Comai, M. Comuzzi, and B. Pernici. A service-based

framework for flexible business processes. IEEE Software, 28(2), 2011.

[10] D. Ardagna, M. Comuzzi, E. Mussi, B. Pernici, and P. Plebani. Paws: A frame-

work for executing adaptive web-service processes. IEEE Software, 24(6):39–

46, 2007.

[11] D. Ardagna and R. Mirandola. Per-flow optimal service selection for web ser-

vices based processes. Journal of Systems and Software, 83(8):1512–1523,

2010.

[12] D. Ardagna and B. Pernici. Adaptive service composition in flexible processes.

IEEE Trans. Softw. Eng., 33(6):369–384, 2007.

[13] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,

D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud computing.

Commun. ACM, 53(4):50–58, Apr. 2010.

[14] A. Barkat, A. D. d. Santos, and T. T. N. Ho. Open stack and cloud stack:

Open source solutions for building public and private clouds. In Proc. of 16th

Int’l Symposium on Symbolic and Numeric Algorithms for Scientific Computing

(SYNASC), pages 429–436. IEEE, 2014.

[15] A. Bellucci, V. Cardellini, V. Di Valerio, and S. Iannucci. A scalable and highly

available brokering service for SLA-based composite services. In Service-

Oriented Computing, pages 527–541. Springer, 2010.

172

BIBLIOGRAPHY

[16] R. Berbner, M. Spahn, N. Repp, O. Heckmann, and R. Steinmetz. Heuristics for

qos-aware web service composition. In Proc. of 2006 IEEE Int’l Conf. on Web

Services (ICWS’06), pages 72–82. IEEE, 2006.

[17] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its role in

the Internet of Things. In Proc. of 1st Workshop on Mobile Cloud Computing,

MCC ’12, pages 13–16. ACM, 2012.

[18] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and

D. Orchard. Web Services Architecture (WSA). W3C Working Group Note 11

Feb. 2004.

[19] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel. Towards a taxonomy

of software change: Research articles. J. Softw. Maint. Evol., 17(5):309–332,

2005.

[20] R. Buyya, C. Vecchiola, and S. T. Selvi. Mastering Cloud Computing: Founda-

tions and Applications Programming. Morgan Kaufmann, 2013.

[21] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tamburrelli.

Dynamic qos management and optimization in service-based systems. IEEE

Transactions on Software Engineering, 37(3):387–409, 2011.

[22] G. Canfora, M. Di Penta, R. Esposito, and M. Villani. A framework for

QoS-aware binding and re-binding of composite web services. J. Syst. Softw.,

81(10):1754–1769, 2008.

173

BIBLIOGRAPHY

[23] V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci, F. Lo Presti, and R. Mi-

randola. MOSES: a framework for QoS driven runtime adaptation of service-

oriented systems. IEEE Trans. Softw. Eng., 38(5):1138–1159, Sept. 2012.

[24] V. Cardellini, E. Casalicchio, V. Grassi, and F. Lo Presti. Flow-based service

selection forweb service composition supporting multiple qos classes. In Proc.

of 2007 IEEE Int’l Conf. on Web Services (ICWS 2007), pages 743–750. IEEE,

2007.

[25] V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti, and R. Mirandola. Qos-

driven runtime adaptation of service oriented architectures. In Proceedings of

the the 7th joint meeting of the European Software Engineering Conference and

the ACM SIGSOFT Symposium on the Foundations of Software Engineering,

pages 131–140. ACM, 2009.

[26] V. Cardellini, E. Casalicchio, V. Grassi, and F. L. Presti. Adaptive manage-

ment of composite services under percentile-based service level agreements. In

Service-Oriented Computing, pages 381–395. Springer, 2010.

[27] V. Cardellini, V. Di Valerio, V. Grassi, S. Iannucci, and F. Lo Presti. Qos driven

per-request load-aware service selection in service oriented architectures. Inter-

national Journal of Software and Informatics, 7(2):195–220, 2013.

[28] V. Cardellini and S. Iannucci. Designing a broker for qos-driven runtime adap-

tation of soa applications. In Proc. of 2010 IEEE Int’l Conf. on Web Services

(ICWS 2010), pages 504–511. IEEE, 2010.

174

BIBLIOGRAPHY

[29] V. Cardellini, F. Lo Presti, V. Grassi, and E. Casalicchio. Scalable service selec-

tion for web service composition supporting differentiated qos classes. Technical

Report RR-07.59, Dip. di Informatica, Sistemi e Produzione, Feb. 2007.

[30] J. Cardoso. Complexity analysis of bpel web processes. Software Process:

Improvement and Practice, 12(1):35–49, 2007.

[31] S. Casolari, S. Tosi, and F. Lo Presti. An adaptive model for online detection of

relevant state changes in internet-based systems. Perform. Eval., 69(5):206–226,

May 2012.

[32] A. Charfi and M. Mezini. Ao4bpel: An aspect-oriented extension to bpel. World

Wide Web, 10(3):309–344, 2007.

[33] B. Chen, X. Peng, Y. Yu, and W. Zhao. Requirements-driven self-optimization

of composite services using feedback control. IEEE Transactions on Services

Computing, pages In–press, 2014.

[34] B. H. C. Cheng, H. Giese, P. Inverardi, J. Magee, and R. de Lemos. 08031 – soft-

ware engineering for self-adaptive systems: A research road map. In Software

Engineering for Self-Adaptive Systems, volume 08031 of Dagstuhl Seminar Pro-

ceedings. IBFI, 2008.

[35] M. Colombo, E. D. Nitto, and M. Mauri. Scene: A service composition exe-

cution environment supporting dynamic changes disciplined through rules. In

Proc. ICSOC ’06, volume 4294 of LNCS, pages 191–202. Springer, 2006.

175

BIBLIOGRAPHY

[36] M. Colombo, E. D. Nitto, M. D. Penta, D. Distante, and M. Zuccalà. Speaking a

common language: A conceptual model for describing service-oriented systems.

In Proc. ICSOC ’05, volume 3826 of LNCS, pages 48–60. Springer, 2005.

[37] W. R. Cook, S. Patwardhan, and J. Misra. Workflow patterns in Orc. In Proc.

COORDINATION ’06, volume 4038 of LNCS, pages 82–96. Springer, 2006.

[38] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms 2nd Edition. 2001.

[39] S. Dobson, S. Denazis, A. Fernández, D. Gaı̈ti, E. Gelenbe, F. Massacci,

P. Nixon, F. Saffre, N. Schmidt, and F. Zambonelli. A survey of autonomic com-

munications. ACM Transactions on Autonomous and Adaptive Systems (TAAS),

1(2):223–259, 2006.

[40] DRBD. http://www.drbd.org/.

[41] D. Efstathiou, P. McBurney, S. Zschaler, and J. Bourcier. Flexible qos-aware ser-

vice composition in highly heterogeneous and dynamic service-based systems.

In IEEE 9th International Conference on Wireless and Mobile Computing, Net-

working and Communications (WiMob), 2013, pages 592–599. IEEE, 2013.

[42] O. Ezenwoye and S. M. Sadjadi. Robustbpel2: Transparent autonomization in

business processes through dynamic proxies. In 2007 IEEE Eighth International

Symposium on Autonomous Decentralized Systems (ISADS’07), pages 17–24.

IEEE, 2007.

176

BIBLIOGRAPHY

[43] O. Ezenwoye and S. M. Sadjadi. A proxy-based approach to enhancing the

autonomic behavior in composite services. Journal of Networks, 3(5):42–53,

2008.

[44] The Grinder. http://sourceforge.net/projects/grinder/.

[45] Q. He, J. Yan, H. Jin, and Y. Yang. Quality-aware service selection for service-

based systems based on iterative multi-attribute combinatorial auction. Software

Engineering, IEEE Transactions on, 40(2):192–215, 2014.

[46] httperf. http://www.hpl.hp.com/research/linux/httperf/.

[47] J. Huang, G. Liu, Q. Duan, and Y. Yan. Qos-aware service composition for

converged network-cloud service provisioning. In Proc. of IEEE 2014 Int’l Conf.

on Services Computing (SCC), pages 67–74. IEEE, 2014.

[48] M. C. Huebscher and J. A. McCann. A survey of autonomic computing - de-

grees, models, and applications. ACM Comput. Surv., 40(3), 2008.

[49] C. Hwang and K. Yoon. Multiple Criteria Decision Making, Lecture Notes in

Economics and Mathematical Systems. Springer, 1981.

[50] A. Immonen and D. Pakkala. A survey of methods and approaches for reliable

dynamic service compositions. Service Oriented Computing and Applications,

8(2):129–158, 2014.

[51] JBI. https://jcp.org/en/jsr/detail?id=208.

[52] J. O. Kephart and D. M. Chess. The vision of autonomic computing. IEEE

Computer, 36(1):41–50, 2003.

177

BIBLIOGRAPHY

[53] D. Kitchin, A. Quark, W. R. Cook, and J. Misra. The Orc programming lan-

guage. In Proc. FMOODS/FORTE ’09, volume 5522 of LNCS, pages 1–25.

Springer, 2009.

[54] A. Klein, F. Ishikawa, and S. Honiden. Efficient qos-aware service composition

with a probabilistic service selection policy. In Service-Oriented Computing,

pages 182–196. Springer, 2010.

[55] A. Klein, F. Ishikawa, and S. Honiden. SanGA: A self-adaptive network-aware

approach to service composition. IEEE Transactions on Services Computing,

7(3):452–464, 2014.

[56] M. Koning, C.-a. Sun, M. Sinnema, and P. Avgeriou. Vxbpel: Supporting

variability for web services in bpel. Information and Software Technology,

51(2):258–269, 2009.

[57] J. Kramer and J. Magee. Self-managed systems: an architectural challenge. In

Future of Software Engineering, 2007. FOSE’07, pages 259–268. IEEE, 2007.

[58] P. Leitner, W. Hummer, and S. Dustdar. Cost-based optimization of service

compositions. Services Computing, IEEE Transactions on, 6(2):239–251, 2013.

[59] P. Leitner, B. Wetzstein, D. Karastoyanova, W. Hummer, S. Dustdar, and

F. Leymann. Preventing SLA violations in service compositions using aspect-

based fragment substitution. In Service-Oriented Computing, pages 365–380.

Springer, 2010.

[60] Q. Liang, X. Wu, and H. Lau. Optimizing service systems based on application-

level QoS. IEEE Trans. Serv. Comput., 2(2):108–121, Apr. 2009.

178

BIBLIOGRAPHY

[61] Z. Maamar, Q. Z. Sheng, and B. Benatallah. Interleaving web services compo-

sition and execution using software agents and delegation. In Proc. WSABE ’03,

2003.

[62] S. Martello and P. Toth. Algorithms for knapsack problems. North-Holland

Mathematics Studies, 132:213–257, 1987.

[63] P. Martin, W. Powley, K. Wilson, W. Tian, T. Xu, and J. Zebedee. The wsdm

of autonomic computing: experiences in implementing autonomic web services.

In Proc. SEAMS ’07, 2007.

[64] P. McKinley, S. Sadjadi, E. Kasten, and B. Cheng. Composing adaptive soft-

ware. IEEE Computer, 37(7):56–64, 2004.

[65] D. Menascé, E. Casalicchio, and V. Dubey. On optimal service selection in

service oriented architectures. Perform. Eval., 67(8):659–675, Aug. 2010.

[66] D. Menasce, H. Gomaa, S. Malek, and J. P. Sousa. Sassy: A framework for

self-architecting service-oriented systems. IEEE Software, 28(6):78–85, 2011.

[67] D. A. Menascé. Qos issues in web services. IEEE Internet Comp., 6(6):72–75,

2002.

[68] D. A. Menascé, J. M. Ewing, H. Gomaa, S. Malex, and J. P. Sousa. A framework

for utility-based service oriented design in sassy. In Proceedings of the first joint

WOSP/SIPEW international conference on Performance engineering, pages 27–

36. ACM, 2010.

[69] D. A. Menascé, H. Ruan, and H. Gomaa. Qos management in service-oriented

architectures. Performance Evaluation, 64(7):646–663, 2007.

179

BIBLIOGRAPHY

[70] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar. End-to-end support for

qos-aware service selection, binding, and mediation in vresco. IEEE Transac-

tions on Services Computing, 3(3):193–205, 2010.

[71] R. Mirandola and P. Potena. A qos-based framework for the adaptation of

service-based systems. Scalable Computing: Practice and Experience, 12(1),

2011.

[72] D. Montgomery. Introduction to Statistical Quality Control. Wiley, 2008.

[73] O. Moser, F. Rosenberg, and S. Dustdar. Non-intrusive monitoring and service

adaptation for WS-BPEL. In Proc. WWW ’08, pages 815–824. ACM, 2008.

[74] O. Moser, F. Rosenberg, and S. Dustdar. Domain-specific service selection for

composite services. IEEE Transactions on Software Engineering, 38(4):828–

843, 2012.

[75] A. Mosincat, W. Binder, and M. Jazayeri. Achieving runtime adaptability

through automated model evolution and variant selection. Enterprise Informa-

tion Systems, 8(1):67–83, 2014.

[76] A. Mostafa, M. Zhang, and Q. Bai. Trustworthy stigmergic service composition

and adaptation in decentralized environments. IEEE Transactions on Services

Computing, 2014.

[77] A. Moustafa and M. Zhang. Multi-objective service composition using rein-

forcement learning. In Service-Oriented Computing, pages 298–312. Springer,

2013.

180

BIBLIOGRAPHY

[78] P. Nagpurkar, W. Horn, U. Gopalakrishnan, N. Dubey, J. Jann, and P. Pattnaik.

Workload characterization of selected jee-based web 2.0 applications. In Proc.

IEEE IISWC ’08, pages 109–118, 2008.

[79] R. Nelson. Probability, stochastic processes, and queueing theory. Springer-

Verlag, New York, 1995.

[80] Nimbus. http://www.nimbusproject.org/.

[81] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and

D. Zagorodnov. The Eucalyptus open-source cloud-computing system. In Proc.

of IEEE/ACM CCGRID ’09, 2009.

[82] OASIS. Web Services Business Process Execution Language Version 2.0, Jan.

2007.

[83] OpenESB. http://www.open-esb.net/.

[84] OpenNebula. http://opennebula.org/.

[85] openQRM. http://www.openqrm.com/.

[86] OpenStack. http://www.openstack.org/.

[87] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson, N. Medvi-

dovic, A. Quilici, D. S. Rosenblum, and A. L. Wolf. An architecture-based ap-

proach to self-adaptive software. IEEE Intelligent Systems, 14(3):54–62, 1999.

[88] S. Rosario, A. Benveniste, S. Haar, and C. Jard. Probabilistic qos and soft con-

tracts for transaction-based web services orchestrations. IEEE Transactions on

Services Computing, 1(4):187–200, 2008.

181

BIBLIOGRAPHY

[89] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S. Hallsteinsen, J. Lorenzo,

A. Mamelli, and U. Scholz. Music: Middleware support for self-adaptation

in ubiquitous and service-oriented environments. In Software Engineering for

Self-Adaptive Systems, pages 164–182. Springer, 2009.

[90] R. Rouvoy, F. Eliassen, J. Floch, S. Hallsteinsen, and E. Stav. Composing com-

ponents and services using a planning-based adaptation middleware. In Software

Composition, pages 52–67. Springer, 2008.

[91] M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and research

challenges. ACM Trans. Auton. Adapt. Syst., 4(2):1–42, 2009.

[92] D. Schuller, M. Siebenhaar, R. Hans, O. Wenge, R. Steinmetz, and S. Schulte.

Towards heuristic optimization of complex service-based workflows for stochas-

tic qos attributes. In Web Services (ICWS), 2014 IEEE International Conference

on, pages 361–368. IEEE, 2014.

[93] P. Sempolinski and D. Thain. A comparison and critique of Eucalyptus, Open-

Nebula and Nimbus. Proc. of IEEE CloudCom ’10, pages 417–426, 2010.

[94] J. Siebert, J. Cao, Y. Lai, P. Guo, and W. Zhu. LASEC: A localized approach to

service composition in pervasive computing environments. IEEE Transactions

on Parallel and Distributed Systems, 2014. to appear.

[95] A. Strunk. Qos-aware service composition: A survey. In Web Services

(ECOWS), 2010 IEEE 8th European Conference on, pages 67–74. IEEE, 2010.

182

BIBLIOGRAPHY

[96] L. Sun, S. Wang, J. Li, Q. Sun, and F. Yang. Qos uncertainty filtering for fast

and reliable web service selection. In Proc. of 2014 IEEE Int’l Conf. on Web

Services (ICWS’14), pages 550–557. IEEE, 2014.

[97] Y. Syu, S.-P. Ma, J.-Y. Kuo, and Y.-Y. FanJiang. A survey on automated ser-

vice composition methods and related techniques. In IEEE 9th International

Conference on Services Computing (SCC), 2012, pages 290–297. IEEE, 2012.

[98] D. Teigland and H. Mauelshagen. Volume managers in Linux. Proc. of USENIX

ATC ’01, 2001.

[99] W.-T. Tsai, X. Sun, and J. Balasooriya. Service-oriented cloud computing archi-

tecture. In Proc. of 7th Int’l Conf. on Information Technology: New Generations

(ITNG 2010), pages 684–689. IEEE, 2010.

[100] H. Wada, J. Suzuki, Y. Yamano, and K. Oba. A multiobjective optimization

framework for SLA-aware service composition. IEEE Transactions on Services

Computing, 5(3):358–372, 2012.

[101] X. Wen, G. Gu, Q. Li, Y. Gao, and X. Zhang. Comparison of open-source cloud

management platforms: OpenStack and OpenNebula. In Proc. of 9th Int’l Conf.

on Fuzzy Systems and Knowledge Discovery (FSKD), pages 2457–2461. IEEE,

2012.

[102] S. Wind. Open source cloud computing management platforms: Introduction,

comparison, and recommendations for implementation. In Proc. of IEEE ICOS

’11, pages 175–179, 2011.

183

BIBLIOGRAPHY

[103] Q. Wu, Q. Zhu, X. Jian, and F. Ishikawa. Broker-based SLA-aware composite

service provisioning. Journal of Systems and Software, 96:194–201, 2014.

[104] T. Yu, Y. Zhang, and K.-J. Lin. Efficient algorithms for web services selection

with end-to-end qos constraints. ACM Trans. Web, 1(1):1–26, 2007.

[105] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnamam, and H. Chang. QoS-aware

middleware for web services composition. IEEE Trans. Softw. Eng., 30(5), May

2004.

[106] Q. Zhang, L. Cheng, and R. Boutaba. Cloud computing: state-of-the-art and

research challenges. Journal of Internet Services and Applications, 1(1):7–18,

May 2010.

[107] Z. Zheng and M. R. Lyu. Collaborative reliability prediction of service-oriented

systems. In Proc. of 32nd ACM/IEEE Int’l Conf. on Software Engineering, vol-

ume 1, pages 35–44. ACM, 2010.

184

View publication statsView publication stats

