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ABSTRACT
Cloud computing is an emerging paradigm used by an in-
creasingly number of enterprises to support their business
and promises to make the utility computing model fully re-
alized by exploiting virtualization technologies. Free soft-
ware is now mature not only to offer well-known server-side
applications, but also to land on desktop computers. How-
ever, administering in a decentralized way a large amount
of desktop computers represents a demanding issue: system
updates, backups, access policies, etc. are hard tasks to be
managed separately on each computer. This paper presents
a general purpose architecture for building a reliable, scal-
able, flexible, and modular private cloud that exploits vir-
tualization technologies at different levels. The architecture
can be used to offer a variety of services that span from web
applications and web services to soft real-time applications.

To show the features of the proposed architecture, we also
present the design and implementation over it of a Linux
Terminal Server Project (LTSP) cluster that benefits from
the underlying IaaS services offered by the private cloud.
The cloud infrastructure, as well as the LTSP, have been
implemented exclusively using free software and are now in
a production state, being used by approximately 200 users
for their everyday work. We hope that our description and
design decisions can provide some guidance about designing
an architecture for a cloud service provider.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
Distributed Systems

Keywords
Private cloud, storage, virtualization

1. INTRODUCTION
Cloud computing has recently emerged as a paradigm for

delivering computational services over the Internet. Small
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and medium organizations are attracted by this computing
paradigm because it let them not to own an in-house data-
center with the associated risks and costs but rather to just
rent what it is effectively needed time after time.

There are different types of clouds, each with its own bene-
fits and drawbacks. With public clouds, providers offer their
resources as services to the general public. Key benefits
of using public clouds include no initial capital investment
on the infrastructure and risk shifting to cloud providers.
Private clouds are designed for exclusive use by a single or-
ganization. They may be built by the organization itself or
by an external service provider. A private cloud offers the
highest degree of control over performance, reliability, and
security. However, it is often criticized for being similar to
traditional proprietary server farms and does not provide
benefits such as no up-front capital costs. Finally, hybrid
clouds are in between public and private: they are primarily
based on private clouds, but they can extend their capacity
with public clouds should the need arise.

Cloud providers offer services at three different layers, re-
spectively named: Infrastructure as a Service (IaaS), Plat-
form as a Service (PaaS), Software as a Service (SaaS) [11].
These three levels offer a layered view of the cloud computing
stack. The user of the lowest layer rents from a IaaS provider
virtualized resources like computational power, storage, and
network and has the task to manage the rented resources.
The middle layer is the PaaS, in which the cloud user ac-
quires the control over a software platform, ideally an appli-
cation server and an application development environment,
where he has to deploy and manage his own applications.
At the uppermost layer, i.e., the SaaS, the cloud provider
offers software applications to its users.

Virtualization technologies are at the basis of any cloud
infrastructure because they enable a more efficient and flex-
ible management of the infrastructure itself. Different kinds
of virtualization techniques are often used in a cloud envi-
ronment [6]. Server virtualization is employed when one or
more virtual machines (VMs) are placed on a single phys-
ical server. The resulting benefits are not only to incre-
ment servers utilization and lower power consumption in
most cases, but also to improve flexibility, because virtu-
alization unique features such as VMs live migration can be
exploited. With storage virtualization logical volumes are
built on top of raw block devices. Logical volumes virtual-
ize physical storage by offering an added level of indirection
in the storage stack, managed by a software layer. Network
virtualization aims at providing multiple overlay networks
on top of a shared physical network infrastructure, there-



fore shifting every configuration issue from the underlying
physical devices to more flexible software components. Fi-
nally, we refer to desktop virtualization as the consolidation
of multiple desktop machines into one or more servers that
are often built on top of a virtualization stack and are ac-
cessible by cheap terminals named thin clients.

In this paper we propose a system architecture for a IaaS
private cloud which exploits all the virtualization techniques
exposed so far. It has been designed with modularity, exten-
sibility, and dependability in mind and aims to be general
purpose, that is, it is not restricted to any particular use case
or service. Therefore, it can be used by enterprises to host
any kind of applications, ranging from web services without
any performance requirement to soft real-time applications
with time constraints. To achieve such a flexibility we have
introduced a decoupling layer between the computational
and storage resources and the possibility to homogeneously
manage both virtualized and non-virtualized environments.
For example, we can host web services on a virtual machine
on a shared virtualization host with a disk on shared stor-
age, as well as a real-time application on a dedicated physical
machine with a disk on dedicated storage.

The proposed architecture takes into account different
needs of a IaaS provider: we aim at building an infrastruc-
ture that can be reliable, scalable, easily manageable and
flexible. Indeed, on the storage side, it offers different kinds
of replication, volume management, and easy asynchronous
backups; on the network side, it is based on a redundant
network topology in order to maximize both availability and
throughput; on the computational side, it merges together
different virtualization technologies and physical machines.

We have implemented the proposed architecture using
only free software. To show its effectiveness, we have re-
alized over it a Linux Terminal Server Project (LTSP) clus-
ter: a terminal server for Linux that allows many people to
simultaneously use the same computer using low-powered
thin clients, that is, a desktop virtualization solution. This
project is now in a production state, being used by approx-
imately 200 users for their everyday work.

The rest of the paper is organized as follows. In Section 2
we present an overview of the overall architecture. In Sec-
tion 3 we describe in detail the storage and the network
components, while in Section 4 we present the computa-
tional resources arrangement. Section 5 describes the LTSP
cluster offered upon the cloud architecture and we use it as
a case study to prove the effectiveness of our design. Finally,
we conclude in Section 6 and provide hints for future work.

2. ARCHITECTURE OVERVIEW
The architecture we present in this paper has the main

objective to decouple storage resources from computational
resources. Such a decoupling makes the entire infrastruc-
ture more scalable and more flexible because it allows the
administrators to add or remove storage systems without
any impact on the computational resources and vice-versa.
The system architecture is partitioned in two logical lev-
els, respectively named back-end subnet and front-end sub-
net. The back-end subnet is the architectural component
aimed at both managing the storage resources and offering
the storage as a service to the front-end subnet, while the
latter contains computational resources, which are then at-
tached to storage services to obtain high-level services which
are finally exposed to the end users. In addition to being a

gateway to storage facilities, the back-end subnet also offers
a centralized management of the services provided by the
front-end subnet to the end users.

3. BACK-END SUBNET
We have designed the back-end subnet in such a way to

obtain a clear separation between the services offered to the
end users and the hardware/software needed by those ser-
vices. The basic idea is as follows: a service is just an appli-
cation that performs a task required by an end user, where
each application requires several system resources (CPU,
memory, disk, and network) with different needs. These
resources have to be assigned by the system administrator
in an transparent way with respect to the users, whose ex-
pectation is to have a fully functional service without taking
care of their administrative issues. Therefore, the back-end
subnet goal is to provide all the basic infrastructure facilities,
such as a redundant storage management and a highly avail-
able management of computational resources, that should be
managed as much as possible through a centralized tool to
facilitate the system administrator tasks. In the following,
we analyze each component of the back-end subnet.

3.1 Redundant Network Topology
A basic requirement of every dependable infrastructure is

a dependable network topology. We introduce a redundant
network topology that can (i) scale according to the num-
ber of used physical links and (ii) automatically re-arrange
itself by excluding malfunctioning links without any service
interruption. The presented topology is generic and does
not depend on the physical medium used to implement it:
therefore, it is possible to use links based on Fiber Channel
over optical fiber or Ethernet links on copper cables.

Left side of Figure 1 shows the components belonging to
the back-end subnet. There are two storage subsystems (pri-
mary and replica) and two highly available storage gateways,
that are interconnected by a redundant network topology,
except for the connection between the storage gateways and
the storage subsystems. The latter can also be replicated,
whether the employed storage subsystems support multi-
pathing; since not all storage subsystems support multi-path
connections, we depicted only a single link, even if our im-
plementation supports multi-pathing. We also observe that
the network topology supports any number of links among
its nodes: although we depicted only two links between the
storage gateways and two links between each single storage
gateway and the two switches, any number of links can be
used, depending on the bandwidth and availability require-
ments. Specifically, in our implementation we use a single
4 Gbps Fiber Channel link between each storage subsystem
and its storage gateway, while we use four 1 Gbps Ethernet
links between each storage gateway and the border switches.
Finally, the connection between the two storage gateways is
a 4 Gbps Fiber Channel.

We designed the network topology with the goal to maxi-
mize both dependability and throughput, trying also to min-
imize the hardware costs, since storage subsystems are of-
ten expensive Storage Area Networks (SANs), that require
expensive Host Bus Adapters (HBAs) and SAN switches to
connect to. The introduction of two storage gateways decou-
ples the native storage connections from where the storage
needs to be attached. In this way, using the storage gateways
as front-ends for the storage system, we reach the following



Figure 1: Network topology.

objectives: (i) to make the front-end servers unaware of the
storage type; (ii) to aggregate different storage systems for
reaching maximum expandability: that is, we can attach
multiple heterogeneous storage subsystems to each storage
gateway, hiding such a complexity to the front-end servers;
(iii) to use arbitrarily complex storage management policies
and replication; (iv) to minimize the hardware costs: we
do not need to buy a lot of expensive HBAs and expensive
SAN switches because only two highly-available servers are
directly connected to the primary storage.

The channel aggregation of server NICs is realized us-
ing the Linux Bonding Driver. It provides a method to
aggregate multiple network interfaces into a single logical
“bonded” interface. The behavior of the bonded interfaces
depends on the selected operating mode. It is possible to
distinguish between two families of operating modes: the
first only provides high availability connections (by using
either hot stand-by or broadcast links), while the second
also adds load balancing mechanisms on bonded links. The
only drawback of using load balancing mechanisms relies in
a more difficult network debugging when problems arise.

The overall back-end subnet can be seen as a black-box
storage unit because it offers a high-level and feature rich
storage service to the front-end subnet; we note that two
storage gateways may not be sufficient to manage large amounts
of I/O when thousands of disks are attached, but storage
units can be replicated by using a flat or a hierarchical ap-
proach. Therefore, storage units are a scalable way to im-
plement a modular interface to storage subsystems, since
each storage unit implicitly provides the same interface to
the front-end subnet layer even if the actual implementation
could be very different.

3.2 Redundant Storage
When designing an architecture for an IaaS provider, an

important issue is to ensure data protection from system
failures: although a short unavailability period of a given
service can often be tolerable, data loss is certainly intol-
erable. To address this issue, we introduced a redundant
storage schema in our infrastructure architecture.

Suppose that the primary storage subsystem is a SAN
with several RAID arrays: each RAID array in a SAN can
host multiple Logical Unit Names (LUNs), each of which is
seen as a physical disk by the operating system of the storage
gateway connected to the SAN. We manage to introduce the
storage replication through a software layer positioned just
over the plain disk seen by the operating system and repre-
sented by Distributed Redundant Block Devices (DRBD) [1].

DRBD defines two roles in a replication scheme, named
primary and secondary : only a node with primary role can
access data if not using a distributed filesystem. We can use
different working modes, that range from fully synchronous
to asynchronous replication. With synchronous replication
the filesystem on the active node is notified that the writ-
ing of the block is completed only when the block made it
to both disks of the cluster. Using asynchronous replica-
tion, the entity that issued the write request is informed
about completion as soon as the data is written to the local
disk and to the local socket buffer. Finally, with memory-
synchronous replication, the filesystem on the active node
is notified that the writing of the block is completed when
data is written to the local disk and has reached the write
buffer of the remote server.

The choice of the working mode to be used strictly de-
pends on the storages type and the interconnecting network.
The best scenario is when we have a fast primary storage
coupled with a fast1 secondary storage, connected with a
fast and reliable network. The worst scenario is when we
have a fast primary storage with a relatively slow secondary
storage, coupled with a slow and unreliable network (think
to geographic data replication). We do not consider the
scenario in which we have two poorly sized storage subsys-
tems. Under the first scenario, synchronous DRBD replica-
tion is surely the best choice, because it ensures maximum
data protection with a negligible performance loss. On the
other hand, in the latter case we must take into account
more variables, such as global disk speed, buffers, and net-
work. If geographic replication is not needed and the in-
frastructure relies on a fast local network, we can choose ei-
ther memory-synchronous replication or asynchronous repli-
cation, depending on the global disk speeds and the buffers
offered by the secondary storage controller: the choice has
to be done carefully and really depends on the workload
the storage is supposed to face. If we choose a memory-
synchronous replication without having enough buffers we
can introduce a bottleneck, but if we use asynchronous repli-
cation with a fast and adequately buffered secondary storage
we are not working in an optimal way.

In our implementation, we have a fast SAN as primary
storage and a slow NAS (a server with direct attached stor-
age) as secondary storage, with a fast interconnecting net-
work. From not reported experiments, we found that for
this specific configuration the best operating mode is the
asynchronous replication with network congestion control:
whenever the active storage gateway detects a network con-
gestion2, it temporarily detaches the secondary storage, thus
going in “Ahead/Behind” operational mode. In such a way,
the bottleneck is temporarily detached from the infrastruc-
ture and data synchronization restarts as soon as the net-
work congestion disappears; the data synchronization pro-
cess only involves those data blocks that have been changed
on the primary storage while it was in “Ahead” mode. This
advanced configuration has been pursued to avoid buying
an expensive secondary SAN thus lowering the total cost
of ownership, but at the same time increasing the overall
infrastructure reliability by adding a storage replica.

1We consider a storage system to be fast when it is ade-
quately sized to sustain the submitted workload.
2With a fast and reliable network, a congestion is likely
to happen only when secondary storage disks utilization is
100% and the buffer is full.



Similar considerations can be applied to each storage unit
in our architecture. Although different storage units have
the same network topology and the same external interface,
they can have different interconnections and storage speeds.
Therefore, we are free to choose different replication policies
depending on the components of each storage unit, offering
a better QoS to users that are willing to pay more and a
best-effort QoS to thrifty users.

3.3 Volumes Management
A modern storage system, besides being reliable, needs to

be flexible. Volumes management introduces a considerable
degree of flexibility, providing features like online volumes
resizing, volumes snapshotting, and hot disk addition or re-
moval. Volumes are considered by an operating system just
like partitions, since we can use them to hold root filesystems
or data directories. We briefly describe below the feature of-
fered by logical volumes.

Online volumes resizing is a key feature: whenever we find
out that we allocated less space than needed for a volume, it
allows us to expand the space and, if the filesystem has the
support, we can also hot-expand the filesystem without re-
booting a server and therefore without service interruption.

Volumes snapshotting has a twofold use: we can snapshot
a volume either to rapidly have new operating system im-
ages ready to use or to make consistent backups. Snapshots
are nothing more than simple volumes, with their own allo-
cated space, but they are originated from existing volumes
and they use the Copy On Write (COW) [8] optimization
strategy.

Usually, when using volume snapshotting for operating
system image cloning, we have a 1:N ratio of gold images
and derived snapshots. Therefore, to avoid disk overload,
it is necessary to have a read-only gold image and read-
write snapshots, otherwise each single write on the source
volume triggers the COW on each snapshot. On the other
hand, when using volume snapshotting for consistent back-
ups, we usually have a 1:1 ratio between snapshotted vol-
umes and snapshots, also having the source volume read-
write mounted and the snapshot volume read-only mounted.
In this case, we only need to take care of the snapshot size,
that has to be enough to hold changes made on the source
volume during the snapshot lifetime.

Disk addition and removal features are a must for a flexible
architecture. When business grows, we can certainly expect
an increase in the data to be stored. A disk addition feature
allows to buy only needed disks from time to time, while a
disk removal feature allows us to reduce the number of disks
if they are no more needed and to replace old disks with
newer ones without service interruption.

In our architecture we used Logical VolumeManager (LVM)
to implement volumes management. LVM introduces three
abstraction layers: physical volumes, volume groups, and
logical volumes. LVM Physical Volumes (PVs) are simple
partitions or physical disks initialized by LVM. After be-
ing initialized, PVs are aggregated to form Volume Groups.
LVM Volume Groups (VGs) are an aggregation of PVs. This
abstraction level let us overcome the single disk (or the sin-
gle RAID array) capacity. LVM Logical Volumes (LVs) are
flexible partitions built upon VGs and provide every feature
described above. Since LVs are managed by the operating
system just like partitions, LVM can be positioned either
under or over DRBD. Our choice was to position LVM over

DRBD on the primary storage and under DRBD on the
secondary storage. The motivation is again the asymmet-
ric configuration of the primary and secondary storage: the
primary SAN can scale up to 99 disks; the secondary NAS
can only scale up to 10 disks. Using larger disk on the NAS
we can host DRBD resources over LVM volumes that turns
out in consolidating the disk utilization.

3.4 Complete Storage Architecture
Figure 2 unveils the complete storage architecture we have

realized: we can roughly divide the figure in two columns.
The left column represents the primary storage subsystem,
while the right column represents the secondary storage.
Reading the figure bottom-up, we find that disks on the
primary storage are organized in a RAID array, seen by the
operating system with the name /dev/sdc. Over the RAID
array, we created the physical partition /dev/sdc1, backing
device for the DRBD resource imgos. The latter contains
the operating systems images that can be attached to vir-
tual machines (VMs) deployed on the front-end servers. The
DRBD device /dev/drbd0p1 is initialized as a LVM PV and
is then inserted into the imgos_group VG. imgos_group thus
contains as many LVs as the number of operating systems
images stored in this storage unit. Looking at the DRBD

Figure 2: Data flow on the storage architecture.

level, it is coupled with a peer DRBD level on the secondary
storage, whose backing device is a LVM LV imgos, which
belongs to a VG named repdata and whose backing devices
are two partitions on two different RAID arrays3.

The designed storage architecture ensures high data reli-
ability and throughput, flexibility and easiness of manage-
ment, low costs, and finally a single asynchronous backup
source. Data reliability is ensured by replication: local repli-
cation is achieved through RAID arrays, while remote repli-

3Actually, two RAID arrays on the secondary storage are
not required, but we added them because the server used
as secondary storage could not boot over a logical disk with
GPT partitioning schema, which is required by logical disks
larger than 2 TB.



cation is achieved through DRBD. Whenever the secondary
storage fails, nobody will notice it and if the primary stor-
age fails, the secondary one instantly replaces it. High data
throughput is allowed by an asynchronous replication with
congestion control (actually the perceived write speed is the
one provided by the primary, fast storage). Flexibility and
easiness of management are provided by LVM; to reduce the
costs, we built a replicated storage only using free software
and with an economic secondary storage. Last but not least,
an interesting feature of the storage architecture is the abil-
ity to have a single asynchronous backup source: thanks to
the LVM LV backing device for the entire DRBD resource on
the secondary storage, we can instantly take a snapshot of
the imgos resource and, since snapshots never modify orig-
inal data, we can safely mount volumes found in the imgos

snapshot, thus having a stable view of the entire storage unit
data. This ensures easy, consistent, and economic backups:
we do not need to backup every single server, but we can
take them all together and backup them with a single backup
application. This feature terribly lowers the effort of system
administrators in keeping a working backup.

3.5 Choosing the IaaS Management Platform
In this section we briefly review and compare the major

open-source platforms for the management of cloud infras-
tructures: Eucalyptus [3], OpenQRM [5], OpenNebula [4],
and Nimbus [2]. We classify the various platforms according
to the abstraction level they provide with respect to the un-
derlying hardware and the customization degree. More de-
tailed and recent analyses and comparisons of open-source
cloud computing platforms can be found in [7, 9].

Eucalyptus is an open-source cloud management platform
that offers the highest abstraction level among the others,
by letting the user choose only from a fixed set of VM tem-
plates. It provides a framework similar to Amazon Web
Services, by implementing interfaces compatible with Elastic
Compute Cloud (EC2) and Amazon Simple Storage Service
(S3), also realizing a distributed storage system called War-
lus, which is designed to imitate Amazon’s S3 distributed
storage. Whenever a new virtual machine instance is re-
quested to Eucalyptus, its operating system is copied from
the storage system to the physical server (from now on Com-
pute node) which will execute it.

Nimbus offers a higher customization degree compared to
Eucalyptus, but only from the administrators’ point of view:
it let them configure at a finer level the VM instances that
will be offered to end-users. Like Eucalyptus, Nimbus imple-
ments a storage system similar to Amazon S3. Both Nimbus
and Eucalyptus are architected in order to decentralize re-
sources: for this reason, each time a VM is requested, its im-
age template is copied to the Compute node that will run the
VM. In this way, both the platforms can achieve maximum
scalability, as well as a good fault isolation because each
Compute node is independent from the others. However,
decentralizing storage systems also leads to a more complex
management of replication policies as well as backup poli-
cies. For this reason, neither Eucalyptus nor Nimbus are
compatible with our architecture.

OpenNebula is inspired by different principles compared
to both Eucalyptus and Nimbus: it aims to provide a finer
level of customizability for front-end users and its architec-
ture tends to centralize resources by offering a central stor-
age. A fine customizability level requires smart users be-

cause some details about the underlying infrastructure can-
not be hidden anymore. Therefore, OpenNebula is more
suited for private cloud where the entire environment is
trusted and users have more skills. However, besides offer-
ing a central image storage, OpenNebula also provides the
ability to run the image locally on the compute node, thus
achieving the same flexibility of Eucalyptus and Nimbus.

The last platform we consider is OpenQRM, which pro-
vides the highest level of customizability, because it lets the
administrators of the private cloud configure each single as-
pect of the datacenter. Its core is very small and its archi-
tecture is completely plugin-based, e.g., there are plugins to
connect to different storage systems (NFS, iSCSI, AoE, etc.),
as well as plugins to manage several virtualization technolo-
gies (primarily Xen and KVM, but also VMWare, Virtual-
box, etc.). OpenQRM can be used just to administer the
datacenter. Anyway, installing the Cloud plugin, we can
exploit every typical cloud feature, like scheduled VM pro-
visioning and deprovisioning and a pay-per-use model. Un-
like the other platforms, OpenQRM lets the administrator
of the cloud infrastructure configure the products offered to
the cloud users at a finer granularity level: instead of con-
figuring a fixed set of instances templates, it is possible to
configure parameters like the quantity of CPU and RAM
users are allowed to demand (with associated cost), as well
as several possibility for data storage. Users can dynami-
cally assemble their VM instances by choosing each single
component from a drag-n-drop palette.

We chose OpenQRM for our infrastructure implementa-
tion, because it offers the higher customizability level, but
our infrastructure is compatible with OpenNebula as well.
Such a software can be added to our system architecture
in two different positions. In case of a single storage unit,
OpenNebula or OpenQRM can be installed on the two stor-
age gateways; otherwise, in case of multiple storage units we
need two additional servers at the back-end subnet bound-
aries to host the datacenter management software.

4. FRONT-END SUBNET
The front-end subnet, represented on the right side of Fig-

ure 1, is composed by a bunch of servers with lots of RAM
and CPU. The connection schema is the same used for the
back-end subnet: each front-end server can be equipped with
a number of NIC, in our case each server has 8 NICs (2 quad-
port Gigabit Ethernet), where 4 links are directed to back-
end switches and the remaining 4 links are directed to front-
end switches. The channel aggregation is again achieved
through the Linux bonding driver.

The front-end servers do not need any internal hard disk
because they are network booted by OpenQRM, using DHCP,
TFTP and iSCSI or NFS protocols with a minimal Linux
distribution with only the software required to run a KVM
virtual machine.

Because of virtualization, the front-end servers host a multi-
level network stack (Figure 3). The first level is composed
by several physical network devices (8 in our case), half of
which is connected to back-end switches, while the other
half is connected to front-end switches. The second level is
given by link aggregation with bonding driver. We created
two bond devices: bond0 (directed to back-end switches)
and bond1 (directed to front-end switches). The first bond
is used for storage access, while the second one is used for
service delivery because the front-end switches are attached



to a generic internet gateway. Finally, the third level is
the bridge, which allows virtual machines to use network-
ing. Virtual machines support two networking configura-
tions: bridge and NAT. The simplest configuration is bridge,
because it involves network layers from physical to Logical
Link Control (LLC), belonging to the Data Link layer. How-
ever, because of its simplicity, bridging configuration can
only be used when complex network segmentation and iso-
lation are not needed, because they can only be achieved us-
ing VLANs. VLANs imply switches configuration and, when
the network becomes large, they can be very hard to man-
age. On the other hand, using NAT we raise the OSI layer
to Network/Transport, so we can use more complex firewall
rules to manage subnets communications at the price of los-
ing the ability to use non TCP and non UDP applications.

Figure 3: Network stack of the front-end servers.

Each front-end server has two network stacks: the first
for data access and directed to storage gateways through
back-end switches, and the latter for service delivery.

5. CASE STUDY: LTSP
Linux Terminal Server Project (LTSP) is a free and open

source terminal server for Linux that allows many people to
simultaneously use the same computer. The applications
run on the server with a terminal known as thin client,
which handles input and output. Terminals are typically
low-powered, lack a hard disk, and are quieter than desktop
computers because they do not have any moving part.

We implemented a LTSP cluster, designing it for a max-
imum of 200 users and using the system infrastructure pre-
sented in this paper. This specific implementation offers
several features which make it a competitive solution for
desktop virtualization. In the following, we describe the
components of the LTSP cluster and how these components
fit into the proposed system architecture.

5.1 LTSP Cluster Components
LTSP cluster components are virtual machines and stor-

age provided by the underlying infrastructure. The first
problem we have to face is the need of a shared /home hier-
archy, because a single server cannot sustain the workload
submitted by 200 users. The idea is that if we have a shared
/home and multiple LTSP servers mounting that shared di-
rectory, the user could log on any server without noticing
any difference.

NFSv3 is surely the lightest protocol we can use for /home
sharing, but its lightness is countermeasured by the lack of
some important functionalities, above all those for user au-
thentication. To overcome this lack, a global name-space for
users and groups is needed. The simple way to obtain such
a global naming service is with Network Information Sys-

tem (NIS). NIS is a domain server capable of providing cen-
tralized authentication (and therefore a global naming ser-
vice) as well as other useful services like global /etc/hosts,
/etc/ethers and so on. In order to have multiple LTSP
systems running in parallel, we need an additional highly-
available system running NIS and NFS servers. It is now
clear that we need at least two different appliance templates:
the first for managing users and for sharing home directories
(we will call it domainmanager), the latter for providing the
actual LTSP service (we will call it gentoo-ts). Both these
appliances are based on virtual machines created on top of
front-end servers. In particular, we use one virtual machine
for the first type and several virtual machines for the second
type. In the following sub-section we will describe in detail
the software and architectural issues regarding these appli-
ances. Then we will present some results provided by the
infrastructure monitoring system.

5.1.1 domainmanager Appliance
The domainmanager appliance has the main task of main-

taining a common naming service for the entire system. In
addition, it exports the /home directory to gentoo-ts ap-
pliances. Since domainmanager is the only appliance that
directly mounts the filesystem containing the /home direc-
tory content, we also installed Samba on this appliance, in
order to make it possible for user data to integrate with pos-
sible Windows clients. The software collection is enriched
with CUPS, with which we provide a unified printer man-
agement, and clamav, a well-known Linux anti-virus.

Last but not least, domainmanager hosts the thin client
Gentoo minimal system, a DHCP server and a TFTP server.
Summing up, it hosts all the services, except for the terminal
server service itself.

Differently from the front-end servers, domainmanager is
supposed to face an intensive disk workload. For this rea-
son and since NFS does not support recursive exports, both
the root and home filesystems are mounted via the iSCSI
protocol from the storage gateways.

Figure 4: LTSP cluster overlay.

Figure 4 shows the architecture of the LTSP implemen-
tation and its dependence on the domainmanager appliance.
We found out that possible domainmanager crashes just pause



the terminal servers executions because they all remain in
a wait state for accessing data (users perceive a freeze of
their desktop that can last from some second to a minute
or two). When domainmanager recovers, the NFS TCP con-
nection between the terminal servers and domainmanager is
re-established and I/O queues are flushed. We observe that
with this solution users do not lose their desktop session.

5.1.2 gentoo-ts Appliances
gentoo-ts appliances are VMs with a Gentoo operating

system installed with a desktop/kde profile and the ltsp-

server and ltspfs LTSP packages. The former contains
a set of scripts used to exploit specific LTSP functionali-
ties like local applications; the latter is a fuse filesystem to
mount USB local storage devices and IDE/SATA CDROMs.
gentoo-ts appliances boot over network by mounting a NFS
root filesystem from the storage gateway and a NFS /home

filesystem from domainmanager (Figure 4). They only differ
for the configuration of the host name and IP address. Other
configurations are exactly the same because we want to offer
a transparent terminal server service, regardless from what
server the user logs on. The workload gentoo-ts appliances
are supposed to face is strictly related to the SSH protocol
configuration, because LTSP heavily uses SSH, from X redi-
rection to data transfer from/to local devices. The encryp-
tion largely impacts on the SSH configuration. Without en-
cryption, server performances are boosted and a dual quad-
processor server can manage even 50 users. Otherwise, when
encryption is enabled, the processor load increases both on
clients and servers, also requiring a relatively powerful CPU
on thin clients. Summing up, SSH encryption must be en-
abled in case of security concerns; otherwise, in a trusted
network unencrypted connections are preferable.

The load balancing of terminal server appliances is per-
formed at session level and is carried out by the login man-
ager, which runs on client machines and selects the best
server available at login time through a server-state aware
algorithm. To acquire server state information, the login
manager queries every ldminfod daemon, which runs on ev-
ery terminal server and computes a score for that server.
Then, the login manager selects the server with the highest
score. To compute each server score we use a linear com-
bination of some server load indexes, specifically, the CPU
utilization and the amount of available RAM; anyway, the
formula used to compute each server score can be configured.

5.2 Infrastructure Monitoring
We now present some results obtained with the infras-

tructure monitoring system for which we adopted the open-
source tool Zabbix [10], that is one of the most powerful
and easiest platforms to work with (other popular open-
source distributed monitoring systems include Ganglia and
Nagios). Zabbix is based on a client-server approach: it is
composed by a server backed by a DBMS (MySQL in our
case), agents that have to be deployed on the monitored sys-
tem and send all the information to the server, and a web
interface, often installed on the server, to both configure the
sensors and analyze the results. We installed the Zabbix
server on the same server of OpenQRM and the agents on
every machine (either physical or virtual). We configured
the sensors to collect several types of data, ranging from
CPU usage to disk and network I/O at every virtualization

level. In the following, we present some data collected on
the key nodes of the infrastructure in a typical working day.

Figure 5 shows the CPU idle percentage on 3 terminal
servers (VMs with 16 CPU each) and the number of con-
nected users. The CPU utilization follows the typical pat-
tern of a working day, increasing from 8 AM and decreasing
around 4 PM, but never growing more than 50% because we
sized the system for 200 concurrent users. However, when
the load increases, a new physical or virtual server can be
added to the LTSP cluster in a few minutes and it will be im-
mediately known to the login manager which carries out the
load balancing for new user sessions. The opposite holds
when the load decreases, e.g., during nights, when most
servers can be turned off to reduce power consumption.

Figure 6 represents the network usage of gentoo-ts-1

from the front-end side connected to end users. As expected,
the outgoing traffic always overcomes the incoming traffic
because the thin clients only send data to servers when a
local device has to be used (e.g., a USB storage device).
However, the peak outgoing throughput is around 32 MB/s,
which can be sustained even with a single Gigabit interface.

The workload domainmanager is supposed to face mainly
regards /home NFS serving. Figure 7 shows the CPU idle
percentage of a VM with 6 CPUs, where we observe up to
80% usage during peaks. Although NFSv3 is a lightweight
protocol, its CPU consumption cannot be ignored during
the infrastructure capacity planning: in our case, NFSv3
requires almost 12 CPUs for 200 users (in the analyzed day
only 6 as there are up to 100 users), that is about 20% of
the entire LTSP cluster CPU power.

Finally, Figure 8 shows the throughput of /home volume
over time. It roughly follows the same pattern of the CPU
usage, but with much more spikes due to large file transfers.

6. CONCLUSIONS
We presented a system architecture for a reliable, scal-

able, easily manageable, and flexible IaaS cloud provider.
To demonstrate its effectiveness, we described the imple-
mentation of a LTSP cluster that relies on the proposed
architecture. The architecture reliability has been achieved
by introducing high availability and fault tolerance in all the
infrastructure components. The scalability regards both the
storage and the computational power: the first is achieved
by adding or removing disks or storage units, the latter by
adding or removing physical machines from the pool of front-
end servers. The easiness of management is ensured by
OpenQRM. Finally, the flexibility is obtained at the stor-
age level through LVM, which provides features like volume
resizing, snapshotting, and shrinking, and at the computa-
tional resources level through OpenQRM, which manages
uniformly different virtualized and physical resources, thus
providing the administrator with the ability to migrate from
virtual to physical environments and vice versa.

From our case study, we found that it is quite difficult to
size the system for LTSP, because the workload varies highly
from user to user. We managed to size properly the system;
however, our sizing may not fit adequately for another orga-
nization because a single desktop connection is a gateway to
a large number of activities a user can accomplish. There-
fore, we plan to investigate the use of self-adaptation mech-
anisms to avoid underprovisioning or overprovisioning the
system. Such adaptation mechanisms require various com-
ponents, including a monitoring system, strategies to ana-



Figure 5: CPU idle percentage (left side of y axis) and number of connected users (right side of y axis) over
time for Gentoo terminal servers.

Figure 6: Network throughput over time for gentoo-ts-1.

Figure 7: CPU idle percentage over time for domainmanager.

Figure 8: Disk throughput over time for /home volume.

lyze the monitored data, an adaptation policy, and a flexible
system which can scale. In this paper we presented a flex-
ible and scalable system with a monitoring component. In
future work we will study techniques, such as PCA, to ana-
lyze the monitored data and adaptation policies to optimize
performance with cost and energy constraints.
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