
4

Model-Based Response Planning Strategies for Autonomic

Intrusion Protection

STEFANO IANNUCCI, Mississippi State University

SHERIF ABDELWAHED, Virginia Commonwealth University

The continuous increase in the quantity and sophistication of cyberattacks is making it more difficult and

error prone for system administrators to handle the alerts generated by intrusion detection systems (IDSs).

To deal with this problem, several intrusion response systems (IRSs) have been proposed lately. IRSs extend

the IDSs by providing an automatic response to the detected attack. Such a response is usually selected either

with a static attack-response mapping or by quantitatively evaluating all available responses, given a set of

predefined criteria. In this article, we introduce a probabilistic model-based IRS built on the Markov decision

process (MDP) framework. In contrast to most existing approaches to intrusion response, the proposed IRS

effectively captures the dynamics of both the defended system and the attacker and is able to compose atomic

response actions to plan optimal multiobjective long-term response policies to protect the system. We evalu-

ate the effectiveness of the proposed IRS by showing that long-term response planning always outperforms

short-term planning, and we conduct a thorough performance assessment to show that the proposed IRS can

be adopted to protect large distributed systems at runtime.

CCS Concepts: • Security and privacy → Artificial immune systems;

Additional Key Words and Phrases: Intrusion response system, autonomic intrusion protection

ACM Reference format:

Stefano Iannucci and Sherif Abdelwahed. 2018. Model-Based Response Planning Strategies for Autonomic

Intrusion Protection. ACM Trans. Auton. Adapt. Syst. 13, 1, Article 4 (April 2018), 23 pages.

https://doi.org/10.1145/3168446

1 INTRODUCTION

According to the Akamai’s state of the Internet 2015 Q3 Report [2], there has been a 179.66%

increase in total DDoS attacks with respect to the same period in 2014. Security mechanisms, such

as firewalls, encryption, and properly configured access control policies have quickly shifted from

being the defense mechanisms to being just the first line of defense [24]. The second line of defense

is usually represented by signature-based or anomaly-based network intrusion detection systems

(IDSs). The former are able to scan the content of the network packets looking for signatures of

known attacks but are unable to identify unknown (0-days) attacks. To this end, anomaly-based

This work was partially supported by the Pacific Northwest National Laboratory under U.S. Department of Energy contract

DE-AC05-76RL01830.

Authors’ addresses: S. Iannucci, Mississippi State University, 665 George Perry Street, Mississippi State, MS, 39762; email:

stefano@dasi.msstate.edu; S. Abdelwahed, Virginia Commonwealth University, 907 Floyd Avenue, Richmond, VA 23284;

email: sabdelwahed@vcu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 ACM 1556-4665/2018/04-ART4 $15.00

https://doi.org/10.1145/3168446

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 1, Article 4. Publication date: April 2018.

https://doi.org/10.1145/3168446
mailto:permissions@acm.org
https://doi.org/10.1145/3168446

4:2 S. Iannucci and S. Abdelwahed

IDSs [5] have recently gained interest. They use machine learning or deep learning techniques [4]

to find whether the protected system does not comply with the expected behavior and/or whether

there is some anomaly in the network traffic flow.

The increasing number of cyberattacks makes it difficult and error prone for system admin-

istrators to manually handle all alerts generated by the IDSs. Intrusion response systems (IRSs)

try to address this problem by automatically selecting the responses to the attacks detected by

the IDSs [45]. Two main types of IRSs have been proposed so far [36]: static mapping and dy-

namic evaluation (e.g., [37, 41, 44]). With the static mapping type, the system administrators are

expected to manually associate each category of detectable attacks with a prospective response

action. However, periodically upgrading the response mapping can be overwhelming, given the

massive amount of day-by-day newly discovered attacks and the ability of the attackers to bypass

known protection mechanisms. The dynamic evaluation approach tries to overcome this limitation

by letting the system administrator associate each single category of attack to a set of response

actions. The response action is then chosen among the others according to an underlying system

model and some evaluation criteria (e.g., the resolution time, cost, and impact) by solving a multi-

objective optimization problem (e.g., [16]) or by ranking the alternatives (e.g., [9, 11, 16, 17, 35, 37,

41]).

Most of the works proposed so far either try to model the behavior of the attacker using attack

graphs (e.g., [17]) or model the dependencies between the system components (e.g., [44]), but

only a few of them introduce a comprehensive model able to describe the attacker behavior, the

defender (IRS) behavior, and the actual system dynamics (e.g., [47]). Having a full model of the

system associated with a control framework has several advantages, among them the possibility

to simulate the behavior of the controlled system and to estimate its evolution over time [1].

In this article, we use the Markov decision process (MDP) framework to model a system con-

trolled by an IRS. Unlike other approaches, we do not select a single short-term optimal response

action; rather, we produce an optimal long-term policy—that is, an optimal sequence of response

actions able to drive the system from its initial (under attack) state to a set of target (desired) states.

We use the model to simulate the behavior of the system, and we show that long-term policies al-

ways outperform short-term policies by estimating average values and confidence intervals of the

attack resolution time, cost, and impact for a system subject to real-world attacks. In addition,

as an extension to our previous works [21, 22], we observe that being able to proactively react

to a potential threat before it occurs is often better than waiting for it to reveal. To this end, we

extend the previous single-agent MDP formulation, which only describes the system and the IRS

behavior, by adding the attacker behavior to the model, using a competitive multiple-agent MDP

implemented as a stochastic game [7]. We show that when this model is adopted, the IRS is either

able to fully prevent an attack or at least anticipate some defense actions before the attack actually

occurs.

Since the MDP state space grows exponentially with the number of features used to describe the

system and the attacker states, we propose an algorithm able to instantiate the minimal MDP—that

is, the MDP characterized by the minimum number of attributes and actions needed to drive the

system to a secure state. Furthermore, we compare both the performance and the effectiveness

of the single-agent formulation using state-of-the-art optimal and a suboptimal MDP planners

implemented in the BURLAP library.1 In addition, we extend the BURLAP library with a parallel

Java implementation of the value iteration (VI) algorithm [3], which scales linearly with respect to

the number of worker threads. The latter complements our previous work [23] on the performance

1Brown-UMBC Reinforcement Learning and Planning (BURLAP): http://burlap.cs.brown.edu/.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 1, Article 4. Publication date: April 2018.

http://burlap.cs.brown.edu/

Model-Based Response Planning Strategies for Autonomic Intrusion Protection 4:3

evaluation of VI on Intel MIC architecture [13]. Finally, we evaluate the performance of an optimal

planner in the multiple-agent case.

The remainder of the article is organized as follows. The metamodeling framework and the

system models are presented in Section 2. In Section 3, we compare the performance and the

effectiveness of optimal and suboptimal MDP solvers and propose an algorithm for reducing the

MDP state space. Detailed response policies evaluations are presented in Section 4. In Section 5,

we present a discussion of related work. Section 6 concludes the work.

2 SYSTEM MODEL

The proposed system model is derived from the MDP framework. In the following, we provide an

overview of the theoretical foundations of the single-agent and multiple-agent MDPs and explain

how we use this framework to build a system model representing the behavior of an IRS when

trying to protect a system from cyberattacks.

2.1 The MDP Modeling Framework

A single-agent discrete-time MDP is a stateful probabilistic approach to model the behavior and

the runtime dynamics of a system. An MDP [3] is a tuple 〈S,A, P ,R,γ 〉, where S represents the state

space that the agent can navigate and sk ∈ S represents the agent state at discrete-time k . Even if

not explicitly considered in the MDP framework, a common practice is to characterize each state

with a number of attributes.A is the finite set of actions available to the agent to navigate the state

space. Specifically, by executing at time k an action ak ∈ A in the current state sk ∈ S , the agent

moves to a successor state sk+1 ∈ S . The transition dynamics from the current to the next state

are given by the transition probability function P . This function specifies, for each source state

sk ∈ S , for each destination state sk+1 ∈ S , and for each action ak ∈ A, the value P (sk ,ak , sk+1)—
that is, the probability value that by executing the action a in state s at time k , the resulting state

will be sk+1. When the transition probability function is time independent (stationary), we have

∀k .P (sk ,ak , sk+1) = P (sk ,a, sk+1). Every time an action is executed, the MDP agent is rewarded

with a bonus (or penalized with a cost), according to the reward function R. In other words, Rk =

R (sk ,ak , sk+1) represents the reward that the agent will earn (or the cost the agent will pay) for

executing at time k the action a in state sk and being taken to some state sk+1. Some MDP models

use a different reward function, based only on sk and ak and not considering sk+1. When the

reward function is time independent (stationary), we have ∀k .R (sk ,ak , sk+1) = R (sk ,a, sk+1). γ is

the discount factor, usually defined in the interval [0, 1], which specifies how much short-term

rewards are preferred over long-term rewards.

The overall behavior of the agent is described by a deterministic or stochastic policy π . When

π is deterministic, it specifies, for each sk , the action ak that the agent must execute. When π is

probabilistic, it specifies a probability distribution such that π : S ×A→ [0, 1]. The objective of

the agent is to find a policy π ∗ such that the discounted reward Rk =
∑∞

j=0 γ
jRk+j+1 is maximized.

Several optimal and suboptimal algorithms for solving MDPs have been proposed (e.g., [3, 27, 29,

31, 38]), but one of the most commonly used remains the VI algorithm [3] because of its simplicity.

It is based on the concept of state-value functionVπ (sk) = Eπ [Rk |sk]—that is, the expected reward

achievable by the agent starting from state sk and then following policy π . The base step of the

algorithm is to assign an initial random state-value V 0 to all states and then execute the iterative

refinement process described in Boutilier [6]:

V i+1 (sk) = max
ak ∈A

R (sk) + γ
∑

sk+1∈S
P (sk ,ak , sk+1)V i (sk+1). (1)

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 1, Article 4. Publication date: April 2018.

4:4 S. Iannucci and S. Abdelwahed

The sequence of functions V i converges linearly to the optimal value V ∗ in the limit and thus

provides the expected maximum reward obtainable by following the optimal policy π ∗ from state

sk .

A multiple-agent discrete-time Markov decision process (MA-MDP), also known as a stochastic

game, is an extension of the single-agent MDP. An MA-MDP with n agents is defined by the tuple

〈S,A1, . . . ,An , P ,R1, . . . ,Rn ,γ 〉. With this formulation, different agents have possibly different sets

of available actions and can have potentially different reward function. The transition from sk to

sk+1 is therefore given by the joint action of all agents: ak = [ak,1, . . . ,ak,n]. According to the

reward functions definitions, the agents could cooperate to reach a common objective or could

behave selfishly (i.e., trying to achieve personal goals at the expense of the other agents). The

former case is described in detail in Boutilier [6], whereas the competitive case is described in

Busoniu et al. [7].

2.2 System and IRS Modeling With MDP

In this work, we use the single agent and stationary MDP modeling framework to model the be-

havior of a system responding to an attack. The agent represents the IRS, whose objective is to

find an optimal policy to drive the system from a dangerous (under attack) state to a final (desired)

state. We introduce two extensions to the general MDP framework: a termination function T and

the precondition function PC . The termination function T : S → {true, false} is used to define the

subset Stдt = {s ∈ S |T (s) = true} of the target states, which represents the set of the states where

the agent stops its execution; the precondition function PC : S ×A→ {true, false} is instead used

to define whether an action a ∈ A is executable in state s ∈ S .T and PC are introduced to simplify

notations. They can be expressed directly in the base model with a target state sk ∈ Stдt formu-

lated as a state where ∀a.P (sk ,a, sk+1) = 0, whereas a nonexecutable action a has the characteristic

∀sk+1.P (sk ,a, sk+1) = 0. The objective of the MDP agent is to drive the system from a starting state

s to a target state s ′ ∈ Stдt such that the path between s and s ′ maximizes its reward.

In the following, we describe how we modeled a simple system, characterized by 14 system

attributes and that could be subject to seven different attacks.

2.2.1 States Characterization. We use the object-oriented MDP representation introduced in

Diuk et al. [12] in which each state is characterized by several attributes. Specifically, we compose

the states by joining two macroattributes: the attack vector p and the system variables v. The

former contains as many variables as the number of attacks detectable by the IDSs, and each

variable pi ∈ p represents the probability value that the system is currently under attack i . The

latter represent the current system status.

We consider seven different attacks and 14 system attributes. The attacks are modeled by the

attributes pscan, pvsftpd, psmbd, pphpcgi, pircd, pdistccd, prmi, which represent the probability that the

controlled system is being attacked respectively by a port scan, an exploit on the vsftpd daemon

(OSVBD-73753), an exploit on the smbd daemon (CVE-2007-2447), an exploit on the execution of

PHP as a CGI application (CVE-2012-1823), an exploit on the ircd daemon (CVE-2010-2075), an

exploit on the distccd daemon (CVE-2004-2687), and finally an exploit on the rmi Java daemon

(CVE-2011-3556). We specifically chose these attacks because their respective vulnerabilities are

exposed by metasploitable,2 an intentionally vulnerable Linux Virtual Machine that can be

used to conduct security training, test security tools, and practice common penetration testing

techniques. We consider the following system attributes:

2Virtual machine to test Metasploit: https://information.rapid7.com/metasploitable-download.html.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 1, Article 4. Publication date: April 2018.

https://information.rapid7.com/metasploitable-download.html

Model-Based Response Planning Strategies for Autonomic Intrusion Protection 4:5

• firewall ∈ {true, false} represents whether the system firewall is active.

• {blocked_ips} represents the set of currently blocked source IP addresses from the firewall

of the considered system.

• {flowlimit_ips} represents the set of currently throughput-limited source IP addresses.

• alert ∈ {true, false} represents whether the system administrator has been alerted about the

ongoing attack.

• {honeypot_ips} represents the set of IP addresses whose traffic is currently being redirected

to an honeypot.

• logVerb ∈ {0, 1, 2, 3, 4, 5} represents the currently configured logging verbosity of the appli-

cations installed on the considered system.

• active ∈ {true, false} represents whether the considered system is currently active and serv-

ing requests or if it has been shut down.

• quarantined ∈ {true, false} represents whether the considered system is currently active and

serving requests or if it has been isolated from the network.

• rebooted ∈ {true, false} represents whether the considered system has been rebooted during

the execution of the current policy.

• backup ∈ {true, false} represents whether the considered system has ever been backed up

during the execution of the current policy.

• updated ∈ {true, false} represents whether the software installed on the controlled system

is updated.

• manuallySolved ∈ {true, false} represents whether there has been a manual intervention

during the execution of the current policy.

• everQuarantined ∈ {true, false} represents whether the system has been quarantined dur-

ing the execution of the current policy.

• everShutDown ∈ {true, false} represents whether the system has been shut down during

the execution of the current policy.

2.2.2 Reward Function. Although several works aim at addressing the problem of evaluating

the response cost to counter or mitigate an intrusion, a standard methodology has not yet been

determined [43]. A common approach for cost evaluation is to take into consideration the effective-

ness of the response action as in Ossenbuhl et al. [37] or to deal with the negative impact that it can

have on the system [15, 18]. A third parameter usually contemplated for this evaluation is the op-

erational cost that must be sustained to pay for hardware, software, and human resources needed

to counter the attack [30, 43]. However, there are other factors that should be considered when

planning a defense policy, among others: the confidentiality, integrity, availability (CIA) triad [10,

40] and the service-level agreement (SLA) [34] that the system is supposed to meet. The former is

related to the data, which could be released, modified, or made inaccessible without authorization,

causing confidentiality, integrity, and availability issues, respectively. The latter is instead related

to the quality of service (QoS) that must be provided to the end users in terms of nonfunctional

requirements such as applications response time and system reliability [8].

In this work, we consider all aforementioned attributes with the exception of the CIA triad for

the defender’s reward function. The latter is instead considered for the attacker’s reward function

and evaluated as discussed in Section 2.3.3. Furthermore, we also consider the response time—that

is, the expected time needed to execute the defense policy on the target system. Specifically, we

characterize the MDP reward function as a penalty score on the actions considered for inclusion in

the defense policy. The reward function evaluates the response actions according to the following

criteria:

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 1, Article 4. Publication date: April 2018.

4:6 S. Iannucci and S. Abdelwahed

• Response time T (x) ∈ R represents the time needed to apply the response action x .

• Cost C (x) ∈ R represents the operational cost of applying the response action x .

• Impact index I (x) ∈ [0, 1] represents the impact index of the response actionx on the system

and is computed as follows:{
I (x) = wR

R (x)−R0

Rmax
+wD

D0−D (x)
Dmin

, R (x) ≤ Rmax ,D (x) ≥ Dmin

I (x) = 1, otherwise,

where R (x) and D (x) are the actual applications’ execution time and reliability after the

execution of the action x , R0 and D0 respectively are the applications’ execution time and

reliability during normal operations, and ∀x .R (x) ≥ R0,D (x) ≤ D0; Rmax and Dmin respec-

tively are the SLA upper limit for the response time and the lower limit for the reliability,

and wR and wD are custom weights with wR +wD = 1.

The reward function is then defined as follows:

Rir s = −wt
T (x)

Tmax
−wc

C (x)

Cmax
−wi I (x), (2)

where wt ,wc ,wi ∈ [0, 1] are custom weights used to balance the importance of the criteria in the

multicriteria optimization problem.Tmax andCmax respectively represent the maximum response

time and the maximum cost over all considered response actions and are used to normalize their

values. It is worth noting that in the reward function, we did not consider the effectiveness of

the response action, because it is tightly integrated with the model of the system in the form of

actions’ postconditions, as described in Section 2.2.3.

2.2.3 Response Actions. To avoid activating potentially disruptive response actions when the

system is not under severe attack and to better deal with the stochastic nature of the IDS inputs,

we introduce two thresholds on the attack probability attributes, namelyT1 andT2,T1 < T2. Thus,

given an attack probability p, it can belong to one of the following four stages: (p < T1) the IDSs

have detected an insignificant anomaly that should be considered as noise, and no response ac-

tions should be triggered. With (T1 ≤ p < T2), the IDSs have detected a significant anomaly, which

cannot be classified as an attack. However, the system can start planning some response action

to prevent possible attacks. With (T2 ≤ p < 1), the anomaly detected by the IDSs is considered to

be an unidentified attack, and therefore the response plan generated by the IRS can only contain

generic responses. When (p = 1), the attack has been identified and a specific response plan can

be computed.

In the following, we describe some of the response actions that our IRS prototype is able to

apply on the controlled system. For each of them, we provide a description of its behavior and the

response time R, cost C, and impact I attributes, needed to compute the expected reward when

planning the optimal policy. Each response is characterized by preconditions and postconditions.

The former identify a subset of the states in which the actions can be executed; the latter are used

instead to compute the state in which the system will be after the execution of the considered

action. It is worth noting that although in this work we only consider statically defined transition

probabilities as postconditions, it is possible to establish a feedback loop between the system and

the IRS so that they can be updated at runtime to better mimic the actual system behavior. Eventual

dependencies between response actions are not directly modeled: indeed, using preconditions, we

are able to model the eventual dependency of a response action on a given subset of states, which

in turn could imply that some dependent actions have been executed prior to the execution of the

current action. Table 1 summarizes response time, cost, and impact attributes for the considered

actions.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 1, Article 4. Publication date: April 2018.

Model-Based Response Planning Strategies for Autonomic Intrusion Protection 4:7

Table 1. Response Actions Parameter Summary

Action Name Resp. Time Cost Impact

Generate Alert 1 1 0

Firewall Activation 2 1 0

Block Source IP 1 3 0.3

Unblock Source IP 1 3 0

Flow Rate Limit 3 1 0.2

Unlimit Flow Rate 3 1 0

Redirect to Honeypot 3 3 0.1

Un-honeypot 3 3 0

Increase Log Verbosity 2 1 0.05

Decrease Log Verbosity 1 1 0

Quarantine Host 5 5 1

Unquarantine Host 5 5 0

Manual Resolution 3,600 200 0

System Reboot 60 6 0.7

System Shutdown 30 6 1

System Start 30 6 0

Backup Host 3,600 10 0.1

Software Update 600 300 0.1

Firewall activation. This starts the system’s firewall in case it was not started previously. Its

characteristics are the following:

• Reward attributes: T = 2,C = 1, I = 0

• Preconditions: (pscan ≥ T1 ∨ pvsftpd ≥ T1 ∨ psmbd ≥ T1 ∨ pphpcgid ≥ T1 ∨ pdistccd ≥ T1 ∨ prmi ≥
T1 ∨ pircd ≥ T1) ∧ ¬firewall ∧ ¬quarantined ∧ active ∧ logVerb > 0

• Postconditions: Prob = 1,firewall = 1.

This action can be executed when at least one entry of the attack probability vector p is greater

than or equal toT1, the firewall itself has not been activated yet, the system is active and it has not

been quarantined, and the log verbosity is at least equal to 1. The resulting state after the execution

of the action will be reached with probability 1 and is identical to the current state but with the

firewall attribute set to true .

Block source IP badIP. This configures the system’s firewall to drop IP packets originated by the

IP badIP. Its characteristics are the following:

• Reward attributes: T = 1,C = 3, I = 0.3
• Preconditions: pscan ≥ T2 ∧ f irewall ∧ ¬quarantined ∧ active ∧ badIP � blocked_ips ∧

alert ∧ logVerb > 1

• Postconditions: Prob = 1,blocked_ips = blocked_ips ∪ {badIP},pscan = 0.

This action can be executed when the port scan attack probability is greater than or equal to

T2 and the firewall has been previously activated. Furthermore, it is required that the system is

active and has not been quarantined and that its log verbosity is at least equal to 2. Finally, the

system administrator must have been previously alerted, and the IP address of the attacker must

not yet belong to the set of the blocked IPs. The resulting state after the execution of the action is

identical to the current state but with the badIP included into the set of the blocked IPs and with

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 1, Article 4. Publication date: April 2018.

4:8 S. Iannucci and S. Abdelwahed

pscan attribute set to 0. Setting the probability of an attack to zero for the next state means that

the expected result in executing the given action is to certainly stop the attack.

Flow rate limit badIP. This configures the system’s firewall to limit the traffic rate of IP packets

originated by the IP badIP. Its characteristics are the following:

• Reward attributes: T = 3,C = 1, I = 0.2
• Preconditions: pscan ≥ T1 ∧ firewall ∧ badIp � flowlimit_ips ∧ ¬quarantined ∧ active ∧

logVerb > 0

• Postconditions:

⎧⎪⎪⎨
⎪⎪
⎩

Prob = 0.5, limited_ips = limited_ips ∪ {badIP },
pscan = 0

Prob = 0.5, limited_ips = limited_ips ∪ {badIP }.

This action can be executed when a port scan attack probability is greater than or equal to T1 and

the firewall has been previously activated. Furthermore, it is required that the system is active and

has not been quarantined and that its log verbosity is at least equal to 1. Finally, the IP address

of the attacker must not belong to the set of the flow rate limited IPs. This action can drive the

system to two different resulting states, with probability 0.5 each. In one case, the action is able to

stop the attacker, and therefore we have pscan = 0 together with the attacker IP address included

in the set of flow rate limited IPs. In the other case, the action is unable to stop the attacker, and

therefore we only obtain to limit the flow rate of the attacker’s IP by adding it to the set of the

flow rate limited IPs.

2.2.4 Termination Function. The policy planning terminates when the system reaches a target

state Stдt = Sa ∪ Sc , where Sa is the subset of states in which the anomaly is harmless and Sc is

the subset of states representing a fully clean system. Both subsets are identified with a Boolean

expression on the state attributes, but for space reasons we only report the Boolean condition

representing the fully clean system state:

Sc = {s ∈ S |pscan < T1 ∧ pvsftpd < T1 ∧ psmbd < T1 ∧ pphpcдi < T1 ∧ pirc < T1 ∧ pdistcc < T1 ∧
prmi < T1 ∧ blocked_ips = ∅ ∧ f lowlimited_ips = ∅ ∧ honeypot_ips = ∅ ∧ logVerb = 0 ∧ active ∧
¬quarantined }.

A clean system state is represented by an attack probability vector whose values are all under

the T1 threshold and there are no firewall limitation configured.

2.3 Attacker Modeling With MA-MDP

The model described so far is able to capture the dynamics of the underlying system and can be

used to plan optimal long-term policies to defend the system against an attack. However, even if the

long-term policies always outperform short-term policies (more details are provided in Section 4),

an IRS built on such a model is not able to anticipate, and thus prevent, a possible multistep attack

because the model does not describe the attacker behavior.

The competitive multiple-agent extension of the model aims at introducing a proactive defense

mechanism by describing the system and its dynamics when subject to control actions executed

by both the IRS and the attacker. Knowing what actions are available to the attacker and their

interdependencies allows for the planning of proactive long-term response policies, able to block

ongoing attacks and prevent an attack escalation.

In this extended model, each attack is characterized by three factors: an attack belief, represent-

ing the probability that the attacker will launch a specific attack in the future; an attack action,

based on preconditions that can specify dependencies on other attacks or on targets on the system;

and the effects that the attack has on the system attributes.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 1, Article 4. Publication date: April 2018.

Model-Based Response Planning Strategies for Autonomic Intrusion Protection 4:9

The multiple-agent extension of the model, based on a two-agent stochastic game, inherits all

characteristics of the single-agent model and extends the set of attributes, the set of the available

actions, and the reward function, which is now based on a joint action model.

2.3.1 Extended Attributes. Among the new attributes, the most important are the timer and the

nextAttackThreshold attributes. These are used to take into account the execution time of both

attacks and responses in the system to simulate the coordinated attack-response behavior. Specif-

ically, the timer attribute has been added to the IRS model, whereas nextAttackThreshold has been

added to the attacker model. The main system timer is kept by timer. Its value is incremented each

time a response action is executed from the IRS side. From the attacker side, a newly launched

attack increases nextAttackThreshold with the expected time needed to complete the attack. The

attacker will not be able to launch new attacks until its threshold is greater than the system timer.

Attack beliefs are characterized by probability values. We add to the attacker agent model as

many attributes as the number of executable attacks.

2.3.2 Extended Actions. Unlike the single-agent model, the multiple-agent one is based on the

concept of joint action. (x ,y)k is a joint action for a two-agent stochastic game, where x ∈ Air s

and y ∈ Aattacker represent the actions chosen at time k by the IRS and the attacker, respectively.

The new set of actions Aattacker , available only to the attacker agent, contains attackVsftpd, at-

tackSmbd, attackPhpcgi, attackIrcd, attackDistccd, attackRmi, noOp. The first six actions model ac-

tual attacks toward the system, whereas the last action represents a void attack, used to describe

an attacker waiting for a running attack to complete or for the preconditions of some attack to

become true.

Due to space limitations, we describe only the attackVsftpd and the noOp actions, the others

similar to the attackVsftpd action. Similarly to the response actions, the attack actions are char-

acterized by preconditions and postconditions. Specifically, Boolean preconditions can be used to

model multistage attacks, where the next stage can be subject to the achievement of some previous

step. Each attack action is characterized by a response time—that is, the time needed for the attack

to complete.

attackVsftpd. This exploits the vulnerability OSVBD-73753 to attack the vsftp daemon:

• Preconditions: pvsftpd < T1 ∧
pscan ≥ T 2 ∧ ¬softwareUpToDate ∧ irsTimer ≥ nextActionTimer

• Postconditions: Prob = 1,pvsftpd = 1.

The preconditions illustrate that the attack is executable by the attacker if it is not currently be-

ing executed (pvsftpd < T1) and when the port scan has been completed successfully (having the

attribute pscan ≥ T 2 at the end of the port scan means that the IRS was unable to run any action

to counter the port scan). Furthermore, to successfully exploit the vulnerability, the software must

not be updated (¬softwareUpToDate), and finally the attack can be executed only when any even-

tual previous attack has been completed (irsTimer ≥ nextActionTimer). When all preconditions are

verified and the attack is launched, the system gets compromised with probability 1 and therefore

its pvsftpd attribute is set to 1.

noOp. This models an attacker currently unable to run an attack because either no preconditions

are currently verified for any of the attack actions or an attack is already running:

• Preconditions: true
• Postconditions: ∅.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 1, Article 4. Publication date: April 2018.

4:10 S. Iannucci and S. Abdelwahed

Being just a void action, noOp can always be executed by the attacker and it does not have any

postcondition because it does not have any effect on the system.

The extended model also requires some modification to all IRS response actions to make them

able (i) to manage the time concept adding to the timer attribute the response time needed for

their execution and (ii) to be executed even when an attack has not been detected yet. To this end,

among the others, we change the preconditions of backup and softwareUpdate. We only present

here the former, but the same considerations apply to the latter.

backup. The purpose of this action is to model a system executing a backup, needed as a pre-

condition for executing the softwareUpdate action:

• Preconditions: ((pscan ≥ T 1 ∨ pvsf tpd ≥ T 1 ∨ psmbd ≥ T 1 ∨ pphpcдid ≥ T 1 ∨ pircd ≥ T 1 ∨
pdistccd ≥ T 1 ∨ prmi ≥ T 1)
∨attPvs f t pd ≥ T2 ∨ attPsmbd ≥ T2 ∨attPphpcдid ≥ T2 ∨ attPir cd ≥ T2

∨attPd ist ccd ≥ T2 ∨ attPr mi ≥ T2) ∧¬quarantined ∧ active ∧ alerted ∧ loдVerb >
1 ∧ backup ∧ ¬so f twareUpToDate

• Postconditions: Prob = 1, timer+ = responseTime (backup),backup = true .

The bold symbols represent the newly added preconditions. Thus, in the extended model, the

action is executable either when any of the currently detected attack attributes are at least equal

toT 1 or when there is any attack belief greater than or equal toT 2. The postcondition increments

the timer with the time needed to perform the backup, as defined in Table 1, and sets the backup

attribute to true.

2.3.3 Joint Reward Function. A joint reward function Rk = (Rk,ir s ,Rk,attacker) is used to model

the reward of the agents in the stochastic game, where Rk,ir s represents the reward achieved by

the IRS and Rk,attacker represents the reward achieved by the attacker, both at discrete timestep

k . The IRS reward is computed with the same reward function described in Section 2.2.2, whereas

the reward of the attacker is evaluated according to the Common Vulnerability Scoring System

(CVSS) [33] using the CIA triad as follows:

Rk,attacker = wscScoreC +wsiScoreI +wsaScoreA, (3)

where wsc ,wsi ,wsa ∈ [0, 1], wsc +wsi +wsa = 1 are custom weights and ScoreC , ScoreI , ScoreA ∈
{0, 0.5, 1} respectively are the confidentiality, integrity and availability scores related to the attack

action. A score equal to 0 means that the attack does not have any impact on the system; 0.5

means that the attack action has a partial impact on the system (e.g., considerable informational

disclosure, modification of some system files, and reduced information availability); 1 means that

the attack can completely compromise the target system, by achieving either a total information

disclosure or the ability to modify any file or the total unavailability of the system. A complete

discussion on the evaluation of the CIA triad is reported in Mell et al. [33].

For the purpose of this work, we attribute the rewards 0, 0.5, 1 respectively to the noOp,

portScanAttack, attackVsftpd actions. The stochastic game solver, based on a multiple-agent version

of the VI algorithm, is set to maximize the disjunct reward. As a result, we simulate two selfish sys-

tems where each one does not know the internals of the other. An alternative would be to simulate

two selfish systems that exactly know the counterpart using a zero-sum stochastic game, where

Rk,ir s = −Rk,attacker . In the latter case, maximizing a reward of a system means minimizing the

reward of the other.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 1, Article 4. Publication date: April 2018.

Model-Based Response Planning Strategies for Autonomic Intrusion Protection 4:11

3 PERFORMANCE EVALUATION

VI is one of the most-used algorithms to plan an optimal policy for single-agent and multiple-agent

MDPs. It produces successive approximations of the optimal value function until the expected

objective value is stable for all MDP states. Unfortunately, even if each iteration can be performed

in O (|A| |S |2) steps [26], the number of states composing the MDP grows exponentially with the

number of the defined attributes. The BURLAP library provides an implementation for both single-

agent and multiple-agent VI, as well as an implementation of a suboptimal rollout-based Monte

Carlo planning algorithm named UCT [29]. However, since all provided implementations are single

threaded, we extended the library by adding a multithreaded implementation of the single-agent

VI algorithm.

In this section, we compare the performance, intended as the planning time and reward gap

in comparison to the optimal case, of the following algorithms: single-threaded, single-agent VI;

multithreaded, single-agent VI (in the following, Parallel-VI); single-threaded UCT; and single-

threaded multiple-agent VI. We show that, while obviously suffering the exponential state growth

like the single-threaded implementation, Parallel-VI is able to scale almost linearly with the num-

ber of available cores. For systems where a small reward loss is acceptable, instead the UCT al-

gorithm provides the best performance, improving the planning time by more than three orders

of magnitude. Finally, the single-threaded multiple-agent VI algorithm is the one requiring the

longest planning time.

The policy planners have been applied on a system characterized by up to 1,000 Boolean state

attributes and up to 1,000 response actions. Each action is bound to one attribute, and it changes

its Boolean value when executed to generate the full state space. The termination condition is

based on an additional termination attribute that can be set to true by any action with probability

1/10. The reward function assigns the reward −1 to the actions with an even index and −2 to the

actions with an odd index. All tests have been executed on a single compute node of the Shadow

supercomputer at Mississippi State University, characterized by 20 cores and 512GB of RAM. Only

a single core has been used for the single-threaded VI and for UCT, whereas up to 10 threads have

been run for Parallel-VI.

The multiple-agent game inherits the same structure of the single-agent case but with the fol-

lowing changes: (i) the termination attribute is replaced by an integer attack counter and all re-

sponse actions are capable of decreasing the counter of a single unit with probability 0.1, and (ii)

a second agent modeling the attacker has been added to the system. This is capable of executing

two actions: noOp and attack. The former does not provide the agent with any reward, whereas

the latter provides the maximum reward. When the attack action is successful (with probability

0.05), it increases the attack counter by a single unit. The game ends when the IRS agent succeeds

in zeroing the attack counter.

Figure 1 compares the planning time of all aforementioned planning algorithms. Specifically,

all VI-based algorithms have been configured with γ = 0.9, whereas the UCT algorithm has been

configured to perform 10, 20, or 30 rollouts and with a lookahead of 10 steps. Results highlight that

UCT is able to scale linearly with the number of states, whereas the planning time of both VI and

Parallel-VI grows exponentially, as well as the multiple-agent VI. Figure 2 shows that the speedup

obtained by Parallel-VI is almost linear according to the number of threads. We used only half of

the cores provided by the compute node to focus on the algorithm speedup avoiding architectural

bottlenecks.

Figure 3 compares the VI and UCT rewards in the single-agent case. The rewards provided by the

optimal planner VI are used as a baseline to compare the rewards provided by UCT. As expected,

the average reward obtained by VI is close to −10, specifically −10.07 because it always chooses

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 1, Article 4. Publication date: April 2018.

4:12 S. Iannucci and S. Abdelwahed

Fig. 1. Planning time comparison.

Fig. 2. Parallel-VI speedup.

the response actions characterized with the highest reward. By contrast, the UCT algorithm with

30 rollouts produces an average reward of −10.86.

The memory usage is exponential in the number of attributes in the case of VI, reaching a peak

of 71GB with 50 attributes and 50 actions. The trend is instead linear for all UCT configurations,

resulting in a maximum usage of 5GB for UCT-30 with 1,000 attributes and 1,000 actions.

We observe that the planning time of all planners strictly depends on the cardinality of the state

space, which in turn depends on the number of attributes. Therefore, regardless of the chosen

planner, it is important to limit their number as much as possible to reduce the planning time. We

also observe that the entire set of attributes and the entire set of actions do not necessarily need

to be included in the MDP problem: while countering any threat, we only need to consider the

attributes and the actions that, directly or indirectly, help in facing the threat. The rationale is that

specific threats are supposed to impact only specific system attributes and not all of them.

To this end, we designed and implemented in the proposed IRS a dynamic attributes and actions

selection engine, which is in charge of instantiating the MDP problem with the minimum number

of attributes and actions.

Figure 4 describes the algorithm used to generate the minimum set of attributes and actions.

It takes in input the set of abnormal attributes abnormalAttributes—that is, the set of attributes

whose values differ from the values of the attributes belonging to the final states—and returns the

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 1, Article 4. Publication date: April 2018.

Model-Based Response Planning Strategies for Autonomic Intrusion Protection 4:13

Fig. 3. Rewards comparison.

Fig. 4. Attributes and actions dynamic selection algorithm.

minimal sets of attributes and actions. For each abnormal attribute, the algorithm retrieves the set

of actions that refer to it in its pre- and postconditions (line 4) and adds it to the output set of ac-

tions. For each newly discovered action, it then retrieves the list of attributes used as preconditions

or postconditions for the considered action (line 7) and adds them to the output set of attributes.

The proposed algorithm can be executed inO (|Att | × |A|), with |Att | being the number of defined

attributes, and it introduces a negligible overhead in the overall planning time.

The proposed attributes and actions selection engine breaks the connection between the number

of attributes required to describe the system and the planning time, which is now only dependent

on the maximum cardinality of attributes impacted by a threat. As a consequence, the proposed

IRS is able to compute optimal response policies in less than 2 seconds using the Parallel-VI algo-

rithm for threats impacting up to 50 system attributes and that require up to 50 different response

actions to be countered, and thus we believe that it is possible to use it at runtime to protect large

systems. Whether or not the attack should impact more attributes, the UCT algorithm provides a

planning time that makes it feasible to run it at runtime, with an eventual reward degradation. In

the multiple-agent case, the proposed IRS is able to deal at runtime with threats impacting up to

20 attributes.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 1, Article 4. Publication date: April 2018.

4:14 S. Iannucci and S. Abdelwahed

Fig. 5. Testbed architecture.

4 EXPERIMENTAL RESULTS

In this section, we describe the experiments we carried out to validate the proposed approach and

to demonstrate that long-term planning outperforms short-term planning.

We set up a system composed by an HPC cluster based on Rocks,3 a Snort IDS [39] and the

IRS controller described in Section 2, as shown in Figure 5. The testbed is composed of a single

physical machine that hosts two separate virtual networks, namely the Cluster Internal Virtual

Network and the IRS Virtual Network. The former is attached to all compute nodes of the Rocks

cluster, whereas the latter is attached to Snort and to the IRS. The two networks are constituted by

two different layer-2 segments, and while the first is also bridged to physical WAN interface eth0,

the IRS Virtual Network is instead isolated from external traffic. We run on the physical host two

instances of the tool daemonlogger, which is used to mirror the traffic from the Cluster Internal

Virtual Network and from eth0 to the IRS Virtual Network. Traffic mirroring is accomplished

at layer 2 and it is one-way—that is, frames captured on eth0 or on the Cluster Internal Virtual

Network are forwarded to the IRS Virtual Network but not vice versa.

We simulate a scenario in which an attacker already compromised one compute node in

the cluster and is trying to exploit OSVDB4 and CVE5 vulnerabilities exposed by another

compute node, namely OSVBD-73753, CVE-2007-2447, CVE-2012-1823, CVE-2010-2075, CVE-

2004-2687, CVE-2011-3556. To this end, we set up five compute nodes: compute-0-0-1 to

compute-0-0-3 are healthy VMs; compute-0-0-0 is the VM compromised by the attacker; and

finally metasploitable is a vulnerable, but not yet compromised compute node, target of the

attacks. The compromised compute node is a VM in which we installed the Metasploit software

[32]. We use this VM to scan the internal network and to launch attacks toward the vulnerable

VM metasploitable.

4.1 Single-Agent Policies Evaluation

In the following, we compare the policies generated by the single-agent model–based IRS using

both the VI and the UCT algorithms. Specifically, we configure the VI algorithm to run with two

different settings: γ = 0.9 and γ = 0 (in the following, respectively VI-0.9 and VI-0); the UCT al-

gorithm is instead configured with a lookahead of 30 steps (in the following, UCT-30). VI-0.9 fully

3http://www.rocksclusters.org.
4https://blog.osvdb.org/.
5https://cve.mitre.org/.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 1, Article 4. Publication date: April 2018.

http://www.rocksclusters.org
https://blog.osvdb.org/
https://cve.mitre.org/

Model-Based Response Planning Strategies for Autonomic Intrusion Protection 4:15

Fig. 6. Exploit resolution time comparison.

exploits the MDP features by planning response policies considering both immediate and future

rewards. VI-0, by contrast, is only able to select the best short-term action as in Chen et al. [9] and

Ossenbuhl et al. [37]. Therefore, we compare it to VI-0.9 to show the performance improvement

achievable with long-term planning against short-term planning. Finally, UCT-30 is a suboptimal

planner configured to consider long-term rewards.

We ran two different sets of experiments: a vulnerability exploit and a combination of port scan

attack and vulnerability exploit. All experiments have been repeated 10,000 times, and the output

of each single experiment is a response policy applicable on a real system, characterized by its own

resolution time, cost, and impact, given by the sum of the respective attributes of the component

response actions. For each metric, we compare the average values and the 95% confidence intervals.

The reward function has been configured to optimize the response policy exclusively either on

response time (wr = 1,wc = 0,wi = 0), or cost (wr = 0,wc = 1,wi = 0), or impact (wr = 0,wc =

0,wi = 1).

4.1.1 Vulnerability Attack. Figure 6 compares the average resolution times and confidence in-

tervals of the planned response policies. The first set of columns compares the resolution times

obtained by VI-0.9, VI-0, and UCT-30 while optimizing on response time; the second set of columns

compares the resolution times while optimizing on cost; finally, the third set of columns com-

pares the resolution time while optimizing on impact. The lowest resolution time has been ob-

tained by VI-0.9 with optimization on response time, whereas the worst result has been obtained

with VI-0, with a 115% overhead; the UCT-30 overhead is instead 6%. The following is the most

frequently planned response policy with VI-0.9 and optimization on response time: generateAl-

ert, increaseLogVerb, activateFirewall, increaseLogVerb, increaseLogVerb, increaseLogVerb, increaseL-

ogVerb, systemReboot, backup, softwareUpdate, decreaseLogVerb, decreaseLogVerb, decreaseLogVerb,

decreaseLogVerb, decreaseLogVerb. It is interesting to note how the planner tries to minimize the

average resolution time in the planned the policy; the latter can be indeed easily split in four

phases: preparation, first defense attempt, second defense attempt, and conclusion. The first re-

sponse attempt (systemReboot) has a response time equal to 60 seconds, and it is able to face the

attack with probability 0.3. Therefore, even if most of the time rebooting the machine would not

be a successful resolution of the attack, it offers a very good alternative that can be used to lower

the average resolution time that, in case of a backup and software update, would always be equal

to 4,200 seconds.

Figure 7 compares the costs incurred by the IRS to face the vulnerability exploit. In this case,

the performance obtained by the three planning algorithms with optimization on cost are perfectly

comparable. This happened because most of the time the locally optimal policy was also the global

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 1, Article 4. Publication date: April 2018.

4:16 S. Iannucci and S. Abdelwahed

Fig. 7. Exploit cost comparison.

Fig. 8. Exploitimpact comparison.

optimal policy. The following is the most frequently planned response policy with VI-0.9 and opti-

mization on cost: generateAlert, increaseLogVerb, increaseLogVerb, increaseLogVerb, systemReboot,

activateFirewall, increaseLogVerb, increaseLogVerb, quarantineSystem, backup, manualResolution,

decreaseLogVerb, decreaseLogVerb, decreaseLogVerb, decreaseLogVerb, decreaseLogVerb. Like in the

optimization on response time case, here the IRS tries to lower the average cost by preferring the

systemReboot action over the quarantineSystem, backup, manualResolution.

In Figure 8, a comparison of the impacts produced by the computed policy is shown. The lowest

impact on the real system has been obtained with VI-0.9 and optimization on impact; VI-0 intro-

duced an impact overhead of 50%, whereas UCT-30 did not introduce any impact overhead. The

following is the only planned response policy with VI-0.9 and optimization on impact: generateAl-

ert, increaseLogVerb, activateFirewall, increaseLogVerb, backup, softwareUpdate, decreaseLogVerb, de-

creaseLogVerb. Here the systemReboot action is not taken into consideration because it has a high

impact on the system. Instead, backup and softwareUpdate are always chosen.

In conclusion, VI-0.9 always outperformed both VI-0 and UCT-30, and the latter outperformed

VI-0 in all experiments.

4.1.2 Simultaneous Port Scan and Vulnerability Attack. Figure 9 compares the resolution times

obtained with the different planning algorithms and different optimization strategies. The lowest

resolution time has been obtained with VI-0.9 configured to optimize on response time. UCT-30

introduced a 6% overhead, outperforming VI-0, which introduced a 116% overhead. The following

is the most frequently planned response policy with VI-0.9 and optimization on response time:

generateAlert, increaseLogVerb, activateFirewall, increaseLogVerb, blockSrcIP, increaseLogVerb,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 1, Article 4. Publication date: April 2018.

Model-Based Response Planning Strategies for Autonomic Intrusion Protection 4:17

Fig. 9. Combined attack resolution time comparison.

Fig. 10. Combined attack cost comparison.

increaseLogVerb, increaseLogVerb, systemReboot, backup, softwareUpdate, unblockSrcip, decreaseL-

ogVerb, decreaseLogVerb, decreaseLogVerb, decreaseLogVerb, decreaseLogVerb. To counter the port

scan, the blockSrcIP main defense action has been taken because it is the one with the lowest

response time; to counter the vulnerability exploit, instead, a systemReboot followed by backup

and softwareUpdate have been planned, where the systemReboot has been used to lower the

average resolution time.

The execution costs obtained by the three planning algorithms with optimization on cost and

shown in Figure 10 are perfectly comparable, therefore evidencing that most of the time the lo-

cally optimal policy is also the best globally optimal one. The following is the most frequently

planned response policy with VI-0.9 and optimization on cost: generateAlert, increaseLogVerb, in-

creaseLogVerb, increaseLogVerb, increaseLogVerb, systemReboot, increaseLogVerb, quarantineSystem,

backup, manualResolution, decreaseLogVerb, decreaseLogVerb, decreaseLogVerb, decreaseLogVerb, de-

creaseLogVerb. Unlike the previous case, here blockSrcIP has not been added to the policy because

the chosen manualResolution response action, which is the one with lowest cost to face the vul-

nerability exploit, is also able to deal with the port scan attack.

Finally, Figure 11 compares the impacts produced by the computed policy. The lowest impact

has been obtained by VI-0.9 with optimization on impact, whereas VI-0 introduced an impact

overhead of 22% and UCT-30 an impact overhead of 39%. The following is the most frequently

planned response policy with VI-0.9 and optimization on impact: generateAlert, increaseLogVerb,

activateFirewall, increaseLogVerb, increaseLogVerb, redirectToHoneypot, backup, softwareUpdate, dis-

ableHoneypot, decreaseLogVerb, decreaseLogVerb, decreaseLogVerb. In conclusion, VI-0.9 always out-

performed both VI-0 and UCT-30.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 1, Article 4. Publication date: April 2018.

4:18 S. Iannucci and S. Abdelwahed

Fig. 11. Combined attack impact comparison.

4.2 Multiple-Agent Policies Evaluation

In this section, we discuss the defense policies generated executing the IRS configured with the

multiple-agent model. Specifically, we model an attack consisting of a port scan followed by

an exploit of the vulnerability OSVBD-73753 of the vsftp daemon. We compare the evolution of

the multiple-agent system to the evolution of the single-agent one. In the single-agent case, the

behavior of the attacker is not modeled. Therefore, when the attacker executes the port scan,

the IRS reacts by planning a policy similar to increaseLogVerb, generateAlert, activateFirewall,

increaseLogVerb, blockSrcIP, unblockSrcip, decreaseLogVerb, decreaseLogVerb. Depending on the time

needed by the attacker to complete the port scan and on the time needed by the IRS to counter the

attack, it could happen that the attacker manages to complete the port scan before the IRS could

complete the deployment of the response actions. Being able to complete the port scan allows the

attacker to discover the vulnerability, and as a consequence, it immediately launches the exploit

on the vsftp daemon. At this point, the IRS reacts again by executing one of the policies described

in Section 4.1.1. We observe that (i) the disjoint execution of the policies brings an overhead in

terms of repeated actions and that (ii) the execution of the second policy happens when the system

has already been compromised. Since in the multiple-agent case the behavior of the attacker is

instead modeled, when the attacker launches the port scan, the IRS can use the information of

the attacker’s attack belief to guess what the next attack is and to proactively deploy a response

policy. In the following, we show two games between the attacker and the IRS, represented as

a list of stages of the form (attackerAction / irsAction). In the first game, the port scan attack

is assumed to require 60 seconds, enough for the IRS to deploy all needed countermeasures.

In the second game, instead, the port scan attack is assumed to require only 5 seconds. Due to

limited space, we removed all stages of the game regarding exclusively log verbosity increase or

decrease.

4.2.1 Game 1: Full Prevention.

(1) portScanAttack / generateAlert

(2) noOp / activateFirewall

(3) noOp / blockSrcIP

(4) noOp / unblockSrcIP

(5) noOp / backup

(6) noOp / softwareUpdate

We observe that the attacker, after having launched a 60-second port scan attack, waits for it to

finish with a series of noOp. During the waiting, the IRS is able not only to generate a policy to

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 1, Article 4. Publication date: April 2018.

Model-Based Response Planning Strategies for Autonomic Intrusion Protection 4:19

protect against the port scan (with the blockSrcIp) but also to proactively address the prospective

vulnerability exploit. This prevents the attacker from being able to launch further attacks.

4.2.2 Game 2: Reaction and Prevention.

(1) portScanAttack / generateAlert

(2) noOp / activateFirewall

(3) attackVsftpd / increaseLogVerbosity

(4) noOp / blockSrcIP

(5) noOp / quarantineSystem

(6) noOp / backup

(7) noOp / manualResolution

(8) noOp / unblockSrcIP

(9) noOp / softwareUpdate

In this case, the attacker manages to complete the port scan before its IP gets blocked by the

firewall. The blockSrcIP does not have effect on the attack because it is based on a reverse shell,

and therefore the firewall rule just added does not work. Afterward, the IRS planned to counter

the attack with a manual resolution on a quarantined system, after having executed a backup.

This step solves the ongoing attack but leaves the system vulnerable to other threats because the

software has not been updated yet. Therefore, as a last step, the IRS plans to update the software.

5 RELATED WORKS

The field of autonomic systems, specifically self-protecting systems, is an already established re-

search field [19, 28]. The research produced so far on self-protection is mostly focused on intrusion

detection rather than protection [45]. However, the increasing amount cyberattacks [2] makes it

infeasible to manually handle all generated alerts. IRSs try to address this problem by selecting the

appropriate responses to the detected attacks.

Existing works on dynamic IRS can be classified according to the following dimensions: (i) mul-

tiobjective planning, or the ability of an IRS to select the optimal response action (or response

plan) according to a custom set of weighted criteria; (ii) IDS uncertainty, or the ability of the IRS to

deal with stochastic IDS alerts; (iii) long-term policies, or the ability of the IRS of planning policies

that span over a long period of time rather than just selecting the immediate optimal response;

(iv) system model, or whether the IRS is based on a model of the system, which can be used to

describe the system dynamics due to an ongoing attack or due to the application of a response

action (plan); (v) attacker model, or whether the IRS is based on a model describing the attacker

behaviur and the potential graph of achievable targets.

The authors of Toth and Kruegel [44] introduce a network model, consisting of resources, system

users, network topology, and firewall rules. The model is then used to specify direct and indirect

dependencies among the resources and between the users and the resources to be able to predict

the impact of a service unavailability on dependent services and on dependent users. Such a model

is used by the IRS to choose the response action able to avert a certain threat to minimize the overall

impact on the system and, ultimately, on the users.

ADEPTS [17] focuses on attack containment—that is, on restricting the effect of the intrusion to

a subset of the services. The presented approach maximizes the availability of the overall system

at the expenses of the features compromised by the attack, which are isolated from the rest of the

system. Unlike Toth and Kruegel [44], in which the proposed model is system centric, in this work

the authors propose an attack-centric model, based on intrusion graphs. The latter support OR,

AND, and QUORUM nodes and can be used to easily represent attack propagation and escalation.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 1, Article 4. Publication date: April 2018.

4:20 S. Iannucci and S. Abdelwahed

The Compromised Confidence Index (CCI) is used to compute the confidence of the detected

alert and, by traversing the graph, the confidence of a particular system breach. The response

action is then selected from a response repository by evaluating the effectiveness and the potential

disruptiveness of all available responses.

The authors of Stakhanove et al. [42] propose an IRS that takes into consideration the stochastic

nature of the detections made by the IDS, and the response action is only triggered if the confidence

level of the detected attack is greater than a specified threshold. In Fessi et al. [16], an optimal

response selection is proposed based on financial cost, reputation loss, and processing resource.

A modified version of the classical genetic algorithm is used to represent the association between

each response action with the system resources affected by the execution of the action.

A long-term response planning is presented in Mu and Li [36]. The work uses a Hierarchical

Task Network (HTN) to model the IRS goal, the high-level response actions, and the mechanisms

to enable response actions. This work uses a fixed set of goals and statically maps each goal to a

sequence of high-level response actions.

A partially observable MDP (POMDP) with a single-objective reward function is used in Zan

et al. [46] to model an IRS able to plan optimal response policies. Since the POMDP is subject to an

exponential growth of the states according to the number of the considered attributes, the authors

propose a hierarchical decomposition to reduce the computational complexity.

The authors of Tiehling et al. [35] use a Bayesian directed acyclic graph (DAG) [25] to model

attacker behavior. The DAG nodes describe system assets and their dependencies, whereas edges

represent possible exploitation paths. Responses are evaluated according to the CIA triad prefer-

ring confidentiality and integrity over availability.

The authors of Tonouz et al. [47] propose a game-theoretic model named RRE, based on a

nonzero sum stochastic game. The core of the work is represented by attack response trees (ARTs).

A leaf node of an ART represents a binary system attribute, which is set to 1 if an IDS alert that

includes such an attribute is triggered or to 0 otherwise. Binary attributes are then combined using

AND and OR logical ports to define a path toward the impairment of the system’s functionalities and

ultimately toward the global system when the impairment reaches the root node. Each node of the

tree, with the exception of the leaves, can be labeled with a response tag. The latter represents a

response action that, when executed, is able to set to 0 all attributes specified by the leaves in the

corresponding subtree. In the same way as our approach, the ART model is not built on the basis

of the attack itself but on the consequences that the attack has on the system. RRE includes a com-

ponent that is in charge of computing the security level of the system based on a set of if-then
rules manually defined by the system administrator, according to his personal system knowledge.

The computed security level is represented as a string such as low, medium, high.

All reviewed works, with the exception of Fessi et al. [16] and Mu and Li [36] make use of

either a system or an attacker model to compute the optimal response action. However, Fessi et al.

[16] and Zonouz et al. [47] are the only works considering a multiobjective optimization, which is

fundamental for a fine tuning of the produced response plans. Miehling et al. [35], Mu and Li [36],

and Zonouz et al. [47] are the only works considering a long-term planning. However, the first

only introduces static long-term plan templates, whereas the second only produces the immediate

optimal response action evaluated with infinite lookahead. Zonouz et al. [47], instead, proposes a

long-term response plan based on the evaluation of a stochastic game between the attacker and

the IRS. The authors deal with the exponential growth of the state space using approximation

techniques, but they do not provide hints about the gap that the approximated policies have with

respect to the optimal policies.

This work aims at providing the entire set of features. Specifically, we introduce a reward

function based on the simple additive weighting (SAW) technique [20] to support multiobjective

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 1, Article 4. Publication date: April 2018.

Model-Based Response Planning Strategies for Autonomic Intrusion Protection 4:21

planning; we handle IDS uncertainty by modeling attack probabilities as state attributes; we use the

MDP framework to produce optimal stochastic long-term policies; and we provide both the system

and the attacker model. The former is statically described with state attributes and dynamically

described with the state transitions; the latter is described as a multiple-agent stochastic game.

6 CONCLUSIONS AND FUTURE WORKS

In this work, we presented an IRS, based on the MDP framework, that supports multiobjective long-

term planning. The proposed approach models both the attacker and the defended system behavior

and takes into accounts the uncertainty of IDS detections. We presented the MDP framework as a

model for building reactive and proactive IRSs. We used a single-agent MDP to model the behavior

of a reactive IRS applied to a system subject to several attacks, and we used a competitive multiple-

agent MDP to model a game between a proactive IRS and an attacker. Since the state space of

the models grows exponentially according to the number of the attributes used to describe the

protected system, we introduced a dynamic attributes and actions selection algorithm, which is

able to instantiate the minimal MDP problem given the currently ongoing threat. The performance

assessment showed that the proposed IRS is able to optimally plan response policies at runtime

with threats affecting up to 50 system attributes and requiring up to 50 different response actions

to be countered with the proposed parallel version of the VI algorithm. Should the threat involve

more attributes or actions, the IRS is anyway able to solve the MDP and drive the system toward a

protected state in a suboptimal way. Finally, a thorough effectiveness validation showed that long-

term policies always outperform short-term ones and that stochastic games can be effectively used

to proactively protect a system.

As future work, we plan to establish a feedback loop between the controller and the managed

system to let the actions’ postconditions probabilities evolve according to the real system evo-

lution. Furthermore, we plan to consider nondeterministic MDPs [14] to produce a set of near-

optimal decision policies from which the system administrators could pick the best one according

to his or her personal knowledge. Such a semiautomatic behavior could be particularly useful in

industrial control systems (SCADA), which are used extensively in critical infrastructures.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Qian Chen of Savannah State University for her comments

that improved the overall quality of the article.

REFERENCES

[1] Sherif Abdelwahed, Jia Bai, Rong Su, and Nagarajan Kandasamy. 2009. On the application of predictive control tech-

niques for adaptive performance management of computing systems. IEEE Transactions on Network and Service Man-

agement 6, 4, 212–225.

[2] Akamai. 2015. Akamai’s State of the Internet: Q3 2015 Report. Retrieved March 2, 2018, from https://www.

stateoftheinternet.com/resources-cloud-security-2015-q3-web-security-report.html.

[3] R. E. Bellman. 1957. Dynamic Programming. Princeton University Press, Princeton, NJ.

[4] Yoshua Bengio. 2009. Learning deep architectures for AI. Foundations and Trends® in Machine Learning 2, 1, 1–127.

[5] Monowar H. Bhuyan, Dhruba Kumar Bhattacharyya, and Jugal Kumar Kalita. 2014. Network anomaly detection:

Methods, systems and tools. IEEE Communications Surveys and Tutorials 16, 1, 303–336.

[6] Craig Boutilier. 1996. Planning, learning and coordination in multiagent decision processes. In Proceedings of the 6th

Conference on Theoretical Aspects of Rationality and Knowledge. 195–210.

[7] Lucian Busoniu, Robert Babuska, and Bart De Schutter. 2008. A comprehensive survey of multiagent reinforcement

learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 38, 2, 156–172.

[8] Valeria Cardellini, Emiliano Casalicchio, Vincenzo Grassi, Stefano Iannucci, Francesco Lo Presti, and Raffaela

Mirandola. 2012. Moses: A framework for QoS driven runtime adaptation of service-oriented systems. IEEE Transac-

tions on Software Engineering 38, 5, 1138–1159.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 1, Article 4. Publication date: April 2018.

https://www.stateoftheinternet.com/resources-cloud-security-2015-q3-web-security-report.html

4:22 S. Iannucci and S. Abdelwahed

[9] Qian Chen, Sherif Abdelwahed, and Abdelkarim Erradi. 2014. A model-based validated autonomic approach to self-

protect computing systems. IEEE Internet of Things Journal 1, 5, 446–460.

[10] Yulia Cherdantseva and Jeremy Hilton. 2013. A reference model of information assurance and security. In Proceedings

of the 2013 8th International Conference on Availability, Reliability, and Security (ARES’13). IEEE, Los Alamitos, CA,

546–555.

[11] Chun-Jen Chung, Pankaj Khatkar, Tianyi Xing, Jeongkeun Lee, and Dijiang Huang. 2013. NICE: Network intrusion

detection and countermeasure selection in virtual network systems. IEEE Transactions on Dependable and Secure

Computing 10, 4, 198–211.

[12] Carlos Diuk, Andre Cohen, and Michael L. Littman. 2008. An object-oriented representation for efficient reinforce-

ment learning. In Proceedings of the 25th International Conference on Machine Learning. ACM, New York, NY, 240–247.

[13] Jianbin Fang, Henk Sips, Lilun Zhang, Chuanfu Xu, Yonggang Che, and Ana Lucia Varbanescu. 2014. Test-driving

Intel Xeon Phi. In Proceedings of the 5th ACM/SPEC International Conference on Performance Engineering. ACM, New

York, NY, 137–148.

[14] Mahdi Milani Fard and Joelle Pineau. 2011. Non-deterministic policies in Markovian decision processes. Journal of

Artificial Intelligence Research 40, 1–24.

[15] Ahmed Fawaz, Robin Berthier, and William H. Sanders. 2016. A response cost model for advanced metering infras-

tructures. IEEE Transactions on Smart Grid 7, 2, 543–553.

[16] B. A. Fessi, S. Benabdallah, N. Boudriga, and M. Hamdi. 2014. A multi-attribute decision model for intrusion response

system. Information Sciences 270, 237–254.

[17] Bingrui Foo, Yu-Sung Wu, Yu-Chun Mao, Saurabh Bagchi, and Eugene Spafford. 2005. ADEPTS: Adaptive intrusion

response using attack graphs in an e-commerce environment. In Proceedings of the 2005 International Conference on

Dependable Systems and Networks (DSN’05). IEEE, Los Alamitos, CA, 508–517.

[18] Mansoureh Ghasemi, Hassan Asgharian, and Ahmad Akbari. 2016. A cost-sensitive automated response system for

SIP-based applications. In Proceedings of the 2016 24th Iranian Conference onElectrical Engineering (ICEE’16). IEEE, Los

Alamitos, CA, 1142–1147.

[19] Salim Hariri, Bithika Khargharia, Houping Chen, Jingmei Yang, Yeliang Zhang, Manish Parashar, and Hua Liu. 2006.

The autonomic computing paradigm. Cluster Computing 9, 1, 5–17.

[20] C. L. Hwang and K. Yoon. 1981. Multiple Criteria Decision Making. Lecture Notes in Economics and Mathematical

Systems. Springer.

[21] Stefano Iannucci and Sherif Abdelwahed. 2016. A probabilistic approach to autonomic security management. In Pro-

ceedings of the 13th IEEE International Conference on Autonomic Computing (ICAC’16).

[22] Stefano Iannucci and Sherif Abdelwahed. 2016. Towards autonomic intrusion response systems. In Proceedings of the

2016 IEEE International Conference on Autonomic Computing (ICAC’16).

[23] Stefano Iannucci, Qian Chen, and Sherif Abdelwahed. 2016. High-performance intrusion response planning on many-

core architectures. In Proceedings of the 2016 25th International Conference on Computer Communication and Networks

(ICCCN’16).

[24] Zakira Inayat, Abdullah Gani, Nor Badrul Anuar, Muhammad Khuram Khan, and Shahid Anwar. 2016. Intrusion

response systems: Foundations, design, and challenges. Journal of Network and Computer Applications 62, 53–74.

[25] Finn V. Jensen. 1996. An Introduction to Bayesian Networks. Vol. 210. UCL Press, London, England.

[26] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. 1996. Reinforcement learning: A survey. Journal

of Artificial Intelligence Research 4, 237–285.

[27] Michael Kearns, Yishay Mansour, and Andrew Y. Ng. 2002. A sparse sampling algorithm for near-optimal planning

in large Markov decision processes. Machine Learning 49, 2–3, 193–208.

[28] J. O. Kephart and D. M. Chess. 2003. The vision of autonomic computing. IEEE Computer 36, 1, 41–50.

[29] Levente Kocsis and Csaba Szepesvári. 2006. Bandit based Monte-Carlo planning. In Machine Learning: ECML 2006.

Springer, 282–293.

[30] Wenke Lee, Wei Fan, Matthew Miller, Salvatore J. Stolfo, and Erez Zadok. 2002. Toward cost-sensitive modeling for

intrusion detection and response. Journal of Computer Security 10, 1–2, 5–22.

[31] L. Li, M. L. Littman, and L. Littman. 2008. Prioritized Sweeping Converges to the Optimal Value Function. Technical

Report DCS-TR-631. Rutgers University.

[32] Carlos Joshua Marquez. 2010. An Analysis of the IDS Penetration Tool: Metasploit. Retrieved March 2, 2018, from

https://www.infosecwriters.com/text_resources/pdf/jmarquez_Metasploit.pdf.

[33] Peter Mell, Karen Scarfone, and Sasha Romanosky. 2007. A Complete Guide to the Common Vulnerability Scoring

System: Version 2.0. Retrieved March 2, 2018, from https://www.first.org/cvss/v2/guide.

[34] Daniel A. Menascé. 2002. QoS issues in Web services. IEEE Internet Computing 6, 6, 72–75.

[35] Erik Miehling, Mohammad Rasouli, and Demosthenis Teneketzis. 2015. Optimal defense policies for partially ob-

servable spreading processes on Bayesian attack graphs. In Proceedings of the 2nd ACM Workshop on Moving Target

Defense. ACM, New York, NY, 67–76.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 1, Article 4. Publication date: April 2018.

https://www.infosecwriters.com/text_resources/pdf/jmarquez_Metasploit.pdf
https://www.first.org/cvss/v2/guide

Model-Based Response Planning Strategies for Autonomic Intrusion Protection 4:23

[36] Chengpo Mu and Yingjiu Li. 2010. An intrusion response decision-making model based on hierarchical task network

planning. Expert Systems with Applications 37, 3, 2465–2472.

[37] Sven Ossenbuhl, Jessica Steinberger, and Harald Baier. 2015. Towards automated incident handling: How to select

an appropriate response against a network-based attack? In Proceedings of the 2015 9th International Conference on IT

Security Incident Management and IT Forensics (IMF’15). IEEE, Los Alamitos, CA, 51–67.

[38] Martin L. Puterman and Moon Chirl Shin. 1978. Modified policy iteration algorithms for discounted Markov decision

problems. Management Science 24, 11, 1127–1137.

[39] Martin Roesch. 1999. Snort—lightweight intrusion detection for networks. In Proceedings of the 13th USENIX Confer-

ence on System Administration (LISA’99). 229–238.

[40] Jerome H. Saltzer and Michael D. Schroeder. 1975. The protection of information in computer systems. Proceedings

of the IEEE 63, 9, 1278–1308.

[41] Alireza Shameli-Sendi and Michel Dagenais. 2015. ORCEF: Online response cost evaluation framework for intrusion

response system. Journal of Network and Computer Applications 55, 89–107.

[42] Natalia Stakhanova, Samik Basu, and Johnny Wong. 2007. A cost-sensitive model for preemptive intrusion response

systems. In Proceedings of the 21st International Conference on Advanced Information Networking and Applications

(AINA’07). 428–435.

[43] Christopher Roy Strasburg, Natalia Stakhanova, Samik Basu, and Johnny S. Wong. 2008. The methodology for eval-

uating response cost for intrusion response systems. In Recent Advances in Intrusion Detection. Lecture Notes in

Computer Science, Vol. 5230. Springer, 390–391.

[44] Thomas Toth and Christopher Kruegel. 2002. Evaluating the impact of automated intrusion response mechanisms.

In Proceedings of the 2002 18th Annual Computer Security Applications Conference. IEEE, Los Alamitos, CA, 301–310.

[45] Eric Yuan, Naeem Esfahani, and Sam Malek. 2014. A systematic survey of self-protecting software systems. ACM

Transactions on Autonomous and Adaptive Systems 8, 4, 17.

[46] Xin Zan, Feng Gao, Jiuqiang Han, Xiaoyong Liu, and Jiaping Zhou. 2010. A hierarchical and factored POMDP based

automated intrusion response framework. In Proceedings of the 2010 2nd International Conference on Software Tech-

nology and Engineering (ICSTE’10). IEEE, Los Alamitos, CA, 410.

[47] Saman A. Zonouz, Himanshu Khurana, William H. Sanders, and Timothy M. Yardley. 2014. RRE: A game-theoretic

intrusion response and recovery engine. IEEE Transactions on Parallel and Distributed Systems 25, 2, 395–406.

Received September 2016; revised April 2017; accepted November 2017

ACM Transactions on Autonomous and Adaptive Systems, Vol. 13, No. 1, Article 4. Publication date: April 2018.

