
Efficient Data Lookup in Non-DHT Based Low 
Diameter Structured P2P Network  

 
Bidyut Gupta, Nick Rahimi, Shahram Rahimi, and Ashraf Alyanbaawi  

Department of Computer Science 
Southern Illinois University 

 Carbondale, IL, USA 
{bidyut, nick ,rahimi}@cs.siu.edu and ashraf@siu.edu 

 
Abstract — In this paper, we have considered a recently 

reported non-DHT based structured P2P system. The 
architecture is based on Linear Diophantine Equation (LDE) and 
it is an interest-based system; it offers very efficient data lookup. 
However, the architecture is restricted in that a peer cannot 
possess more than one distinct resource type. This may reduce 
the scope of its application. In this paper, we have extended the 
work by considering a generalization of the architecture, that is, 
a peer can possess multiple distinct resource types. We have 
proposed an efficient data lookup algorithm with time complexity 
bounded by (2+r/2); r is the number of distinct resource types. 
We have discussed about an alternative lookup scheme that needs 
constant number of hops and constant number of message 
exchanges. Besides, churn handling and ring maintenance have 
been shown to be very efficient. 

Keywords — P2P network; structured; Linear Diophantine 
equation; network diameter; data lookup; churn 

I. INTRODUCTION  
Peer-to-Peer (P2P) overlay networks are widely used in 

distributed systems. There are two classes of such networks: 
unstructured and structured ones. In unstructured systems [2] 
peers are organized into arbitrary topology. Flooding is usually 
used for data look up. Problem arising due to frequent peer 
joining and leaving the system, also known as churn, is handled 
effectively in unstructured systems. However, it compromises 
with the efficiency of data query and the much needed 
flexibility. Unstructured networks have excessive lookup costs 
and lookups are not guaranteed. On the other hand, structured 
overlay networks provide deterministic bounds on data 
discovery. They provide scalable network overlays based on a 
distributed data structure which actually supports the 
deterministic behavior for data lookup. Recent trend in 
designing structured overlay architectures is the use of 
distributed hash tables (DHTs) [4], [5], [9]. Such overlay 
architectures can offer efficient, flexible, and robust service [3] 
- [5], [7], [8],  

However, maintaining DHTs is a complex task and needs 
substantial amount of effort to handle the problem of churn. So, 
the major challenge facing such architectures is how to reduce 
this amount of effort while still providing an efficient data 
query service. In this direction, there exist several important 
works, which have considered designing hybrid systems [1], 
[6], [10] - [12]; their objective being incorporation of the 
advantages of both structured and unstructured architectures. 
However, these works have their own pros and cons. 

We have earlier proposed a new hierarchical architecture 
[13], [14] in which at each level of the hierarchy existing 
networks are all structured. We have used Linear Diophantine 
Equation (LDE) as the mathematical base to realize the 
architecture. Note that most structured approaches use DHTs to 
realize their architectures. Use of Linear Diophantine Equation 
in designing P2P architecture is a completely new idea. We 
have explored the many different possible advantages that can 
be fetched using LDEs; some of these advantages include 
efficient handling of data look-up, node (peer) join/leave, 
anonymity, load balancing among peers, to name a few; 
besides achieving fault-tolerance is reasonably simple. We 
have shown that the complexity involved in maintaining 
different data structures is much less than that involved in the 
maintenance of DHTs. On several points, LDE-based overlay 
architecture can outperform DHT-based ones. The proposed 
architecture has considered interest-based P2P systems [6], 
[15], [16]. The rationale behind this choice is that users sharing 
common interests are likely to share similar contents, and 
therefore searches for a particular type of content is more 
efficient if peers likely to store that content type are neighbors 
[17]. 

II. PRELIMINARIES AND PROBLEM 
FORMULATION 

 
Some of the preliminary ideas of the hierarchical P2P 

architecture proposed in [13], [14] have been considered in 
this paper. For the sake of completeness, we reproduce here 
from [13] some of the notations and the basic idea of using 
Linear Diophantine equations for the purpose of generating 
the logical addresses of the nodes (peers) of the overlay 
network.  

We define a resource as a tuple Ri, V , where Ri denotes 
the type of a resource and V is the value of the resource. A 
resource can have many values. For example, let Ri denote the 
resource type ‘songs’ and V’ denote a particular singer. Thus 

Ri, V’  represents songs (some or all) sung by a particular 
singer V’. In the model for interest-based P2P systems [13], 
we assume that no two peers with the same resource type Ri 
can have the same tuple [13]; that is, two peers with the same 
resource type Ri must have tuples Ri, V’  and Ri, V”  such 
that V’   V”. In [13] and [14], the assumption is that no peer 
can have more than one resource type. 
     We define the following. Let S be the set of all peers in a 
peer-to-peer system. Then S = {PRi}, 0  i  r-1. Here PRi 



denotes the subset consisting of all peers with the same 
resource type Ri and no two peers in PRi have the same value 
for Ri and the number of distinct resource types present in the 
system is r. Also for each subset PRi, Pi is the first peer among 
the peers in PRi to join the system. We now describe the P2P 
architecture [13] suitable for interest-based peer-to-peer 
system 

A. Two Level Hierarchy 
 

 In [13] we have proposed a two level overlay architecture 
and at each level, networks of peers are all structured. It is 
explained in detail below. 

1) At level-1, we have a ring network consisting of only 
the peers Pi (0  i  r-1). Therefore, number of peers on 
the ring is r, the number of distinct resource types. This 
ring network is used for efficient data lookup and so it 
is called as transit network. 

2) At level-2, there are r numbers of completely connected 
networks of peers. Each such network, say Ni is formed 
by the peers of the subset PRi, (0  i  r-1), such that all 
peers (  PRi) are directly connected (logically) to each 
other, resulting in the network diameter of 1. Each such 
Ni is connected to the transit ring network via the peer 
Pi.  Peer Pi acts as the group-head of network Ni. From 
now on network Ni will be referred to as groupi (in 
short as Gi) with Pi as its group-head. The architecture 
is shown in Fig. 1. 

3) Each node in the transit ring network maintains a 
global resource table (GRT) that consists of tuples of 
the form   <Resource Type, Resource Code, Group 
Head Logical Address, Group Head IP address>, 
where Group Head Logical Address refers to the 
logical address assigned to a node by our proposed 
architecture. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Fig. 1  A two-level structured architecture with distinct resource types 

 

B. Linear Diophantine Equation (LDE) and Its Solutions 
 

Let us consider the LDE as stated below. 
an   b (mod c),     a, b, and c are integers.                     (1) 

Let d b, where d = gcd(a,c). It means that (1) has d mutually 
incongruent solutions. 
The above equation can also be stated as  

an + (-c)k = b,       k is an integer.                                  (2) 
Each solution of Equ. (1) (& hence of (2) as well) has the 
form:  n = n0 + ct/d,  k = k0 + at/d 
where n0 and k0  constitute one specific solution and t is any 
integer. 
     Among the different values of n described by  n = n0 + ct/d, 
we note that the d values 
no,  n = n0 + c/d, n = n0 + 2c/d, --- , n = n0 + (d-1)c/d             
are all mutually incongruent modulo c, because the absolute 
difference between any two of them is less than c. 
    Also the values of a, b, and c can be so chosen as to make d 
very large whenever needed. Observe that there are infinite 
other solutions which are congruent to each of the d solutions. 
For example, all solutions of the form  
(no + mc), m is an integer, are mutually congruent. Similarly 
all solutions of the form [(n0 + c/d) + mc] are mutually 
congruent. 

C. Implementation of the Architecture  
 

Assume that in an interest-based P2P system there are r 
distinct resource types (r  d). That is, a maximum of d 
resource types can be present. Note that this is not a 
restriction, because d can be set to an extremely large value a 
priori by choosing an appropriate LDE. Consider the set of all 
peers in the system given as 
S = {PRi}, 0  i  r-1. 
     As mentioned earlier, for each subset PRi (i.e. group Gi) 
peer Pi is the first peer with resource type Ri to join the 
system. Now we use the mutually incongruent solutions of a 
given LDE to define the architecture as follows. 
     The ring network (Fig. 1) at level-1 will consist of all such 
Pi’s, for 0  i  r-1, and r  d, such that 

a) Each Pi will be assigned the logical address (n0 + 
i.c/d). Note that (n0 + i.c/d) is the ith mutually 
incongruent solution where 0  i  d-1. 

b) The transit network is a ring by default, because of 
modulo operation. Two peers in the ring network are 
neighbors if their assigned addresses differ by c/d, 
with the exception that the first peer P0 and the last 
peer Pr-1 will be considered as neighbors even though 
their addresses differ by (r-1).c/d. This structure has 
made the joining of new peers with new resource 
types very simple.  

c) Resource type Ri possessed by peers in Gi is assigned 
the code (n0 + i.c/d) which is also the logical address  
of the group-head Pi of group Gi. 

d) Diameter of the ring network can be at most d/2. 

Gi => Group i 
Pi => group head  

 
 

Level 1 
G1 

G0 

Pi 

Gr-1 

Gi 

P1 

P0 

Pr-1 

Transit ring Network             Level 2  



At level-2 all peers having the same resource type Ri will 
form the group Gi (i.e. the subset PRi). Only the group-head Pi 
is connected to the transit ring network. Observe that any 
communication between any two groups Gi and Gj takes place 
via the respective group-heads Pi and Pj. Peers in Gi will be 
assigned with the addresses 
                    [(n0 + i.c/d)+ m.c], for m = 0, 1, 2, …                (3) 
Note that m = 0 corresponds to the address of group-head Pi of 
Gi. 
Observation 1. All addresses in Gi are mutually congruent 
solutions for a given i.  
Observation 2. Congruence Relation is reflexive, symmetric, 
and transitive. Therefore it can be concluded that all peers in a 
group Gi are directly connected (logically) to each other 
forming a network of diameter 1 only.  
 

D. Problem Formulation 
 

In the above architecture, we have assumed that no peer 
can have more than one resource type. It may become a hard 
restriction in practice. Therefore, to overcome this restriction, 
in the present work, we have considered Generalization of the 
architecture; that is, a peer can have multiple different 
resource types. To implement the idea we have redesigned the 
peer joining processes (Section III), the inter-group data 
lookup algorithm (Section IV). In Section V, we have 
considered concurrent joins and leaves, followed by the 
maintenance of the transit ring network in Section VI. 

a)  

III. GENERALIZATION OF THE ARCHITECTURE 
 

To describe the situation, let us consider that in groupi the 
group-head Pi or a peer p (  Gi) wants data insertion in the 
system of another existing resource type Rk; note that Rk exists 
in groupk and Pi /p already possesses Ri. 

The solution works as follows. Peer Pi /p will become a 
member of groupk as well. That is, the IP address of Pi /p will 
be known to the members of both groupi and groupk. Logically 
it means that in the overlay network, Pi /p will be directly 
connected to all members of both groupi and groupk. Below we 
state its implementation.  

A. Peer with Multiple Existing Resource Types 
 

 To describe the situation, let us consider that in groupi the 
group-head Pi or a peer p (  Gi) wants data insertion in the 

 

system of another existing resource type Rk; note that Rk exists 
in groupk and Pi /p already possesses Ri. 

The solution works as follows. Peer Pi /p will become a 
member of groupk as well. That is, the members of both groupi 
and groupk will know the IP address of Pi /p. Logically, it 
means that in the overlay network, Pi /p will be directly 
connected to all members of both groupi and groupk. 
Algorithm1 states its implementation. It is shown in Fig. 2. 

Time complexity of Algorithm 1 is bounded by (1+ r/2), r 
being the number of distinct resource types. Data insertion for 
more existing resource types can be done similarly. 

B. Existing Peers Declaring New Resource Types 
 

To start with, let us assume that the P2P system has S 
number of distinct resource types, viz., R0, R1, R2, … Rs-1 . 
Without any loss of generality, let peer Pi /p in groupi wants a 
data insertion for a new resource type Rs. Then following the 
way the transit ring is constructed, peer Pi /p will become the 
group-head of the newly created groups possessing resource 
type Rs. As the recent group-head Ps, location of Pi /p on the 
ring is now between Ps-1 and P0. So, if it is Pi, peer Pi will 
appear (logically) twice as group-heads on the ring for groupi 
and groups. If it is peer p, it will appear once as the group-head 
of groups and once as a member of groupi. Note that Rs will 
have the code (n0 + sc/d) and it will also be another logical 
address for Pi /p. Now, Pi /p will ask the group-heads to update 
their global resource tables by including Rs and its code (n0 + 
sc/d) along with the IP address of Pi /p. For implementation, Pi 
/p will now have another set of pointers pointing to its new 
neighbors, Ps-1 and P0. Group-heads Ps-1 now changes its right 
neighbor from P0 to Ps and group-head P0 changes its left 
neighbor from Ps-1 to Ps; they adjust their pointers accordingly. 
     To guard against group-head crash or leave, later when 
more peers join this group, Pi /p will store the IP addresses of 
Ps-1 and P0 in the peer with the next address [(n0 + sc/d) + c]. 
We will elaborate further on fault-tolerance in Section VI.  
  
Next, we consider data look up in the generalized structure. 

 

IV. DATA LOOK-UP 
     We consider that a peer Pi is also the group-head Ps of 
groups. Our proposed approach works as well if Pi possesses 
any number of distinct resource types. We assume that the 
system has r distinct resource types. In Fig. 3 we state the 
algorithm for data lookup inside a group. 

 
1 Data insertion request for Rk from Pi /p is forwarded along the transit ring from group-head Pi to Pk        // maximum r/2 hops 
2 Pk assigns to Pi /p the next available address, not yet assigned in groupk.  

                                                                // the address is of the form [(n0 + kc/d) + yc], y is an integer 
                                                                                                                                                                                                  
3 a. Pk broadcasts the address of Pi /p in groupk                                 // Pi /p is the new member of groupk; 1-hop communication 
   b. each groupk member updates its list of neighbors 
4 Pk unicasts a copy of neighbor list to Pi /p                                                                                     // Pi /p is now a member of Gk 

 

Fig. 2 Algorithm 1: Data insertion for multiple existing resource types 



A. Intra Group Lookup 
 

 

 

 

 

 

 

B. Inter Group Lookup 
     In our proposed architecture, any inter group 
communication involves travelling along the transit ring. 
Without any loss of generality let a peer pa in Gi request for a 
resource < Rj, V* >. The following algorithm answers the 
query. In order to locate resource Rj, a search along the transit 
ring network is required. The algorithm for inter group lookup 
is presented in Fig. 4.  
 

However, in our proposed architecture, number of peers on 
the ring is the number of distinct resource types r and it has 
been observed that the number of peers in most P2P networks 
is too large compared to the number of distinct resource types. 
Therefore, such search on the ring in our proposed architecture 
appears to be quite practical.  
 
 
 
 
 
Table 2: Data Lookup Complexity Comparison 

 
     Another point to note is that use of the same logical address 
to denote a resource type and the corresponding group-head 
has not only made the search process simple and efficient, it 
also makes it feasible for every group-head to maintain the 
address of every other group-head in the transit network. This 
has two significant advantages: 
 

1. Following Algorithm 3 (Fig. 4), the time complexity 
is bounded by (2 + r/2), because maximum number of 
hops required per any resource search is (2 + r/2), 
where r is the number of distinct resource types. Note 
that r « n, where n is the total number of peers in the 
system. 

2. As an alternative resource lookup process, using the 
GRT a group-head Pi can directly unicast a message 
to any other group-head Pj avoiding any 
communication along the transit ring network. In this 
way, the lookup process will need a constant number 
of hops and a constant number of message exchanges. 

 
     In the following table, we have presented the complexity of 
our data lookup approach along with those of some other 
noteworthy structured approaches. 
 

 

 

  

 

 

 

1 node pa (  Gi) broadcasts in Gi for < Ri, Vb >      
   // one-hop communication since Gi is a complete graph 
                                                                            
2 if pb with < Ri, Vb > then 
3        node pb unicasts < Ri, Vb > to node pa 
4 else 
5        search for <Ri, Vb > fails 
6 end 
 

 

 
 

CAN Chord Pastry Our Work 

Architecture Structured P2P 
Overlay 

Structured P2P 
Overlay 

Structured P2P 
Overlay 

Interest based,  
Two-level Structured 

Hierarchical 

Lookup 
Protocol 

{key, value} pairs 
to map a point P in 

the coordinate space 
using uniform hash 

function. 

Matching key 
and NodeID. 

Matching key and 
prefix in NodeID. 

Inter-Group: 
Routing through  

Group-heads  
Intra-group: 

 Complete Graph 

Parameters 

N-number of peers 
in network  

 d-number of 
dimensions. 

N-number of 
peers in 
network. 

N-number of peers 
in network  

 b-number of bits 
(B = 2b) used for 
the base of the 

chosen identifier. 

r - Number of distinct 
resource types. 
N-number of peers in 
network. 

r << N 

Lookup 
Performance 

 
O(d N 1/d) 

 
O(log N ) 

 
O(log BN ) 

Inter-Group: 
O(log r) 

Intra-group: 
One hop 

 

Table 1: Data Lookup Complexity Comparison 

Fig. 3 Algorithm 2:  Intra-Group-Lookup 



 
1 pa (  Gi) unicasts request for < Rj, V*> to group-head Pi 
2 if Pi is also the group-head (Pj) for resource type Rj  
3        if Pi (as Pj) possesses < Rj, V*> then                
4                Pi (as Pj) unicasts < Rj, V*> to pa 
5        else  
6                Pi (as Pj) executes Algorithm 2 in Gj  
7 else    
8          Pi determines resource <Rj, V*> group-head Pj’s address code from GRT 
                // address code of Pj = resource code of Rj= n0 + j (c/d) 
9          Pi computes h    | (n0 + i (c/d)) – (n0 + j (c/d)) | 
                // looking for minimum no. of hops along the transit ring 
10        if h > r/2 then 
11               Pi forwards the request along with the IP address of pa to its predecessor Pi-1 
12        else  
13               Pi forwards the request along with the IP address of pa to its successor Pi+1  
14 end 
15 if an intermediate group-head Pk is also the group-head for resource type Rj then 
16        if Pk (as Pj) possesses < Rj, V*> then                
17                Pk (as Pj) unicasts < Rj, V*> to pa 
18        else  
19                Pk (as Pj) executes Algorithm 2 in Gj as its group-head Pj 
20 else 
21        each intermediate group-head Pk forwards the request until the request arrives at Pj 
22        if Pj possesses <Rj, V*> then 
23                Pj unicasts <Rj, V*> to pa 
24        else  
25               Pj executes Algorithm 2 in Gj  
26 end 

 

V. JOINS AND LEAVES 
We assume that a well-known server keeps a copy of the 

GRT. When a new node (peer) wishes to join the system, it 
contacts the server. If the request to join is for an existing 
resource type, say Ri, the server sends the IP address of the 
group-head Pi to the node. If the request is for a new resource 
type, the server sends the IP address of the group-head P0. 
Therefore, in our design the server plays a small but very 
important role related to load sharing by group-heads. All that 
is needed is when the GRT is updated by the group-heads, a 
copy is sent to the server. By virtue of its construction, the 
GRT remains sorted by default and in an ascending order of 
the Group-heads’ logical addresses; so determining the exact 
group-head is O(log r).  Note that in [14] server always sends 
the address of P0 irrespective of the nature of a request, be it 
an existing or a new resource type; it would always increase 
the load on P0 as all the requests are directed at it.  

 
We now briefly discuss now the different possible situations 
of joining and leaving of peers. 

 
 

 

A. Concurrent Joins 
As pointed out earlier, a peer p either can join an existing 
group, or can form a new group with the group-head being the 
peer itself. In the former case, since nodes in a group are 
directly connected to each other, hence joining a group means 
forming a logical link between the peer p and each node in the 
group. We have presented the procedure in [14]. If multiple 
peers join the same group, say Gi, the join requests are queued 
at the group head Pi and are served on FCFS basis. Observe 
that joining multiple groups can take place concurrently, 
because joining one group is unrelated to joining other groups.  
     In case it is a new resource type Rs, the joining peer 
contacts P0 that is the group-head of the very first group 
formed in the system [14]. Multiple such requests eventually 
arrive at P0 and P0 serves the requests on FCFS basis. We can 
handle insertion of multiple new resource types by the same 
peer in a similar way. Note that in the proposed architecture 
joining of any new resource type always takes place between 
the recent and the first groups [14]; this feature makes such 
joining localized to a single position on the ring; thereby 
making the joining process much simpler compared to existing 
related approaches [5] – [8]. It is obvious that the above- 

 Fig. 4 Algorithm 3: Inter-Group-Lookup 



mentioned two kinds of joins can take place simultaneously, 
because one involves existing groups and the other is about 
the formation of new groups. 
 

B. Concurrent Leaves 
 

We assume that any two directly connected peers in a 
group or along the transit ring exchange periodic hello 
packets. Whether it is a graceful leaving or abrupt leaving 
(crash) absence of a hello packet from a neighboring peer is 
interpreted as the peer being unreachable (not alive). That is, 
we do not differentiate between the above-mentioned two 
types of leaving. In effect, the logical link information about 
the leaving peer is deleted from the routing table of each peer 
not receiving the hello packet. Therefore, concurrent such 
leavings whether taking place in the same group or in multiple 
groups amounts to the deletion of the corresponding link 
information in the routing tables of the concerned non-leaving 
peers only. Of course, a non-leaving peer sequentially deletes 
multiple link information in case multiple peers leave the same 
group. Note that handling of single group-head crash has been 
discussed in [14]. Multiple group heads’ leaving is considered 
in the following section. 
 

C. Concurrent Joins and Leaves 
 

Observe that ‘concurrent joins and leaves’ means that 
addition and deletion of logical links taking place 
concurrently. If a peer is involved in both actions, it will do so 
sequentially on FCFS basis; otherwise, different peers can 
execute these two operations concurrently in the system. 

 

VI. RING MAINTENANCE 
In our earlier work [14] we presented an approach to handle 

single group-head crash or leave. In the present work, we will 
consider multiple group-heads leaving simultaneously and we 
will show that the ring will remain connected in such 
situations. The approach works as follows. 

Let us consider the peer Pr, the group-head of group Gr. The 
logical address of Pr is (n0 + r.c/d). Assume that peers pr

1 and 
pr

2 in Gr have the next two addresses followed by the group-
head’s address and these are [(n0 + rc/d) + c] and [(n0 + rc/d) + 
2c] respectively. In [14], pr

1 acts as the secondary group-head 
for group Gr to guard against the primary group-head leaving 
and we have considered that during the formation of this group, 
Pr stores in pr

1 the addresses of its neighboring group-heads Pr-1 
and Pr+1 along with a copy of the GRT. In the event of Pr 
leaving, pr

1 becomes the new primary group-head and its 
communication connectivity with Pr-1 and Pr+1 remains intact. It 
also means that pr

2 will now act as the new secondary group-
head for group Gr. The new primary group-head pr

1 will save 
the neighbors addresses, i.e. the addresses of Pr-1 and Pr+1 in pr

2 
and broadcasts to other group-heads to update their GRTs to 
reflect that pr

1 is now the group-head of Gr. One noteworthy 
point is that peer pr

1 does not need to inform the other peers in 

Gr about itself being the new group-head. The reason is simple  
and interesting. The way of construction of the routing table of 
a peer as a new peer joins group Gr ensures that the routing-
table remains sorted by default and in an ascending order of the 
peers’ logical addresses in the group. Therefore, the entries are 
same in each routing table and each peer knows that the peer 
with the lowest logical address is the current group-head. 

     However how can the connectivity along the ring be 
maintained if multiple group-heads leave simultaneously? In 
this paper, we have presented a simple solution for this. We 
propose that each group-head Pr and its secondary one, pr

1 store 
the tuple, [Pr-1, pr-1

1, Pr+1, pr+1
1]. The following example 

explains the idea. 

     Let Pi-1, Pi, and Pi+1 be the group-heads of three consecutive 
groups on the ring. We also call them as primary group-heads. 
The resource types corresponding to the group-heads are Ri-1, 
Ri, and Ri+1 respectively. Let in Pi, the secondary group-head 
be pi

1; similarly, the respective secondary group-heads in Pi-1 
and Pi+1 are pi-1

1
 and pi+1

1.  

     Therefore, both Pi-1, pi-1
1 have the tuple [Pi-2, pi-2

1, Pi, pi
1]; 

similarly, both Pi and pi
1 have the tuple [Pi-1, pi-1

1, Pi+1, pi+1
1]; 

and both Pi+1 and pi+1
1
 have the tuple [Pi, pi

1, Pi+2, pi+2
1]. 

     Now, let us consider the worst-case scenario of all three 
primary group-heads, i.e. Pi-1, Pi, and Pi+1 leaving at the same 
time. We observe that in Gi the new primary group-head pi

1 has 
the IP addresses of the new primary group-heads pi-1

1
 and pi+1

1 
of the groups Gi-1 and Gi+1. Therefore, group Gi remains 
connected to its neighboring groups Gi-1 and Gi+1. Also, in 
group Gi-1, its new primary group-head pi-1

1
 uses the IP address 

of the group-head Pi-2 to communicate with this group along the 
ring network; if Pi-2 leaves, new primary group-head pi-1

1
 can 

communicate with this group along the ring network via the IP 
address of pi-2

1. Similarly, we observe that group Gi+1 can 
communicate with its neighboring groups as well. Observe that 
to enhance the degree of fault-tolerance, tuple-size can be 
increased to include more members of a group. The above 
discussion leads to the following observation. 

Observation 3. Transit ring network remains connected even if 
consecutive primary group-heads leave the system. 

VII.  CONCLUSION 
We have extended our earlier work to incorporate the 

general idea that a peer can possess multiple resource types. It 
enhances the scope of application of the architecture. The time 
complexity of the proposed inter-group data lookup algorithm 
is bounded by (2 + r/2), where r is the number of distinct 
resource types and r « n, where n is the total number of peers in 
the system. For intra-group data look up, it needs two hops 
only [14]. Handling churn is remarkably efficient because of 
some noteworthy features of the architecture, viz., diameter of 
every group is one and location of a peer with new resource 
type is always between the existing last and the first peers on 
the ring unlike in any DHT-based architecture. We have also 
shown that keeping track of few IP addresses by the group-
heads and the corresponding secondary group heads helps in 
efficient ring maintenance. This work is a part of an ongoing 
research project with the goal of designing P2P federation 



consisting of small P2P systems so that bandwidth cannot be an 
issue. 

REFERENCES 
[1] P. Ganesan, Q.Sun, and H. Garcia-Molina, “Yappers: A    peer-to-peer 

lookup service over arbitrary topology,”   Proc. IEEE Infocom, pp. 
1250-1260, 2003, San Francisco, USA, March 30 - April 1 2003. 

[2] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker, 
“Making gnutella-like p2p systems scalable,”   Proc. ACM SIGCOMM, 
Karlsruhe, Germany, August 25-29, 2003. 

[3] B. Y. Zhao,L. Huang, S. C. Rhea, J. Stribling, A. Zoseph, and J. D. 
Kubiatowicz, “Tapestry: a global-scale overlay for rapid service 
deployment,” IEEE J-SAC, vol. 22, no. 1, pp. 41-53, Jan. 2004. 

[4] A. Rowstron and P. Druschel, “Pastry: scalable, distributed object 
location and routing for large scale peer-to-peer systems,” Proc. 
IFIP/ACM Intl. Conf. Distributed Systems Platforms (Middleware), pp. 
329-350, 2001.  

[5] I. Stocia, R. Morris, D. Liben-Nowell, D. R. Karger, M. Kaashoek, F. 
Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup 
protocol for internet applications,” IEEE/ACM Tran. Networking, vol. 
11, No. 1,  pp. 17-32, Feb. 2003. 

[6] M. Yang and Y. Yang, “An efficient hybrid peer-to-peer system for 
distributed data sharing,” IEEE Trans. Computers, vol. 59, no. 9, pp. 
1158-1171, Sep. 2010. 

[7] M. Xu, S. Zhou, and J. Guan, “A new and effective hierarchical overlay 
structure for peer-to-peer networks,” Computer Communications, vol. 
34, pp. 862-874, 2011.  

[8] D. Korzun and A. Gurtov, “Hierarchical architectures in structured peer-
to-peer overlay networks,” Peer-to-Peer Networking and Applications, 
Springer, pp. 1-37, March 2013. 

[9] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A 
scalable content-addressable network,” Proc. SIGCOMM Annual 
Conference on Data Communication, Aug. 2001. 

[10] B.T. Loo, R. Huebsch, I. Stoica, and J.M. Hellerstein, “The case for a 
hybrid p2p search infrastructure,” Proc.Workshop Peer-to-Peer Sysyems 
(IPTPS’04), pp. 141-150, Feb. 2004. 

[11] Z. Peng, Z. Duan, J.Jun Qi, Y. Cao, and E. Lv, “HP2P: a hybrid 
hierarchical p2p network,” Proc. Intl. Conf.  Digital Society, 2007. 

[12] K. Shuang, P Zhang, and S. Su, “Comb: a resilient and efficient two-hop 
lookup service for distributed communication system,” Security and 
Communication Networks, vol. 8(10), pp. 1890-1903, 2015. 

[13] Bidyut Gupta, Shahram Rahimi, Ziping Liu, and Sindoora Koneru, 
“Design of structured peer-to-peer  networks using linear diophantine 
equation,” Proc. CAINE, pp. 147-151, New Orleans, Oct., 2014. 

[14] N. Rahimi, K. Sinha, B. Gupta, and S. Rahimi, “LDEPTH: A low 
diameter hierarchical p2p network architecture,” Proc. 2016 IEEE Int. 
Conf. on Industrial Informatics (INDIN 2016), Poitiers, France, July, 
2016. 

[15] R. Zhang and Y.C. Hu, “Assisted peer–to-peer search with partial 
indexing,” IEEE Trans. Parallel and Distributed Systems, vol. 18(8), pp. 
1146-1158, 2007. 

[16] E. Cohen, A. Fiat, H. Kaplan, “Associative search in peer-to-peer 
networks: harnessing latent  semantics,” vol. 2, pp. 1261-1271, 2003. 

[17] Andrea Passarella, “A survey on content-centric technologies for the 
current internet: cdn and p2p Solutions,” Computer Communications, 
vol. 35, pp. 1-32, 2012. 
 

 
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


