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Abstract— The need for Prognostics and Health Manage-
ment (PHM) systems has increased along with an increase
in domains that require intelligent predictive systems, which
can help in decreasing the downtime of the assets thereby
curbing increasing maintenance costs, to manage asset in-
ventories and customer satisfaction. Many techniques have
been developed in the field of Prognostics Maintenance. This
paper reviews the recent approaches that were developed
and implemented on NASA’s turbofan engine dataset, which
was developed as a part of PHM’08 challenge and C-MAPSS
dataset [1] [2].
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1. Introduction
With an increasing need for efficiency and increasing

maintenance costs due to premature failures, many industries

are using Predictive Maintenance (PM) to find solutions

for predicting the failure of an asset beforehand, thereby

reducing the downtime of the asset by performing a main-

tenance operation on it. Asset management and Inventory

management domains are also looking towards PM systems,

which can help them predict the need for stocking assets or

asset components, thereby controlling the inventory costs.

The Prognostics and Health Management (PHM) systems

have become instrumental for predictive maintenance sup-

port since a decade ago. PHM systems play a pivotal role

in the development of predictive maintenance and support

systems. They can help in predicting the failure beforehand,

failure identification and isolation, anomaly detection, etc.

An essential feature of PHM is the estimation of Remaining

Useful Life (RUL), a piece of quantitative information about

how long the asset can be in a working condition which helps

in planning maintenance operations [3].

According to many studies, prognostic approaches are

categorized into: Model-Driven approaches, Data-Driven

approaches, and Hybrid approaches [4]. Model-based ap-

proaches are mathematical models based on modelling the

physical behaviour of the system by understanding the de-

pendencies and interrelationships which can result in accept-

able results. However, it requires an in-depth knowledge of

the system to build such models, which makes them difficult

to implement. Data-driven methods are most sought-after

methods due to their ease of implementation. These methods

use machine learning to derive the degradation process

from the data. They proved to be reliable in conditions

where sufficient historical data for training exists and in-

depth system knowledge is not required [5], making them

computationally less expensive compared to model-driven

methods. Popular data-driven approaches include deep learn-

ing methods such as recurrent neural networks, convolutional

neural networks, deep belief networks, and other approaches

such as support vector machines, regression trees, ensemble

methods, genetic algorithms, and fuzzy networks for PHM.

Hybrid approaches are a combination of data-based and

model-based approaches, which use the best features in each

approach [6].

In this work, we present a review of the most recent

approaches for prognostics and health management, specif-

ically on NASA’s turbofan engine dataset. In section II, we

discuss NASA’s turbofan engine dataset. Section III explains

different types of applications on C-MAPSS dataset. Next,

section IV introduces different techniques applied to the

applications in Section III. Finally, section V provides a

direction for future research opportunities and concludes the

paper.

2. NASA TurboFan Engine Dataset

The NASA turboFan engine degradation simulation

dataset [1] was developed by NASA using Commercial Mod-

ular Aero Propulsion System Simulation tool (C-MAPSS)

[7], [8]. It was developed in order to encourage developments

in Prognostics. The dataset contains multivariate time series

data from a simulated large commercial turbofan engine

instances using C-MAPSS. The C-MAPSS dataset consists

of five sub-datasets, which are named as FD001, FD002,

FD003, FD004, FD005T and FD005V. The first four sub-

datasets contain training and test data along with the actual

RUL values for test data. The dataset FD005T, used as a

part of PHM Challenge’08 also contains training and test

files except that the Actual RUL values for the test data was

not provided. FD005V was used as a validation data set in

the PHM’08 challenge.

The dataset consists of 26 columns. The first column in-

dicate the engine identification number. The seconds column

denotes the run-cycle of the engine. The next three columns

denote the operational settings followed by 21 sensor values.

The engines in the training files are till failure, while the

engines in test files are run till a random point prior to

failure. Table 1 shows more information about the attributes

of the data.
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Table 1: Attributes of Turbo Fan Degradation Simulation

Dataset from NASA’s repository
C-MAPSS Simulation Data PHM2008 Challenge
#1 #2 #3 #4 #5T #5V

#Conditions 1 6 1 6 6 6
#Fault Modes 1 1 2 2 1 1
#Train Units 100 260 100 249 218 218
#Test Units 100 259 100 248 218 435

3. Prognostics Domains
The following are the different application domains in

which the C-MAPSS dataset is used since 2018, based on

the best knowledge of the authors.

3.1 Prediction of Remaining Useful Life
Prediction of remaining useful life of the engine is a

major goal of the works discussed in this paper. Remaining

Useful Life is the remaining time for a system/component to

perform its functions until it fails. Estimating the remaining

useful life helps in reducing the downtime of the device by

planning maintenance actions in advance

Prediction of RUL can be achieved in various approaches,

which are generally categorized into [9]:

• Mapping between input and RUL

• Mapping between health-index and RUL

• Similarity-based methods

Prediction of RUL using input signals and the ground truth

RUL values involve modeling a relationship between data

features which include both raw as well as extracted features

and the labeled RUL [9]. These methods learn the underlying

patterns and interrelationships between these features and the

RUL and predict the RUL of new, unseen test instances using

these patterns.

The other category of approaches involve learning the

mapping between a developed feature called Health-Index

(HI), which represents the health status of the component,

and RUL. It is developed by fusing the input signals into

a one-dimensional feature that is mapped to the labeled

remaining useful life of the training instances. The methods

in this approach learn the relationship between the HI and

RUL and are used to predict the RUL of the test instances.

Previous works have used methods such as linear regression

[10] and logistic regression [11] for converting the multi-

dimensional inputs to health index.

Similarity-based prediction methods [9],[10] use similar-

ity comparison between a library of degradation models of

instances of training data and test data [9]. The library of

degradation pattern is created directly from the raw data or

by using HI. The trajectories of the test data are compared

with the patterns in the library and distance measures are

used to compare the similarity between them. Different

methods are later used to infer the RUL from the most

similar model in the library.

By estimating the Remaining Useful Life of a system,

maintenance activities can be planned and spare parts that

are required for the maintenance can be ordered and stored

based on RUL. Costs involved in managing inventory can

be minimized if the spare parts are ordered with a minimal

time between their use, instead of storing them. This paper

discusses the recent works which, have proposed approaches

for inventory maintenance using the prediction of RUL.

3.2 Anomaly Detection and Sensor Recovery
Anomaly detection is the concept of the discovery of

sudden changes in the running pattern of the component,

which in this case is the turbofan engine[12]. This concept

can be utilized to obtain a variety of information such as

change-point, fault source identification, and fault isolation.

With developments in the area of Internet of Things (IoT),

the use of sensors has increased in the past decade. Some-

times anomalies can be caused due to the faulty working

of the sensors. The sensor values emitted from anomalous

sensors can have a significant influence on the prediction of

remaining useful life and degradation modeling tasks. So, it

is essential to recover the actual data from anomalous sensors

instead of discarding it [13]. Training the RUL prediction

methods by retrieving the data can have a significant impact

on the prediction accuracy.

3.3 Real-time Prognostics and Online Learning
Most of the works in the field of PHM deal with Prediction

of RUL and estimation of the health status of the asset in

offline mode, that is the predicting methods are trained on a

entire batch of data at once. To implement the system in real-

time, Online Training is needed.Online-Learning methods

are useful to train the methods on new data and learn

new patterns from the dynamic data. Online Learning can

enable implementing the prediction systems in real-time

domain. Latest developments in PHM are aimed at real

time applications where the methods are trained sequentially

as the data comes in. With changing environments and

operating conditions in which the system is run, Online

Training is useful solution for real-time diagnostics.

4. Prognostics Methods
4.1 Convolutional Neural Networks

Convolutional Neural networks (CNNs) [14], [15], [16]

are one of the most popular methods for image data pro-

cessing. Two characteristics of CNNs are: spatially shared

weights and spatial pooling[17]. The shared weights between

several functions in the architecture help in minimizing

the memory requirement and the complexity of the neural

network. CNNs are also capable of handling raw input data

which makes less dependent on prior knowledge. The first

implementation of CNN for predicting RUL of jet engines

was proposed in [18]. The results were better than all the
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earlier prediction techniques such as multi-layer perceptron,

support vector regression, and relevance vector regression.

Recent approaches like [19], [20] have performed well

on RUL estimation task. [19] proposes Deep Convolutional

Neural Network (DCNN) with five Convolutional layers

and one fully connected Layer, all with tanh activation for

better extraction of sensor signals. It also introduced a time

window which helped in better feature extraction. The model

performed better than all the state-of-art papers at that time,

namely [18], [21], [22] to name a few. [20] proposes a

CNN, added a Residual Building Block (RBB) along with

piece-wise linear degradation [23]. By using K-fold cross

validation, K number of models are trained and grouped to

form an ensemble. This method gave a better accuracy than

[18], [19], [24].

4.2 Recurrent Neural Networks and its Vari-
ants

Recurrent Neural Networks (RNN) [14], [17] are a group

of neural networks for processing sequential data. They have

been applied to many domains such as natural language

processing, sequence-to-sequence translation, heathcare, etc.

Below we review the RNN variants applied to this problem.

4.2.1 Long Short-Term Memory
Long Short-Term Memory (LSTM) is a variant of RNN

developed by Sepp Hochreiter and JÃijrgen Schmidhuber

[25] to avoid the problem of vanishing or exploding gradient

in a traditional RNN [26]. It uses gate functions, namely

input gate, forget gate, and output gate, as well as a cell

which acts as a memory unit [27]. Information can be written

into, stored, and read from the cell. The gates decide what

information to preserve and what information to forget in the

cell. The forget gate decides which historical data to discard

from the cell state, input gate decides which states should

be updated, and the output gate decides which part of the

cell state should be given as output [28]. LSTM has been

formerly applied on NASA turboFan jet engine dataset [21],

[24], [28], [29] and yielded promising performance.

Recent studies [30], [31], [32], [33], [34] have utilized

LSTM to this problem as well. [30] predicts the probability

of an error in different time intervals instead of a particular

RUL. This helps in planning maintenance actions during

those intervals. [31] proposes an LSTM implementation for

predicting RUL, which uses the Piece-Wise linear degrada-

tion concept [23]. An LSTM which takes the advantage of

training on censored instances along with failed instances is

proposed in [32]. In terms of Mean Squared Error (MSE)

and score(S), it performs better than [24], [29], which only

uses failed instances for training.

While the above discussed works are aimed at either pre-

diction of RUL through direct mapping of input and RUL, or

mapping of health index and RUL, [33] proposes a dual-task

LSTM, which performs the degradation assessment and RUL

prediction at the same time. Feature extraction is performed

using the Kernal Principal Component Analysis (KPCA)

[35]. The Root Mean Square Error (RMSE) reported was

better than that of [24]. In another research project, Vanilla

LSTM was used and it outperformed Gated Recurrent Units

(GRU) and the regular RNN [34].

Additionally, in [36], LSTM is used for modeling long-

sequence trends and gradient boosting regression. [37] mod-

els the short-term trends in different time windows. Finally,

a neural network combines the results from long-term and

short-term estimators and yields a hybrid prediction result.

Using an ensemble of LSTMs and a feature augmentation

method, which adds the forward difference of current and

previous values of the sensors in [38], the RUL is estimated.

Besides it provides further information on the prediction

interval of RUL that can be utilized in deciding the upcoming

strategy of maintenance. As a variation to using sole LSTM,

[39] have added an unsupervised layer of Restricted Boltz-

man machines [40] in order to capture the latent features of

raw sensor data and then the LSTM is trained with labeled

data. This semi-supervised approach not only results in better

estimation compared to that of supervised methods, but also

makes the model capable of handling data not fully labeled.

As in real-life cases of PHM, applications with fully labeled

data is not easily obtained.

4.2.2 Bi-Directional Long Short-Term Memory Recur-
rent Neural Network

Bi-directional Long Short-Term Memory Recurrent Neu-

ral Network (BiLSTM) is a variant of LSTM that connects

two hidden layers of opposite directions to the same output.

The BiLSTM network can learn the dependencies of sensor

data in both forward and backward direction, thereby having

an added advantage. They were introduced in [41]. The

increased capability of bi-directional LSTMs in prediction

and classification has made it a suitable tool for the problem

of RUL. Bi-directional LSTMs have been applied to the RUL

problem in [42], [43], [44]. BiLSTMs outperform RNN,

LSTM, GRU, and BiGRU in this class of problems.

AutoEncoder (AE) is essentially an unsupervised method

of extracting features from higher dimensions of data and

representing them in lower dimensions. Studies have shown

the advantages of using auto encoders alongside BiLSTMs

in estimation of RUL [45], [46]. Lowering the dimension

of input data using an AE, and then passing the data to

BiLSTM to capture the temporal dependencies, seems to

improve the RUL estimation results [46]. Using an AE made

of bi-directional LSTMs, decreases the multidimensional

sensor data to lower dimension, and then generates a single

dimensional health index afterwards, using a similarity based

curve matching approach to estimate RUL [45].
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4.2.3 Gated-Recurrent Unit

Gated Recurrent Unit (GRU) is a variant of RNN which

also follows the gate concept as in LSTM. Except that the

GRU only has 2 gates and it does not use a memory cell

unit [47]. In many of the proposed approaches discussed

in section 4.2, the LSTM methods tend to outperform their

GRU counterparts. However, [48] has shown that adding a

kernel principle component analysis [35] layer that lowers

the dimensions of the data, by extracting features from it,

improves the performance of GRU in terms of RUL estima-

tion error. That outperforms its LSTM based counterparts.

Besides, the time required to train the model is decreased

significantly.

4.3 Hybrid variants of CNN and RNN
Along the major approaches to CNN and RNN, learning

architectures have been proposed that make use of both

methods. In [49], a 1D layer of CNN is used to capture

low level representations of sensor readings. These rep-

resentations are then sent to an LSTM layer in order to

capture long-term dependencies. Then the fully connected

network layer maps the RUL to the inputs from previous

layer. Another architecture that first applies a CNN and

then uses and LSTM for estimating RUL is [50]. They

have proposed a method of data augmentation that improves

the performance of their approach. Another instance of this

category combines CNN and RNN in parallel [51]. A hybrid

deep neural network is proposed that takes in the input data

in two separate paths. One path is a CNN, and the other

one is a LSTM. Then, the outputs of these paths are passed

through a multi-layered neural network that acts as the fusion

path. In [26], CNN and LSTM extract features in parallel

paths. And then their outputs are fused using another LSTM.

At the end, a fully connected neural network maps these

features to RUL.

4.4 Echo State Networks
Though RNN’s possess a huge potential in modelling

sequential data, they also possess certain drawbacks such as

the need to train lots of parameters and the computational

burden it causes. Also, a single parameter update can be

computationally expensive and will require many cycles. As

a result, training times increase, which is not preferred. Echo

State Networks (ESN) rise from a concept called "Reservoir

Computing". They were developed by [52].

In an ESN, an RNN is created whose weights are gen-

erated randomly. This RNN, which is called the reservoir,

remains unchanged during the course of the training. It is

passively excited by the input signal [53]. Only weights of

the connections among the reservoir internal states and the

output are optimized, while the weights of the reservoir and

input remain unchanged, which makes them less compu-

tational expensive to train. Past implementations of ESN

on the C-MAPSS dataset of turbo fan engine degradation

simulation dataset have performed well [54], [55].

Works such as [56], [57], [58] have used ESN in re-

cent times for different tasks on the C-MAPSS dataset.

[56] proposes an ensemble of ESN’s aimed at predicting

the remaining useful life on C-MAPSS dataset. Additional

methods such as optimization of the ensemble architecture

parameters using multi-objective differential evolution algo-

rithm, which is an optimization algorithm [59], and local

aggregation of the ensemble ESNs, which assigns different

weights to the individual models based on their performance

on a subset of the training data, have been also introduced.

[57] uses an attention-based ESN using a genetic algorithm

to optimize the hyperparameters, which reported a better

MSE compared to [22], [24]. [58] proposes an echo state

network implementation for online training, where the inputs

come sequentially, and the ESN must be trained on them as

the input arrives. This work uses an online kernel-Based

learning method, called Kernel Recursive Least Squares

(KRLS) algorithm, for training the output weights in the

ESN [60].

4.5 Hidden Markov Models
Hidden Markov Models (HMM) are probabilistic models

that can be used to model/predict a sequence of signals.

HMMs are built on the assumption of markov process, which

states that future states are independent of the past states,

given the present states [61]. HMM can model the degrada-

tion of a component, each state of the model representing

a health state of the component. By modelling the health

state of the component, the RUL of the component can be

estimated. [61], [62]are some well-known implementations

of HMM on the NASA turboFan engine dataset.

Recent approaches using HMM for predicting the RUL

such as [63], [64], [65] have introduced some novel method-

ologies. [63] uses a cluster-based HMM which predicts the

RUL through a mapping with the degradation pattern. The

RMSE reported was better than some of the state-of-art

works such as [19]. Another similar approach uses HMM

with clustering [65]. This approach uses three HMM’s where

one of them is used to predict the RUL, while the other two

HMM’s are used to output the lower and upper bounds for

the RUL, which can help in maintenance planning decisions.

4.6 Other Approaches
In the recent years, we have seen the rise of many novel

approaches developed for RUL prediction, anomaly detec-

tion, change point detection, fault isolation, sensor recovery

from anomalous sensors, online training, and distributed

training.

A hybrid of Auto-Regressive Integrated Moving Average

(ARIMA) and SVM for the prediction of RUL is proposed

in [66]. The ARIMA is used to forecast the input values

and SVM is used for RUL prediction using the forecasted
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values. [67] employs an artificial neural network to perform

similarity-based RUL estimation on NASA turboFan engine

dataset. In this work, the raw sensor data are normalized

and clustered based on operational regimes. A joint-approach

for predicting the RUL as well as prediction of failure

within a specific interval was proposed in [68] using Deep

Weibull Recurrent Neural Network (DW-RNN) and Multi-

Task Learning (MTL-RNN).[69] used a Regression-Tree

Approach for RUL prediction. Regression using Relevance

Vector Machine (RVM), a machine learning technique which

works similar to SVM but gives a probability distributions

instead of point estimates, is used by [70]. Multi-Layer Per-

ceptrons (MLP) are known to work well with nonlinear data

and with the fact that they are computationally inexpensive

to train when compared to other deep networks like RNN,

a RUL prediction method using MLP with striding time

window was proposed in [5], and it performed better than

[18], [54], coming close to the performance of [22], [19].

Another implementation of MLP was introduced in [71],

which used an MLP with functional data analysis [72].

Filtering methods are generally used to filter out noise

in sensor data, but in most cases, filtering methods are

specific to a particular type of data. Some examples of

known filtering methods are moving average, exponential

smoothing, linear Fourier smoothing, and wavelet smoothing

methods [73]. A recent work, [73], proposes utilizing a

group of filtering methods and using the extracted features

for training, after performing Principal Component Analysis

(PCA) to reduce the dimensions of the input space. In this

work, an MLP and Random Forest (RF) were trained using

the output from PCA, which was reported to be robust on

different types of datasets such as C-MAPSS dataset.

Operating conditions of the components have a major in-

fluence on the working of the components. So [74] proposes

an approach for RUL prediction which considers the effect

of the operating conditions on the degradation pattern. This

method works robustly on non-linear continuously degrading

systems such as the NASA turbofan engine dataset. Extreme

Learning Machine (ELM) [75], a kind of neural network in

which the input weights and hidden weights are not trained,

is used in some of the latest works such as [76], [77].

The ensemble is a concept by which the results of multiple

methods are combined to yield better prediction accuracy.

The performance of different base learners is compared

and combined to give better accuracy. In [78], gradient

boosting Trees and random forest techniques, which are

a kind of ensemble methods is used for predicting the

RUL. They are trained on data that has been normalized

and clustered based on the operating conditions. Ensemble

learning is also used for distributed prognostics and in edge

computing environments. Instead of performing operations

on data collected in a centralized cloud repository (or global

repository), edge computing involves performing operations

at the local data repository itself. [79] uses ensemble method

with different base models, namely K-Nearest Neighbours

(KNN) [80], Decision Trees (DTs) [80], SVM [80] and MLP

[80]. Another ensemble-based approach method was imple-

mented in [81] that uses a parallel ensemble of RFs, Classi-

fication and Regression Tree (CART), RNN, Autoregressive

(AR), Adaptive-Network-Based Fuzzy Inference (ANFIS),

Relevance Vector Machine (RVM), and Elastic Net (EN).

In [82], a decision tree based gradient boosting approach,

named Light Gradient Boosting Machine (LightGBM) [83]

is used for RUL prediction. It displayed better RMSE values

when compared with existing state-of-art approaches such as

[24], [18], [22].

Anomaly detection is an important task for predictive

maintenance. It helps in identifying a problem and necessary

steps to solve the malfunction before any actual damage

happens to the asset or its components. Anomaly detection

using data-driven methods is generally considered to be

unsupervised due to reasons such as: 1) Not all faults are

known in advance. They are dependent on many factors such

as operating conditions and environment, wear-and-tear of

the asset/component, etc. 2) Accurate labelled data cannot

be found in most of the conditions. Discussion on the state-

of-art papers in anomaly detection can be found in [12].

Interesting developments in the anomaly detection have been

introduced using NASA turbofan engine dataset in recent

works such as [84]. In traditional clustering algorithms such

as k-means, k-medoids and self-organizing maps, the cluster

centre is used to measure the similarity distance to a new

point [84]. These techniques involve heavy memory and

computational expenses since every new data point has to

be compared with each and every cluster centre, which

is computationally demanding in case of large datasets.

[84] proposes construction of a non-convex hull, using an

algorithm called DINA [84], around the generated cluster

to represent all the similar data points. Using a non-convex

hull to cluster the data points, anomalies can be detected

by comparing the new data points to the nearest non-convex

hull. Sometimes sensors may fail or malfunction, causing

anomalous behaviour. Values generated by an anomalous

sensor have a major influence on the prediction values. The

anomalous sensors should be identified and the actual data

should be recovered, which can be used for training. Some

recent approaches such as [85] are aimed at sensor anomaly

detection and recovery of data from anomalous sensors by

using mutual information of the sensors. KPCA [35] is used

for anomaly detection followed by Least Square-Support

Vector Machine (LS-SVM) to recover the data.

Finally, inventory management is a classical domain,

where RUL prediction can be used to minimize the costs

involved in storing the assets or its components by or-

dering/storing the components only for short time, thereby

cutting down the storing costs. Application of PHM for

this purpose is discussed in [86]. Application of real-time

prognostics in a distributed manner for management of a fleet
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of assets is discussed in [87] in which an RNN is used as the

prediction method by online training. Systems in daily life

are used in dynamic operating conditions and environments,

which would require online training of the data to adapt to

the new patterns of the data.

5. Discussion and Conclusion
This paper provided a bird view analysis of the very recent

approaches developed in prognostics and health manage-

ment domain using the NASA turboFan engine degradation

dataset. The works are discussed based on the type of

methods applied to achieve tasks, namely, estimation of

remaining useful life, anomaly detection, sensor recovery,

and online and real-time prognostics.

The intention of this survey paper is to guide future

researchers by providing them information regarding the

latest trends in the field of prognostics and health man-

agement of industrial systems. The techniques developed

using the C-MAPSS dataset can be used for developments

in other complex systems as well. We intend to provide a

more comprehensive analysis of the recent trends, discussing

the pros and cons of each method, and a more detailed

comparison of them in a follow up journal paper.
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